
Autonomic SLA Management in Federated Computing Environments

Pawel Rubach
Computer Science, Texas Tech University

SORCER Research Group
Lubbock, USA

pawel.rubach@sorcersoft.org

Mike Sobolewski
Computer Science, Texas Tech University

SORCER Research Group
Lubbock, USA

sobol@sorcersoft.org

Abstract—Federated computing environments offer requestors
the ability to dynamically invoke services offered by
collaborating providers in the virtual service network. Without
an efficient resource management, however, the assignment of
providers to customer’s requests cannot be optimized and
cannot offer high reliability without relevant SLA guarantees.
We propose a new SLA-based SERViceable Metacomputing
Environment (SERVME) capable of matching providers based
on QoS requirements and performing autonomic provisioning
and deprovisioning of services according to dynamic requestor
needs. This paper presents the new autonomic SLA
management and the object-oriented SLA model for large-
scale service-oriented systems. An initial reference
implementation in the SORCER environment is also described.

Keywords-Service Oriented Computing; Metacomputing;
Resource Management; Quality of Service; Service Level
Agreements

I. INTRODUCTION

Many research activities worldwide are focused on
developing smart, self-manageable systems that will allow
applications to run smoothly and reliably in a distributed
environment. IBM calls this Autonomic Computing [1]. The
realization of this concept would enable the move towards
Utility Computing – the long awaited vision where
computing power would be available as a utility just like
water or electricity is delivered to our homes today. One of
the challenges in addressing this concept lies in the problem
of guaranteeing a certain level of Quality of Service (QoS)
to the customer for which he/she would be willing to pay.

In this paper we address related issues by proposing the
SERViceable Metacomputing Environment (SERVME)
which is based on the SORCER [2] environment extended
by adding a QoS Management Framework. This paper
presents an architecture overview of the federated P2P
environment and focuses on the aspects of autonomic
provisioning of required services within the environment.

SORCER provides a way of creating service-oriented
programs and executing them in a metacomputing
environment. The service-oriented paradigm is a distributed
computing concept wherein objects across the network play
their predefined roles as service providers. Service

requestors can access these providers by passing messages
called service exertions. An exertion defines how the
service providers federate among themselves to supply the
requestor with a required service collaboration. All these
services form an instruction-set of a virtual metacomputer
that looks to the end-user as a single computer.

The proposed QoS management framework has been
deployed and validated in the SORCER environment.
However, due to its generic nature we believe that both the
Service Level Agreements (SLA) object model as well as the
underlying communication model defined in terms of
communication interfaces could be adopted for other
service-oriented architectures.

The rest of the paper is divided into the following
sections: Section II describes the related work, Section III
gives introduction to SORCER, Section IV describes service
messaging with exertions and QoS requirements, Section V
presents the SLA object model, Section VI elaborates on the
architecture of the SERVME framework and presents its
autonomic provisioning features, Section VII presents the
deployment of the framework and Section VIII concludes
the paper.

II. RELATED WORK

Much research has been done in the area of Service Level
Agreements (SLA) management of services.

At first in Grid Computing the Globus Architecture for
Reservation and Allocation (GARA) [3] addressed the SLA
management issues of services. Further work challenged the
problem of complex, multi-level SLA management and led
to the development of a generic Service Negotiation and
Acquisition Protocol (SNAP) [4].

As grid technology started to move from traditional
network batch queuing towards the application of Web
Services (WS) the research of the grid community, as well
as others, concentrated on integrating SLA management into
the standard stack of WS. The grid community developed
the Open Grid Service Architecture (OGSA) [5] that stated
the need to address SLA management.

As a means to allow dynamic SLA negotiation, efforts
have been made to standardize the SLA specification. Some
general architectural approaches can be observed that are

2009 International Conference on Parallel Processing Workshops

usually taken to define an SLA specification. The most
common approach uses mathematical formalization or
creates a specific language to define QoS and SLAs.

One of the examples is [6] where the authors propose a
specification language, similar to C, called Contract
Definition Language (CDL), another one, presented in [7] is
an object oriented language: QoS Modelling Language
(QML). A slightly different approach is taken by C. Yang et
al [8] who suggest to specify QoS requirements in the
natural language and then convert them to UML or high
level programming languages. A general overview and a
comparison of many SLA specification languages is
provided in [9] by J. Jin and K. Nahrstedt.

Another group of specifications that mostly concentrates
on defining SLAs for WS create an XML schema and use
XML as the representation of QoS parameters and SLAs.
Most notable of them are the Web Service Level Agreement
framework (WSLA) [10] and the WS-Agreement
specification [11]. The latter, however, has a very limited
ability to specify conditional expressions and alternatives.
Therefore extensions have been proposed in the CoreGRID
project [12] for example. Recently the developments within
the NextGRID project introduce new QoS parameters such
as i.a. Robustness and Resilience [20]. Apart from agreed
standards such as the above there are also a number of
custom solutions such as the WS-QoS framework [13] that
in turn proposes to specify QoS parameters and provision
prices in the WS protocol stack within the WSDL
specification. The most recent tendency is to use ontologies
to specify SLAs [14].

All the above mentioned solutions propose a kind of
mathematical formalism or specific language semantics to
describe QoS parameters and SLAs. The presented approach
follows a different path and focuses on defining an object-
oriented specification in terms of communication interfaces
as abstract data types. Although the reference
implementation is realized in Java the APIs are modeled
generally to allow it to be utilized in any modern object-
oriented language. The SLA specification provides an open
framework that can be extended and implemented to meet
the requirements of custom environments. We claim that
this approach offers greater flexibility than i.e. using XML
while preserving a richer and simpler degree of
expressiveness and allows a more direct and more efficient
implementation than i.e. using ontologies by eliminating the
laborious intermediary conversion steps.

The SERVME framework concentrates on federated,
distributed environments. Although, there have been several
projects that claim to address SLA management in federated
environments [6], [15], however, none of them refers to
federation of services specified and created on-the-fly such
as the one which exists in the exertion-oriented architecture
utilized by SERVME. Most mentioned above projects use
the term federation to underline the organizational
challenges that arise due to the fact that a federated system

is composed of usually static services that may belong to
different administrative entities.

Most of the described SLA management research
focuses on traditional grids or web/grid service architectures
and little attention is drawn to federated metacomputing
environments. The dynamic aspects as well as the P2P
characteristics of those environments pose new challenges
for resource management and this paper tries to address
some of them.

In federated service-oriented environments services can
be divided into two categories: 1) infrastructure services -
those that provide basic functionality of the environment
(Lookup Service, Transaction Manager, filesystem services,
authentication and authorization services, QoS management
services etc.) and 2) application services that are custom
built for every application of the platform. (An example
called QosCaller is mentioned in Section VII. This service
was used during the validation of SERVME to invoke a
legacy application used for Magnetic Resonance Image
(MRI) processing.) Resource management for the first
group can be handled using provisioning frameworks such
as the Rio project [16] [17], however, in this research we
propose a new dynamic, autonomic provisioning of the
application services to allow the metacomputing
environment to find existing services that satisfy requested
QoS requirements or provision services with the requested
QoS automatically on request and deprovision them when
they are not used anymore.

The presented solution aims at delivering a complete,
extensible framework, however, this paper provides only a
general overview and focuses mainly on the SLA object
model and autonomic management at this time.

III. SORCER
SORCER [2] (Service Oriented Computing EnviRonment)
is a federated service-to-service (S2S) metacomputing
environment that treats service providers as network objects
with well-defined semantics of a federated service object-
oriented architecture. It is based on Jini [17] semantics of
services in the network and Jini programming model with
explicit leases, distributed events, transactions, and
discovery/join protocols. While Jini focuses on service
management in a networked environment, SORCER focuses
on exertion-oriented programming and the execution
environment for exertions [2], SORCER uses Jini
discovery/join protocols to implement its exertion-oriented
architecture (EOA) using federated method invocation [18]
[19], but hides all the low-level programming details of the
Jini programming model.

In EOA, a service provider is an object that accepts
remote messages from service requestors to execute a
collaboration. These messages are called service exertions
and describe service (collaboration) data, operations and
collaboration's control strategy. An exertion task (or simply
a task) is an elementary service request, a kind of an
elementary instruction executed by a single service provider

2009 International Conference on Parallel Processing Workshops

or a small-scale federation for the same service data. A
composite exertion called an exertion job (or simply a job)
is defined hierarchically in terms of tasks and other jobs,
and thus isa kind of a federated procedure executed by a
large-scale federation. The executing exertion is
dynamically bound to all required and currently available
service providers on the network. This collection of
providers identified in runtime is called the exertion
federation. The federation provides the implementation for
the collaboration as specified by its exertion. When the
federation is formed, each exertion’s operation has its
corresponding method (code) available on the network.
Thus, the network exerts the collaboration with the help of
the dynamically formed service federation. In other words,
we send the request onto the network implicitly, not to a
particular service provider explicitly.

The overlay network of service providers is called the
service grid and an exertion federation is in fact a virtual
metacomputer. The metainstruction set of the metacomputer
consists of all operations offered by all service providers in
the grid. Thus, an exertion-oriented (EO) program is
composed of metainstructions with its own control strategy
and a service context representing the metaprogram data.
The service context describes the collaboration data that
tasks and jobs work on. Each service provider offers
services to other service peers on the object-oriented overlay
network. These services are exposed indirectly by
operations in well-known public remote interfaces and
considered to be elementary (tasks) or compound (jobs)
activities in EOA. Indirectly means here, that you cannot
invoke any operation defined in provider’s interface
directly. These operations can be specified in the requestor’s
exertion only, and the exertion is passed by itself on to the
relevant service provider via the top-level Servicer
interface implemented by all service providers called
servicers—service peers. Thus all service providers in EOA
implement the
service(Exertion, Transaction) : Exertion
operation of the Servicer interface. When the servicer
accepts its received exertion, then the exertion’s operations
can be invoked by the servicer itself, if the requestor is
authorized to do so. Servicers do not have mutual
associations prior to the execution of an exertion; they come
together at runtime (federate) for a collaboration as defined
by its exertion. In EOA requestors do not have to lookup for
any network provider at all, they can submit an exertion,
onto the network by calling
Exertion.exert(Transaction : Exertion
on the exertion. The exert operation will create a required
federation that will run the collaboration as specified in the
EO program and return the resulting exertion back to the
exerting requestor. Since an exertion encapsulates
everything needed (data, operations, and control strategy)
for the collaboration, all results of the execution can be
found in the returned exertion’s service contexts.

Domain specific servicers within the federation, or task
peers (taskers), execute task exertions. Rendezvous peers
(jobbers and spacers) coordinate the execution of job
exertions. Providers of the Tasker, Jobber, and
Spacer type are three of SORCER main infrastructure
servicers.

IV. SERVICE MESSAGING AND EXERTIONS

In object-oriented terminology, a message is the single
means of passing control to an object. If the object responds
to the message, it has an operation and its implementation
(method) for that message. Because object data is
encapsulated and not directly accessible, a message is the
only way to send data from one object to another. Each
message specifies the name (identifier) of the receiving
object, the name of operation to be invoked, and its
parameters. In the unreliable network of objects, the
receiving object might not be present or can go away at any
time. Thus, we should postpone receiving object
identification as late as possible. Grouping related messages
per one request for the same data set makes a lot of sense
due to network invocation latency and common errors in
handling. These observations lead us to service-oriented
messages called exertions.

To further clarify what an exertion is, an exertion
consists mainly of three parts: a set of service signatures,
which is a description of operations in a collaboration, the
associated service context upon which to execute the
exertion, and the control strategy (default provided) that
defines how signatures are applied in the collaboration. A
service signature specifies at least the provider’s interface
that the service requestor would like to use and a selected
operation to run within that interface. There are four types
of signatures that can be used for an exertion:
PREPROCESS, PROCESS, POSTPROCESS, and APPEND.
An exertion must have one and only one PROCESS signature
that specifies what the exertion should do and who works on
it. An exertion can optionally have multiple PREPROCESS,
POSTPROCESS, and APPEND signatures that are primarily
used for formatting the data within the associated service
context. A service context consists of several data nodes
used for either input, output, or both. A task may work with
only a single service context, while a job may work with
multiple service contexts since it can contain multiple tasks.
The programmer can define a control strategy as needed for
the underlying exertion by choosing relevant exertion types
and configuring attributes of service signatures and service
contexts accordingly [19].

In SERVME a signature includes a QoS Context
(defined in Section V) that encapsulates all QoS/SLA data.
Different types of control exertions (IfExertion,
ForExertion, and WhileExertion) can be used to
define flow of control that can also be configured
additionally with adequate signature attributes [18].

2009 International Conference on Parallel Processing Workshops

An exertion can be invoked by calling exertion’s
exert operation:
Exertion.exert(Transaction) : Exertion,
where a parameter of the Transaction type is required
when the transactional semantics is needed for all
participating nested exertions within the parent one,
otherwise can be null. Thus, EO programming allows us to
submit an exertion onto the network and to perform
executions of exertion’s signatures on various service
providers indirectly, but where does the service-to-service
communication come into play? How do these services
communicate with one another if they are all different? Top-
level communication between services, or the sending of
service requests (exertions), is done through the use of the
generic Servicer interface and the operation service that
all SORCER services are required to provide—
Servicer.service(Exertion, Transaction). This
top-level service operation takes an exertion as an argument
and gives back an exertion as the return value.

V. SLA OBJECT MODEL

SERVME builds on the SORCER environment by
extending its interfaces and adding new service providers. It
is a generic resource management framework based on the
Commonality-Variability Analysis model in terms of

common data structures and extensible communication
interfaces hiding all implementation details.

One of the key features of the framework is the proposed
SLA specification that has been specifically developed to
meet the requirements of metacomputing environments. It is
defined in object-oriented terms and thus forms an object
model. The class diagram in Fig. 1 shows the elements of
the SLA object model. For better readability all setter
methods and most attributes are omitted and thus only getter
methods are presented.

The QosContext interface defines the data structure
that incorporates all requirements submitted by the
requestor in the exertion's signature. It includes:
• Functional Requirements—a service type identifying a

requested provider (the classname of the required
interface: sorcer.provider.QosCaller, for
example), operation to be executed
(getMethodName()), and related provider's attributes,

• System Requirements—fixed properties that describe the
requested provider’s hardware and software environment
(i.e. CPU architecture, OS name and version, required
libraries etc.). Each requirement is defined in terms of
the SystemComponent class based on the class by the
same name in the Rio project [16] that defines the basic
properties and may be customized for every component.

Figure 1. SLA Object Model

2009 International Conference on Parallel Processing Workshops

• Organizational Requirements—properties of the
submitting entity (getProject() and
getOrganization()), requested priority range,
requested execution time frame and estimated duration
of the execution. Those parameters are used by the
SlaPrioritizer service (described in section VI) to
manage and assign resources to projects or
organizational entities in large computing environments.

• Metrics—dynamic, user defined, compound parameters
which are calculated on the basis of System- or
Organizational Requirements. Each metric must
implement the class Metric that defines its name, set of
variables and the method evaluate() that performs on-
the-fly evaluation based on input variables. As variables,
names of SystemComponents and their attributes may
be passed and then they will be substituted during
evaluation with their current values. Current reference
implementation includes the Groovy Metric, for
example, that allows to specify custom expressions in
the Groovy language.

• Service Cost—(i.e. Maximum cost of the execution).
SERVME defines the ServiceCost class that includes
the getValue() method. This way customized
implementations of complex cost specification
algorithms are supported.

• SLA Parameter Requests—the demanded ranges of
values or fixed values of QoS parameters, Metrics or
Organizational and System Requirements. Each of them
is defined using an implementation of the
SlaParameter interface.

The QosContext interface is implemented by the
QosServiceContext class.

The SlaParameter interface is used both to specify
requests as well as offers, each regarding one specific
metric-, organizational- or system requirement.
SlaParameter defines the requested value (in case it
should be fixed) or low and high thresholds. It also specifies
the SlaPolicyHandler class that may be added to define
actions (notifications, penalties etc.) invoked during
execution when the contracted parameter values are
breached.

SlaParameter specifies also the
SlaParameterState that can have one of the enumerated
values: PARAM_REQUEST, PARAM_UPDATED,
PARAM_OFFER, PARAM_ACCEPTED, PARAM_GRANTED.
This attribute is used primarily during the negotiation phase.

Another critical interface is the SlaContext that is
implemented by the SlaServiceContext class and used
by the service provider to offer or guarantee the required
QosContext. SlaContext consists of:
• SlaParameters—set of objects that implement the
SlaParameter interface and define the SLA Parameter
ranges or values offered or guaranteed by the provider.

• QosContext—the related requestor’s QoS requirements
satisfied by the SlaParameters and specified as
QosContext type.

• Offered price of the proposed SLA (getCost())
• SlaState—property that defines the state of the

negotiation process (SLA_REQUEST,SLA_UPDATED,
SLA_OFFER,SLA_ACCEPTED, SLA_GRANTED).

• Servicer—(getProvider()) - the proxy of the
service provider that guarantees the SLA.

VI. ARCHITECTURE OF SERVME

A. SERVME Components
Along with the above SLA object model SERVME

defines basic components and communication interfaces as
depicted in the UML component diagram illustrated in Fig.
2. We distinguish two forms of autonomic provisioning:
monitored and on-demand. In monitored provisioning the
provisioner (Rio Provisioner [16]) deploys a requested
collection of providers, then monitors them for presence and
in the case of any failure in the collection, the provisioner
makes sure that the required number of providers is always
on the network as defined by a provisioner's deployment
descriptor. On-demand provisioning refers to a type of
provisioning (On-demand Provisioner) where the actual
provider is presented to the requestor, once a subscription to
the requested service is successfully processed. In both
cases, if services become unavailable, or fail to meet
processing requirements, the recovery of those service
providers to available compute resources is enabled by Rio
provisioning mechanisms. The basic components are
defined as follows:
• QosProviderAccessor is a component used by the

service requestor (customer) that is responsible for
processing the exertion request containing QosContext
in its signature. If the exertion type is Task then
QosCatalog is used, otherwise a relevant rendezvous
peer: Jobber, Spacer is used.

• QosCatalog is an independent service that acts as an
extended Lookup Service (QoS LUS). The QosCatalog
uses the functional requirements as well as related non-
functional QoS requirements to find a service provider
from currently available in the network. If a matching
provider does not exist, the QosCatalog may provision
the needed one by calling the On-demandProvisioner
(described below).

• SlaDispatcher is a component built into each service
provider. It performs two roles. On one hand, it is
responsible for retrieving the actual QoS parameter
values from the operating system in which it is running,
and on the other hand, it exposes the interface used by

2009 International Conference on Parallel Processing Workshops

QosCatalog to negotiate, sign and manage the SLA
with its provider.

• SlaPrioritizer is a component that allows
controlling the prioritization of the execution of
exertions according to the organizational requirements
of SlaContext. It allows to specify a resource
allocation strategy either by simply allowing/disallowing
certain projects or organizational entities to execute on
certain resources or by using a “managed” free market
economy approach and manipulating execution price
parameters depending on organizational requirements.

• QosMonitor (UI) provides an embedded GUI that
allows the monitoring of provider’s QoS parameters at
runtime.

• SlaMonitor is an independent service that acts as a
registry for negotiated SLA contracts and exposes the
user interface (UI) for administrators to allow them to
monitor, update or cancel active SLAs.

• On-demandProvisioner is a SERVME provider that
enables on-demand provisioning of services in
cooperation with the Rio Provisioner [16][17]. The
QosCatalog uses it when no matching service provider
can be found that meets requestor QoS requirements.
The SERVME framework is integrated directly into the

federated metacomputing environment. As described in
Section IV, the service requestor submits the exertion with
QoS requirements (QosContext) into the network by
invoking Exertion.exert operation. If the exertion is of

Task type, then QosProviderAccessor via QosCalatog
finds in runtime a matching service provider with a
corresponding SLA. If the SLA can be directly provided
then the contracting provider approached by the
QosCalatog returns it in the form of SlaContext,
otherwise a negotiation can take place for the agreeable
SlaContext between the requestor and provider. The
provider's SlaDispatcher drives this negotiation in
cooperation with SlaPrioritizer and the requestor. If
the task contains multiple signatures then the provider is
responsible for contracting SLAs for all other signatures of
the task before the SLA for its PROCESS signature is
guaranteed.

However, if the submitted exertion is of Job type, then
QosProviderAccessor via QosCalatog finds in runtime
a matching rendezvous provider with a guaranteed SLA.

Before the guaranteed SLA is returned, the rendezvous
provider recursively acquires SLAs for all component
exertions as described above depending on the type (Task
or Job) of component exertion.

B. SLA Lifecycle
The negotiation process is shortly described in this

subsection. The details along with an activity diagram will
be presented in future papers.

1) Preparing for the negotiation
As described above upon the execution of

Exertion.exert(), QosCatalog is called either by the
QosProviderAccessor or by one of the rendezvous

Figure 2. SERVME Components Diagram

2009 International Conference on Parallel Processing Workshops

providers. The QosCatalog acts as a QoS broker between
the requestor and service providers. At first QosCatalog
analyzes the QoS requirements passed in the QosContext
and extracts the system requirements as well as functional
requirements of the requested provider type. Based on the
functional requirements QosCatalog performs a standard
lookup and retrieves a list of all providers offering the
requested interface and method. Next, QosCatalog queries
via the SlaManagement interface the SlaDispatcher of
each of those providers to retrieve the current QoS that it
can offer. The supplied data allows it to select providers that
match the system requirements. Those providers are then
called via the same SlaManagement interface to start the
SLA negotiation process.

2) Negotiation
The exact details of the negotiation rules and the algorithms
used by both the requestor and the provider are not of the
main focus of this research. SERVME defines the common
negotiation protocol and the negotiation business logic is
customized by each provider according to specific needs.
SERVME however, specifies the common data structures
defined in Section V and communication interfaces
presented in Fig. 2.

When the QosCatalog invokes the negotiateSla
operation of the SlaManagement interface then the
provider creates the SlaContext object and includes the
QosContext that contains the original QoS requirements
passed as a parameter. The provider sets the SlaState to
SLA_OFFER or to SLA_UPDATED depending whether it can
guarantee the requested QoS requirements. At this time the
provider allocates the requested resources.

SERVME introduces a SLA leasing mechanism to
address the problem of unnecessary resource reservations
that may occur if the requestor discontinues the negotiation
process without notifying the provider – in case of a system
failure, for example.

3) On-demand Provisioning
If any of the providers queried by QosCatalog responds
with an SLA_OFFER, the process continues on to the signing
of the contract, otherwise if only SLA_UPDATEs are
returned, the QosCatalog tries to deploy a new provider
with the required QoS parameters by calling the
OnDemandProvisioner.

OnDemandProvisioner constructs on-the-fly an
OperationalString required by Rio and calls the
ProvisionMonitor component of Rio [16] to deploy the
required providers. Then QosCatalog invokes the same
negotiation sequence to sign the SLA with one of them.

If provisioning still does not supply a relevant service
provider a failure exception containing the SlaContext is
thrown by the QosCatalog and returned to the requestor.
The requestor may implement negotiation handlers that
process such an exception and continues the negotiation
with lowered requirement’s threshold values.

4) SLA Signing
Digital signing of an offered SLA is performed in two steps.
First the QosCatalog chooses the best offer (i.e. based on
price or other criteria) and then passes the offered SLA, its
lease and the chosen provider's proxy to the requestor. The
leases from other providers are aborted. The requestor is
now responsible for renewing the lease and finalizing the
acquiring of the SLA by calling the signSla operation on
the provider. To guarantee the non-repudiation of contracts
or offers both parties use the SORCER security framework
based on PKI infrastructure.

5) SLA Monitoring and Management
At this point the signed SLA is also passed on to the

SlaMonitor via notify in its EventListener interface.
The received SLA is then registered and persisted. The
SlaMonitor allows the administrator to manage and
monitor SLAs that have been negotiated and signed.

6) Deprovisioning services
Thanks to the leasing mechanism the provider knows

when its resources are not needed anymore. When the lease
expires the provider notifies the AutonomicProvisioner
and this service undeploys the unused provider by calling
the Rio ProvisionMonitor. The provider cannot just
simply destroy itself since in that case Rio's failover
mechanism would immediately deploy another instance of
the provider.

VII. DEPLOYMENT

SERVME has been deployed and successfully tested
within the SORCER environment. The reference
implementation was written in Java 1.6 and requires Jini 2.1
and Rio 4.0-M1. The Rio runtime has been used for
provisioning as well as a source of QoS parameters and also
as intermediary between the framework’s components and
the underlying service provider's JMX Server. The Rio’s
Service UI has been integrated into the SERVME service
provider’s UI and so, it allows the user to view and monitor
QoS parameters at runtime.

The framework was validated in a real-world example
taken from neuroscience. SERVME was used to invoke and
control multiple parallel and sequential computations that
dealt with the processing of MRIs of human brains. Six
heterogeneous hosts (different hardware and OS) where
used to perform several simultaneous computations. Each
provider, called QosCaller collected historical execution
times for similar computations and used this data to
calculate the estimated time and cost of execution. Cost was
calculated as inversely proportional to time of execution
extended with some parameters that altogether caused that
running the computation on faster hardware was much more
expensive than on lower end hosts.

The simulations where run several times and have
shown that with SERVME it is possible to optimize the
execution of complex computations for lowest price or best
performance. The overhead time resulting from the

2009 International Conference on Parallel Processing Workshops

communication needed to select the appropriate provider,
perform SLA negotiation, and sign the SLA contract has
been measured in this environment at around 1-1.5 seconds
and as such is negligible in comparison to the computations
run, that took minimally 3-4 minutes each.

Detailed validation results along with a complete
statistical analysis will be published in a forthcoming paper
on performance analysis.

VIII. CONCLUSIONS

The new Autonomic SLA Management architecture for
federated, metacomputing environments is presented in this
paper. SERVME introduces the new QoS/SLA object model
defined by the two generic interfaces: QosContext and
related SlaContext along with supporting service
providers: QosCatalog, SlaDispatcher, SlaMonitor,
SlaPrioritizer, and On-demandProvisioner. To the
best of our knowledge this is the first attempt to define a
framework capable of autonomic service provisioning for
exertion-oriented programming.

The presented framework addresses the challenges of
spontaneous federations in SORCER and allows for better
resource allocation (best performance or lowest cost). Also,
SERVME provides for better hardware utilization due to
Rio monitored provisioning and SORCER on-demand
provisioning. The presented architecture scales very well
with on-demand provisioning that reduces the number of
compute resources to those presently required for
collaborations defined by corresponding exertions. When
diverse and specialized hardware is used, SERVME
provides means to manage the prioritization of tasks
according to the organization’s strategy that defines "who is
computing what and where".

Two zero-install and friendly user graphical interfaces
attached to SLA Monitor and SORCER Servicer are
available for administration purposes.

The SERVME providers are SORCER Servicers so
additional providers can be dynamically provisioned if
needed autonomically. Finally, the framework enables the
accounting of resource utilization based on dynamic cost
metrics and thus it contributes towards the realization of the
utility computing concept.

ACKNOWLEDGMENT

This work was partially supported by Air Force Research
Lab, Air Vehicles Directorate, Multidisciplinary
Technology Center, the contract number F33615-03-D-
3307, Service-Oriented Optimization Toolkit for Distributed
High Fidelity Engineering Design Optimization.

We would like to thank Dennis Reedy - the architect of
project Rio for his invaluable assistance that helped us to
understand the details of the Rio framework.

REFERENCES

[1] J.O. Kephart & D.M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, 2003, pp. 41-50.

[2] M. Sobolewski, “Metacomputing with Federated Method
Invocation”, Engineering Computer Science and IT, In-Tech,
ISBN978-953-7619-32-9, 2009

[3] I. Foster, A. Roy, & V. Sander, “A quality of service
architecture that combines resource reservation and
application adaptation,” Quality of Service, 2000. IWQOS.
2000 Eighth International Workshop on, 2000, pp. 181-188.

[4] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, & S.
Tuecke, “SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in
Distributed Systems,” Job Scheduling Strategies for Parallel
Processing, 2002, pp. 153-183.

[5] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A.
Grimshaw, B. Horn, F. Maciel, F. Siebenlist, & R.
Subramaniam, The open grid services architecture, version
1.0, 2005.

[6] P. Bhoj, S. Singhal, & S. Chutani, “SLA management in
federated environments,” Computer Networks, vol. 35, 2001,
pp. 5-24.

[7] S. Frolund & J. Koistinen, “Quality-of-service specification in
distributed object systems,” Distributed Systems Engineering,
vol. 5, 1998, pp. 179-202.

[8] C. Yang, B.R. Bryant, C.C. Burt, R.R. Raje, A.M. Olson, &
M. Auguston, “Formal Methods for Quality of Service
Analysis in Component-Based Distributed Computing,”
Journal of Integrated Design & Process Science, vol. 8, 2004,
pp. 137-149.

[9] L. Jin, V. Machiraju, & A. Sahai, Analysis on Service Level
Agreement of Web Services, Technical Report HPL-2002-
180, HP Laboratories, 2002.

[10] H. Ludwig, A. Keller, A. Dan, R.P. King, & R. Franck, “Web
service level agreement (WSLA) language specification,”
IBM Corporation, 2003.

[11] A. Andrieux, K. Czajkowski, A.D. Ibm, K. Keahey, H.L. Ibm,
T.N. Nec, J.P. Hp, J.R. Ibm, S. Tuecke, & M. Xu, Web
Services Agreement Specification (WS-Agreement), 2007.

[12] W. Ziegler, P. Wieder, & D. Battre, Extending WS-
Agreement for dynamic negotiation of Service Level
Agreements, CoreGRID Technical Report TR-0172, Institute
on Resource Management and Scheduling, 2008.

[13] M. Tian, A. Gramm, H. Ritter, & J. Schiller, “Efficient
Selection and Monitoring of QoS-Aware Web Services with
the WS-QoS Framework,” Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web
Intelligence, IEEE Computer Society, 2004.

[14] G. Dobson, R. Lock, & I. Sommerville, “Quality of service
requirements specification using an ontology,” SOCCER
Workshop, Requirements Engineering, 2005.

[15] V. Machiraju, A. Sahai, & A. van Moorsel, “Web Services
Management Network: an overlay network for federated
service management,” Integrated Network Management,
2003. IFIP/IEEE Eighth International Symposium on, 2003,
pp. 351-364.

[16] “Project Rio,” http://rio.dev.java.net, accessed on March 13,
2009.

[17] “Jini architecture specification, Version 2.1,”
http://www.jini.org/wiki/Jini_Architecture_Specification,
accessed on March 12, 2009.

[18] M. Sobolewski, “SORCER: Computing and Metacomputing
Intergrid,” Proc. 10th International Conference on Enterprise
Information Systems, Barcelona, Spain, 2008, pp. 74-85.

[19] M. Sobolewski, “Exertion Oriented Programming,” 2008,
IADIS, vol. 3 no. 1, pp. 86-109, ISBN: 1646-3692.

[20] “NextGRID Project,” http://www.nextgrid.org, accessed on
July 2, 2009.

2009 International Conference on Parallel Processing Workshops

