
WETICE 2008

1

Federated Collaborations with Exertions

Michael Sobolewski

Computer Science, Texas Tech University
sobol@cs.ttu.edu

Abstract

This paper describes a service-oriented P2P
architecture and related federated metaprogramming
model to support development of highly scalable and
reliable distributed collaborative applications. In the
proposed architecture, autonomic service providers,
corresponding to various activities that occur in the
collaborative process, reside on the overlay network and
are discovered dynamically during the execution of the
process. To execute a specific collaboration, a set of
services that map into the collaboration specification
(exertion) are federated together and executed in a
choreographed workflow. All services (peers) implement
a standardized top-level interface and this allows any
service to be seamlessly replaced with another service
without affecting the performance of the federation. The
paper describes a service object-oriented environment
(SORCER) and presents how it supports programming of
three collaboration types.

1. Introduction

Design of complex engineering systems, such as aircraft
engines, requires simulation tools that are
computationally expensive. Such systems are composed
of hundreds of mutually interacting components that
should ideally be designed concurrently. Concurrent
design of all components, however, is computationally
and logistically infeasible. So, the design is usually
decomposed into smaller activities such that components
and subsystems are designed independently. As the design
progressively gets decomposed into increasingly smaller
activities, the process map progressively defines a
collaboration—a process by which relevant activities
work together to accomplish a common endeavor. An
exertion is the specification of a process map that defines
how collaboration is realized by set of service providers
and their associations playing specific roles in specific
activities. Thus, an exertion represents, for example, the
design process that needs to be executed in order to
complete the engineering design. The design process is
dynamic and evolves over time as new advances are made
in technology and analysis techniques.

In this paper, we present the most recent version of
exertion-oriented programming [7] that has evolved over
several years from the initial form in the FIPER project
[1] and enhanced continuously on multiple projects at the
SORCER Laboratory [8]. Several attempts have been
made in the past to create a collaborative design
environment through the automation of activities in the
design process, and consequently reduce the design cycle
time and improve performance. These automation efforts,
though robust at the individual activity level where the
process is fairly standardized are very brittle at the
process level. Brittleness here refers to inflexibility and
inability to adapt to changes. The reason for brittleness at
the process level is that analysis codes, as well as the
process, change and render the couplings between
activities ineffectively thereby breaking the process map.

In this paper we describe a system architecture that
supports an adaptive collaborative environment through
use of modular services in a federated service-to-service
(S2S) framework. The architecture constitutes of well-
known autonomic services that represent specific
activities on the service grid. The service grid is an
overlay network of service providers above the
underlying network of computing devices. The services
have standardized top-level and domain-specific types
(interfaces) allowing them to be located by searching for
complementary attributes associated with types. The
standardization of interfaces also ensures that one service
can be seamlessly replaced by another service without
requiring reconfiguration of the overlay network. The
services have standardized interfaces and data formats;
strong coupling by cascading data from one activity to the
next is unnecessary. Once the collaboration defined by an
exertion is complete, the services disperse and join other
federations to perform other activities. Changes to any
individual service on the grid are usually transparent to
the exertion. In this architecture, services can enter and
leave the service grid at will. Resilience in the service
grid is achieved due to the redundancy in the overlay
network whereby several services can exist for the same
activity. The standardized interfaces allow seamless
substitution of one service with another.

The paper presents a service object-orient architecture
and programming paradigm for managing collaborative
processes and hypothesizes that such service providers

WETICE 2008

2

can facilitate modeling of complex business processes and
provide greater flexibility in managing process changes
and improved resilience to system failures. Architectural
qualities like flexibility, scalability, and reliability of this
architecture were demonstrated in multiple applications
and case studies in concurrent engineering [1, 2, 6, 9]. In
this paper we describe the version of programming
collaborations with exertions developed at the SOCER
Laboratory [8].

The rest of the paper is organized as follows: Section
2 describes the architecture of the SORCER system,
Section 3 describes exertion-oriented programming
model, Section 4 is focused on service messaging with
exertions, Section, 5 presents push and pull
collaborations, and Section 6 provides concluding
remarks.

2. SORCER

SORCER is a federated service-to-service (S2S)
metacomputing environment that treats service providers
as network objects with well-defined semantics of a
federated service object-oriented architecture. It is based
on Jini semantics of services in the network and Jini
programming model with explicit leases, distributed
events, transactions, and discovery/join protocols [5].
While Jini focuses on service management in a networked
environment, SORCR is focused on exertion-oriented
programming and the execution environment for
exertions. SORCER uses Jini discovery/join protocols to
implement its exertion-oriented architecture (EOA) using
federated method invocation (FMI) [7], but hides all low-
level programming details of the Jini programming
model.

In EOA, a service provider is an object that accepts
remote messages from service requestors to execute a
collaboration. These messages are called service exertions
that describe service data, operations and provider’s
control strategy. An exertion task (or simply a task) is an
elementary service request, a kind of elementary remote
instruction executed by a single service provider or a
small-scale federation for the same service data. A
composite exertion called an exertion job (or simply a
job) is defined hierarchically in terms of tasks and other
jobs, a kind of network procedure executed by a large-
scale federation. The executing exertion is dynamically
bound to all required and currently available service
providers on the network. This collection of providers
identified in runtime is called an exertion federation. The
federation provides the implementation for the
collaboration as specified by its exertion. When the
federation is formed, then each exertion’s operation has
its corresponding method (code) on the network available.
Thus, the network exerts the collaboration with the help
of the dynamically formed service federation. In other

words we send the request onto the network implicitly,
not to a particular service provider explicitly.

The overlay network of service providers is called the
service grid and an exertion federation is in fact a virtual
metacomputer. The metainstruction set of the
metacomputer consists of all operations offered by all
service providers in the grid. Thus, an exertion-oriented
(EO) program is composed of metainstructions with its
own control strategy and a service context representing
the metaprogram data. The service context describes the
data that tasks and jobs work on. Each service provider
offers services to other service peers on the object-
oriented overlay network. These services are exposed
indirectly by operations in well-known public remote
interfaces and considered as elementary (tasks) or
compound activities (jobs) in EOA. Indirectly means
here, that you cannot invoke any operation defined in
provider’s interface directly. These operations can be
specified in a requestor’s exertion only, and the exertion
can be passed on to any service provider via the top-level
Servicer interface implemented by all service providers
called servicers—service peers. Thus all service providers
in EOA implement the service(Exertion,
Transaction):Exertion operation of the Servicer
interface. When the servicer accepts its received exertion,
then the exertion’s operations can be invoked by the
servicer itself, if the requestor is authorized to do so.
Servicers do not have mutual associations prior to the
execution of an exertion; they come together dynamically
(federate) for a collaboration as defined by its exertion. In
EOA requestors do not have to lookup for any network
provider at all, they can submit an exertion, onto the
network by calling Exertion.exert(Transaction)
:Exertion on the exertion. The exert operation will
create a required federation autonomically that will run
the collaboration as specified in the EO program and
return the resulting exertion back the exerting requestor.
Since an exertion encapsulates everything needed (data,
operations, and control strategy) for the collaboration, all
results of the execution can be found in the returned
exertion’s service contexts.

Domain specific servicers within the federation, or
task peers (taskers), execute task exertions. Rendezvous
peers (jobbers and spacers) coordinate execution of job
exertions. Providers of the Tasker, Jobber, and
Spacer type are three of SORCER main infrastructure
servicers, see Figure 1. In view of the P2P architecture
defined by the Servicer interface, a job can be sent to
any servicer. A peer that is not a Jobber type is
responsible for forwarding the job to one of available
rendezvous peers in the SORCER environment and
returning results to the requestor.

Thus implicitly, any peer can handle any job or task.
Once the exertion execution is complete, the federation
dissolves and the providers disperse to seek other

WETICE 2008

3

Figure 1. The SORCER layered functional
architecture.

collaborations to join. Also, SORCER supports a
traditional approach to grid computing similar to those
found for example in Condor [10]. Here, instead of
exertions being executed by services providing business
logic for invoked exertions, the business logic comes
from the service requestor's executable programs that seek
compute resources on the network.

Grid-based services in the SORCER environment
include Grider services collaborating with Jobber and
Spacer services for traditional grid job submission.
Caller and Methoder services are used for task
execution. Callers execute conventional programs via a
system call as described in the service context of
submitted task. Methoders can download required Java
code (task method) from requestors to process any
submitted context accordingly with the code downloaded.
In either case, the business logic comes from requestors; it
is a conventional executable code invoked by Callers
with the standardized Caller’s service context, or
mobile Java code executed by Methoders with a
matching service context provided by the requestor.

3. Exertion-oriented Programming

Each programming language provides a specific
computing abstraction. Procedural languages are
abstractions of assembly languages. Object-oriented
languages abstract entities in the problem domain that
refer to “objects”, communicating via message passing, as
their representation in the corresponding solution domain.
However, we cannot just take an object-oriented program
developed without distribution in mind and make it a
distributed system, ignoring the unpredictable network
behavior. The EO programming is a form of object-
oriented distributed programming that allows us to
describe the distributed problem in terms of the intrinsic
unpredictable network domain instead of in terms of
distributed objects hiding the notion of the network
domain that in reality cannot be hidden.

What intrinsic distributed abstractions are defined in
SORCER? Well, service providers are “objects”, but they
are specific objects—they are network objects with a
network state, network behavior, and network types.
Service providers act also as network peers (servicers);
they are replicated and dynamically provisioned for
reliability to compensate for network failures. Servicers
can be found in runtime transparently by types they
implement. They can federate for an exertion submitted
onto the network and participate in the collaboration
outlined by the exertion. The exertion encapsulates
service data, operations, and control strategy used by the
collaboration. The component exertions may need to
share context data of ancestor exertions, and the top-level
exertion is complete only if all nested exertions are
successful. Thus, a collaboration is a process, an exertion

is the specification of collaboration, and a dynamic
federation of peers is the implementation of collaboration,

With that very concise introduction to the abstractions
of EO programming let’s look into a simple analogy to a
Unix shell script execution and then in detail at how
network-centric messaging is defined in EOA.

Let's first look at the EO approach to see how it
works. Exertion-oriented programs consist of exertion
objects called tasks and jobs. An exertion task
corresponds to an individual network request to be
executed on a service provider. An exertion job consists
of a structured collection of tasks and other jobs. The data
upon which to execute a task or job is called a service
context. Tasks are analogous to executing a single
program or command on a computer, and the service
context would be the input and output streams that the
program or command uses. A job is analogous to a batch
script that can contain various commands and calls to
other scripts. Pipelining Unix commands allows us to
perform complex activities without writing complex
programs. As an example, consider a script sort.sh
connecting simple processes in a pipeline as follows:
cat hello.txt | sort | uniq > bye.txt

The script is similar to an exertion job in that it
consists of individual tasks that are organized in a
particular fashion. Also, other scripts can call the script
sort.sh. An exertion job can consist of tasks and other
jobs, much like a script can contain calls to commands
and other scripts.

Each of the individual commands, such as cat, sort,
and uniq, would be analogous to a task. Each task works
with a particular service context. The input context for the
cat “task” would be the file hello.txt, and the “task”
would return an output context consisting of the contents
of hello.txt. This output context can then be used as
the input context for another task, namely the sort
command. Again the output context for sort could be
used as the input context for the uniq task, which would
in turn give an output service context in the form of
bye.txt.

WETICE 2008

4

To further clarify what an exertion is, an exertion
consists mainly of three parts: a set of service signatures,
which is a description of operations in collaboration, the
associated service context upon which to execute the
exertion, and control strategy (default provided) that
defines how signatures are applied in the collaboration. A
service signature specifies at least the provider’s interface
that the service requestor would like to use and a selected
operation to run within that interface. There are four types
of signatures that can be used for an exertion:
PREPROCESS, PROCESS, POSTPROCESS, and APPEND. An
exertion must have one and only one PROCESS signature
that specifies what the exertion should do and who works
on it. An exertion can optionally have multiple
PREPROCESS, POSTPROCESS, and APPEND signatures that
are primarily used for formatting the data within the
associated service context. A service context consists of
several data nodes used for either input, output, or both. A
task may work with only a single service context, while a
job may work with multiple service contexts since it can
contain multiple tasks. The programmer can define a
control strategy as needed for the underlying exertion by
choosing relevant exertion types and configuring
attributes of service signatures and service contexts
accordingly [7].

Here's the basic structure of the EO program that is
analogous to the sort.sh script.

1. // Create service signatures
2. Signature catSignature, sortSignature,
3. uniqSiganture;
4. catSignature =
5. new ServiceSignature("Reader", "cat");
6. sortSignature =
7. new ServiceSignature("Sorter", "sort");
8. uniqSiganture =
9. new ServiceSignature("Filter", "uniq");
10.
11. // Create component exertions
12. Task catTask, sortTask, uniqTask;
13. catTask =
14. new ServiceTask("cat", catSignature);
15. sortTask =
16. new ServiceTask("sort", sortSignature);
17. uniqTask =
18. new ServiceTask("uniq", uniqSiganture);
19.
20. // Create top-level exertion
21. Job sortJob =
22. new ServiceJob("main-sort");
23. sortJob.addExertion(catTask);
24. sortJob.addExertion(sortTask);
25. sortJob.addExertion(uniqTask);
26.
27. // Create service contexts
28. Context catContext, sortContext,
29. uniqContext;
30. catContext =
31. new ServiceContext("cat");

32. sortContext =
33. new ServiceContext("sort");
34. uniqContext =
35. new ServiceContext("uniq");
36.
37. catContext.putInValue("/text/in/URL",
38. "http://host/hello.txt");
39. catContext.putOutValue(
40. "/text/out/contents", null);
41.
42. sortContext.putInValue(
43. "/text/in/contents", null);
44. sortContext.putOutValue(
45. "/text/out/sorted", null);
46.
47. uniqContext.putInValue(
48. "/text/in/sorted", null);
49. uniqContext.putOutValue(
50. "/text/out/URL","http://host/bye.txt");
51.
52. //Map context outputs to inputs
53. catContext.map("/text/out/contents",
54. "/text/in/contents", sortContext);
55. sortContext.map("/text/out/sorted",
56. "/text/in/sorted", uniqContext);
57.
58. catTask.setContext(catContext);
59. sortTask.setContext(sortContext);
60. uniqTask.setContext(uniqContext);
61.
62. // exert collaboration
63. sortJob.exert(null);

In the above EO program we create three signatures (lines
2-9), each signature is defined by an interface name and
an operation name that we want to run by any servicer
implementing the interface. We use the three signatures to
create three tasks (lines 12-18) and by line 19, we have
three separate commands cat, sort, and uniq to be
used in the sort.sh script. The three tasks are combined
into the job by analogy to piping Unix commands in the
sort.sh script. Thus, by line 26, we have added these
commands to sort.sh script, but have not provided
input/output parameters nor piped them together. Lines
28-50 create and define three service contexts for our
three tasks. By line 51, we have specified some input and
output parameters, but still no piping. Lines 53-56 define
mapping of context output parameters to the related
context input parameters. The parameters are defined by
context paths from a source context to a target context.
The target context is the last parameter in the map
operation. By line 57, we have piping setup and by the
analogy our sort.sh script is complete now.

On line 63, we execute sortJob. If we use the Tenex
C shell (tcsh), invoking the Unix script is equivalent to:
“tcsh sort.sh”, i.e., passing the script sort.sh on to
tcsh. Similarly, to invoke the exertion sortJob, we call
“sortJob.exert()”. Thus, the exertion is the program
and the network shell at the same time, which might first

WETICE 2008

5

come as a surprise, but close evaluation of this fact shows
it to be consistent with the meaning of object-oriented
distributed programming. Here, the virtual metacomputer
is an ad hock federation that does not exist when the
exertion is created. Thus, the notion of the virtual
metacomputer is encapsulated in the exertion
(specification) that creates the required federation on-the-
fly (implementation) to execute the collaboration
(process).

4. Service Messaging and Exertions

In object-oriented terminology, a message is the single
means of passing control to an object. If the object
responds to the message, it has an operation and its
implementation (method) for that message. Because
object data is encapsulated and not directly accessible, a
message is the only way to send data from one object to
another. Each message specifies the name (identifier) of
the receiving object, the name of operation to be invoked,
and its parameters. In the unreliable network of objects;
the receiving object might not be present or can go away
at any time. Thus, we should postpone receiving object
identification as late as possible. Grouping related
messages per one request for the same data set makes a
lot of sense due to network invocation latency and
common errors in handling. These observations lead us to
service-oriented messages called exertions. An exertion
encapsulates multiple service signatures that define
operations, a service context that defines data, and a
control strategy that defines how signature operations
flow in collaboration. Different types of control exertions
(IfExertion, ForExertion, WhileExertion) [7]
can be used to define flow of control that can also be
configured additionally with adequate signature attributes
(flow type and access type—see Section 5).

An exertion can be invoked by calling exertion’s
exert operation: Exertion.exert(Transaction)
:Exertion, where a parameter of the Transaction
type is required when the transactional semantics is
needed for all participating nested exertions within the
parent one, otherwise can be null. Thus, EO
programming allows us to submit an exertion onto the
network and to perform executions of exertion’s
signatures on various service providers indirectly, but
where does the service-to-service communication come
into play? How do these services communicate with one
another if they are all different? Top-level communication
between services, or the sending of service requests
(exertions), is done through the use of the generic
Servicer interface and the operation service that all
SORCER services are required to provide
(Servicer.service(Exertion, Transaction)
:Exertion). This top-level service operation takes an
exertion as an argument and gives back an exertion as the

return value. How this operation is used in the FMI
framework is described in detail in [7].

So why are exertions used rather than directly calling
on a provider's method and passing service contexts?
There are two basic answers to this. First, passing
exertions helps to aid with the network-centric messaging.
A service requestor can send an exertion out onto the
network (Exertion.exert()) and any servicer can pick
it up. The servicer can then look at the interface and
PROCESS operation requested within the exertion, and if it
doesn't implement the desired interface or provide the
desired operation, it can continue forwarding it to another
provider who can service it. Second, passing exertions
helps with fault detection and recovery. Each exertion has
its own completion state associated with it to specify if it
has yet to run, has already completed, or has failed. Since
full exertions are both passed and returned, the requestor
can view the failed exertion to see what method was being
called as well as what was used in the service context
input nodes that may have caused the problem. Since
exertions provide all the information needed to execute a
task including its control strategy, a requestor would be
able to pause a job between tasks, analyze it and make
needed updates. To figure out where to resume a job, a
Jobber service would simply have to look at the task’s
completion states and resume the first one that wasn't
completed yet.

5. Push and Pull Collaborations

SORCER also extends exertion execution abilities
through the use of a rendezvous service implementing the
Spacer interface. The Spacer service can drop exertions
into a shared object space, implemented using JavaSpaces
[2], in which collaborating servicers can retrieve matching
exertions, execute them, and return the resulting exertions
back to the object space. When the attribute access type of
a PROCESS signature is set to PULL then the associated
exertion is passed onto a Spacer, otherwise (access type
is PUSH) the exertion is passed directly on to the servicer
specified by the PROCESS signature. Another signature
attribute—flow type manages the flow of control
(SEQUENTIAL, PARALLEL, or CONCURRENT) for all
component exertions at the same level.

In Figure 2 four use cases are presented to illustrate
push vs. pull exertion processing with either PUSH or
PULL access types. We assume here that an exertion is a
job with two component exertions executed in parallel
(sequence numbers with a and b), i.e., the job’s signature
flow type is PARALLEL. The job can be submitted directly
to either Jobber (use cases: 1—access is PUSH, and 2—
access is PULL) or Spacer (use cases: 3 —access is
PUSH, and 4—access is PULL) depending on the interface
defined in its PROCES signature, the Jobber or Spacer
interface respectively. Thus, in cases 1 and 2 the

WETICE 2008

6

signature’s interface is Jobber and in cases 3 and 4 the
signature’s interface is Spacer as shown in Fig. 2. The
exertion’s ServicerAccessor delivers the right service
proxy dynamically, either for a Jobber or Spacer. If the
access type of the parent exertion is PUSH, then all the
component exertions are directly passed on to servicers
matching their PROCESS signatures (case 1 and 3),
otherwise they are written into the exertion space by a
Spacer (case 2 and 4). In the both cases 2 and 4, the
component exertions are pulled from the exertion space
by servicers matching their signatures as soon as they are
available. Thus, Spacers provide efficient load balancing
for processing the exertion space. The fastest available
sevicer gets an exertion from the space before other
overloaded or slower servicers can do so. When an
exertion consists of component jobs with different access
and flow types, then we have a hybrid case when the
collaboration potentially executes concurrently with
multiple pull and push subcollaborations at the same time.

Figure 2. Push vs. pull exertion processing

6. Conclusions

A collaborative distributed system is not just a
collection of distributed objects—it’s the network of
dynamic objects that come and go. From an object-
oriented point of view, the network of collaborating
object peers is the problem domain of object-oriented
distributed programming that requires relevant
abstractions in the solution space. The exertion-based
programming introduces the new abstraction of the
solution space with servicers and exertions instead of
object-oriented conventional objects and messages. An
exertion not only encapsulates operations, data, and
control strategy, it also encapsulates a related federation
of servicers that provide implementation for the exertion‘s
collaboration.

Executing a collaboration implicitly, by sending its
exertion onto the network—Exertion.exert(), means
binding in runtime autonomically to currently available
servicers on the network. The federation becomes the
implementation of the exertion—a truly P2P collaborative

program. When the federation is formed then each
exertion operation has its corresponding method (code) on
the network available. Services, as specified by exertion
signatures, are invoked only indirectly by passing
exertions on to servicers via service object proxies that in
fact are access proxies allowing servicers to enforce
security policies on access to required operations. If the
access to use the operation is granted, then the operation
defined by an exertion’s PROCESS signature is invoked by
reflection. Service providers can be easily deployed in
SORCER by injecting configurable implementation of
domain-specific interfaces. The providers register proxies,
including smart proxies, via dependency injection using
twelve methods investigated already in SORCER.

The EO framework (exertion—specification,
collaboration—process, federation—implementation)
allows for the P2P computing via the Servicer
interface, extensive modularization of Exertions and
Servicers, and extensibility from the applied Command
design pattern [4]. Various elements of the presented EO
programming methodology has been successfully
deployed and tested in multiple concurrent engineering
and large-scale distributed application [1, 2, 6, 9].

7. References

[1] FIPER: Federated Intelligent Product EnviRonmet.
Available at: http://sorcer.cs.ttu.edu/fiper/fiper.html. Accessed
on: March 1, 2008.
[2] Freeman, E., Hupfer, S., & Arnold, K. JavaSpaces™
Principles, Patterns, and Practice, Addison-Wesley, ISBN: 0-
201-30955-6 (1999)
[3] Goel, S., Shashishekara, Talya S.S., Sobolewski M.,
Service-based P2P overlay network for collaborative problem
solving, Decision Support Systems, Volume 43, Issue 2, March
2007, pp. 547-568 (2007)
[4] Grand, M., Patterns in Java, Volume 1, Wiley, ISBN: 0-
471-25841-5 (1999)
[5] Jini architecture specification, Version 2.1. Available
at: http://www.sun.com/software/jini/specs/jini1.2html/jini-
title.html. Accessed on: March 1, 2008.
[6] Kolonay, R.M., Sobolewski, M., Tappeta, R., Paradis, M.,
Burton, S. 2002, Network-Centric MAO Environment. The
Society for Modeling and Simulation International, Western
Multiconference, San Antonio, TX (2002)
[7] Sobolewski, M., Service-oriented Programming, SORCER
Technical Report SL-TR-13 (2008). Available at:
http://sorcer.cs.ttu.edu/publications/papers/2008/SL-TR-
13.pdf. Accessed on: March 1, 2008.
[8] SORCER Research Group. Available at:
http://sorcer.cs.ttu.edu/. Accessed on: March 1, 2008.
[9] SORCER Research Topics. Available at:
http://sorcer.cs.ttu.edu/theses/ Accessed on: March 1, 2008.
[10] Thain D., Tannenbaum T., Livny M. Condor and the Grid.
In Fran Berman, Anthony J.G. Hey, and Geoffrey Fox, editors,
Grid Computing: Making The Global Infrastructure a Reality.
John Wiley (2003).

