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This chapter investigates service-oriented computing in the context of object-
oriented distributed platforms. A platform consists of virtual compute resources, 
a programming environment allowing for the development of distributed 
applications, and an operating system to run user programs and to make solving 
complex user problems easier. Service protocol-oriented architectures are 
contrasted with service object-oriented architectures, and then a metacompute 
grid based on a service object-oriented architecture is described and analyzed. A 
new object-oriented network programming methodology is presented in this 
chapter. It uses the intuitive metacomputing semantics and the new Triple 
Command design pattern. The pattern defines how service objects communicate 
by sending one another a form of service messages called exertions that 
encapsulate the triplet: data, operations, and control strategy. 

1. Introduction 

The term “grid computing” originated in the early 1990s as a metaphor for 
accessing computer power as easy as an electric power grid. Today there are 
many definitions of grid computing with a varying focus on architectures, 
resource management and access, virtualization, provisioning, and sharing 
between heterogeneous compute domains. Thus, diverse compute resources 
across different administrative domains form a grid for the shared and 
coordinated use of resources in dynamic, distributed, and virtual computing 
organizations [9]. Therefore, the grid requires a platform that describes some sort 
of framework to allow software to run utilizing virtual organizations. These 
organizations are dynamic subsets of departmental grids, enterprise grids, and 
global grids, which allow programs to use shared resources—collaborative 
federations. 
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Different platforms of grids can be distinguished along with corresponding 
types of virtual federations. However, in order to make any grid-based computing 
possible, computational modules have to be defined in terms of platform data, 
operations, and relevant control strategies. For a grid program, the control 
strategy is a plan for achieving the desired results by applying the platform 
operations to the data in the required sequence and by leveraging the dynamically 
federating resources. We can distinguish three generic grid platforms, which are 
described below.  

Programmers use abstractions all the time. The source code written in 
programming language is an abstraction of the machine language. From machine 
language to object-oriented programming, layers of abstractions have 
accumulated like geological strata. Every generation of programmers uses its 
era’s programming languages and tools to build programs of next generation. 
Each programming language reflects a relevant abstraction, and usually the type 
and quality of the abstraction implies the complexity of problems we are able to 
solve. 

Procedural languages provide an abstraction of an underlying machine 
language. An executable file represents a computing component whose content is 
meant to be interpreted as a program by the underlying native processor. A 
request can be submitted to a grid resource broker to execute a machine code in 
a particular way, e.g., by parallelizing and collocating it dynamically to the right 
processors in the grid. That can be done, for example, with the Nimrod-G grid 
resource broker scheduler [24] or the Condor-G high-throughput scheduler [43]. 
Both rely on Globus/GRAM (Grid Resource Allocation and Management) 
protocol [9]. In this type of grid, called a compute grid, executable files are 
moved around the grid to form virtual federations of required processors. This 
approach is reminiscent of batch processing in the era when operating systems 
were not yet developed. A series of programs ("jobs") is executed on a computer 
without human interaction or the possibility to view any results before the 
execution is complete. 

A grid programming language is the abstraction of hierarchically organized 
networked processors running a grid computing program—metaprogram—that 
makes decisions about component programs such as when and how to run them. 
Nowadays the same computing abstraction is usually applied to the program 
executing on a single computer as to the metaprogram executing in the grid of 
computers, even though the executing environments are structurally completely 
different. Most grid programs are still written using compiled languages such as 
FORTRAN, C, C++, Java, and interpreted languages such as Perl and Python the 
way it usually works on a single host. The current trend is still to have these 
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programs and scripts define grid computational modules. Thus, most grid 
computing modules are developed using the same abstractions and, in principle, 
run the same way on the grid as on a single processor. There is presently no grid 
programming methodologies to deploy a metaprogram that will dynamically 
federate all needed resources in the grid according to a control strategy using a 
kind of grid algorithmic logic. Applying the same programming abstractions to 
the grid as to a single computer does not foster transitioning from the current 
phase of early grid adopters to public recognition and then to mass adoption 
phases. 

The reality at present is that grid resources are still very difficult for most 
users to access, and that detailed programming must be carried out by the user 
through command line and script execution to carefully tailor jobs on each end to 
the resources on which they will run or for the data structure that they will 
access.  This produces frustration on the part of the user, delays in adoption of 
grid techniques, and a multiplicity of specialized “grid-aware” tools that are not, 
in fact, aware of each other that defeat the basic purpose of the compute grid. 

Instead of moving executable files around the grid, we can autonomically 
provision the corresponding computational components as uniform services on 
the grid. All grid services can be interpreted as instructions (metainstructions) of 
the metacompute grid. Now we can submit a metaprogram in terms of 
metainstructions to the grid platform that manages a dynamic federation of 
service providers and related resources, and enables the metaprogram to interact 
with the service providers according to the metaprogram control strategy. 

We can distinguish three types of grids depending on the nature of 
computational components: compute grids (cGrids), metacompute grids 
(mcGrids), and the hybrid of the previous two—intergrids (iGrids). Note that a 
cGrid is a virtual federation of processors (roughly CPUs) that execute submitted 
executable codes with the help of a grid resource broker. However, an mcGrid is 
a federation of service providers managed by the mcGrid operating system. Thus, 
the latter approach requires a metaprogramming methodology while in the former 
case the conventional procedural programming languages are used. The hybrid of 
both cGrid and mcGrid abstractions allows for an iGrid to execute both programs 
and metaprograms as depicted in Fig. 1, where platform layers P1, P2, and P3 
correspond to resources, resource management, and programming environment 
correspondingly. 

One of the first mcGrids was developed under the sponsorship of the National 
Institute for Standards and Technology (NIST)—the Federated Intelligent 
Product Environment (FIPER) [8, 28, 37]. The goal of FIPER is to form a 
federation of distributed services that provide engineering data, applications, and 
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Fig. 1. Three types of grids: compute grid, metacompute grid, and intergrid. A cybernode provides 
a lightweight dynamic virtual processor, turning heterogeneous compute resources into 
homogeneous services available to the metacomputing OS [27]. 
 
 
 
 
 
 
 
 
 
 
 
 

tools on a network. A highly flexible software architecture had been developed 
(1999-2003), in which engineering tools like computer-aided design (CAD), 
computer-aided engineering (CAE), product data management (PDM), 
optimization, cost modeling, etc., act as federating service providers and service 
requestors. 

The Service-ORiented Computing EnviRonment (SORCER) [40, 41, 31, 32, 
33, 34] builds on the top of FIPER to introduce a metacomputing operating 
system with all basic services necessary, including a federated file system, to 
support service-oriented metaprogramming. It provides an integrated solution for 
complex metacomputing applications. The SORCER metacomputing 
environment adds an entirely new layer of abstraction to the practice of grid 
computing—exertion-oriented (EO) programming. The EO programming makes 
a positive difference in service-oriented programming primarily through a new 
metaprogramming abstraction as experienced in many service-oriented 
computing projects including systems deployed at GE Global Research Center, 
GE Aviation, Air Force Research Lab, and SORCER Lab [5, 20, 30, 18, 22, 19, 
35, 2, 44, 13, 12, 21, 11]. 
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The paper is organized as follows. Section 2 provides a brief description of 
two service-oriented architectures used in grid computing with a related 
discussion of distribution transparency; Section 3 describes the SORCER 
metacomputing philosophy and its mcGrid; Section 4 describes the exertion-
oriented programming, and Section 5 the federated method invocation; Section 7 
provides concluding remarks. 

2. SPOA versus SOOA 

Various definitions of a Service-Oriented Architecture (SOA) leave a lot of room 
for interpretation. Nowadays SOA becomes the leading architectural approach to 
most grid developments. In general terms, SOA is a software architecture 
consisting of loosely coupled software services integrated into a distributed 
computing system by means of service-oriented programming. Service providers 
in the SOA environment are made available as independent service components 
that can be accessed without a priori knowledge of their underlying platform or 
implementation. While the client-server architecture separates a client from a 
server, SOA introduces a third component, a service registry. In SOA, the client 
is referred to as a service requestor and the server as a service provider. The 
provider is responsible for deploying a service on the network, publishing its 
service to one or more registries, and allowing requestors to bind and execute the 
requested service. Providers advertise their availability on the network; registries 
intercept these announcements and add published services. The requestor looks 
up a service by sending queries to registries and making selections from the 
available services. Queries generally contain search criteria related to the service 
name/type and quality of service. Registries facilitate searching by storing the 
service representation (description or proxies) and making it available to 
requestors. Providers and requestors can use discovery and join protocols to 
locate registries dynamically and then publish or acquire services on the network 
respectively. Thus service-oriented programming is focused on development and 
execution of distributed programs in terms of services that are available via 
network registries. 

We can distinguish the service object-oriented architecture (SOOA), where 
providers, requestors, and proxies are network objects, from the service protocol 
oriented architecture (SPOA), where a communication protocol is fixed and 
known beforehand to the both provider and requestor. Using SPOA, a requestor 
can use this fixed protocol and a service description obtained from a service 
registry to create a proxy for binding to the service provider and for remote 
communication over the fixed protocol.  In SPOA a service is usually identified 
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Fig. 2. Service object-oriented architecture. 

by a name. If a service provider registers its service description by name, the 
requestors have to know the name of the service beforehand. 

In SOOA (see Fig. 2), a proxy—an object implementing the same service 
interfaces as its service provider—is registered with the registries and it is always 
ready for use by requestors. Thus, the service provider publishes the proxy as the 
active surrogate object with a codebase annotation, for example URLs in Jini ERI 
[25] to the code defining proxies behavior. 

 

In SPOA, by contrast, a passive service description is registered, for instance 
an XML document in WSDL for Web/OGSA services [23, 42] or an interface 
description in IDL for CORBA [29]. Then, the requestor has to generate the 
proxy (a stub forwarding calls to a provider) based on the service description and 
the fixed communication protocol, for example SOAP in Web/OGSA services, 
IIOP in CORBA. This is referred to as a bind operation. The binding operation is 
not needed in SOOA since the requestor holds the active surrogate object already 
created by the provider and obtained by the requestor from the registry. 

Web services and OGSA services cannot change the communication protocol 
between requestors and providers while the SOOA approach is protocol neutral 
[46]. In SOOA, the way an object proxy communicates with a provider is 
established by the contract between the provider and its published proxy and 
defined accordingly by the provider implementation. The proxy’s requestor does 
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not need to know who implements the interface, how it is implemented, or where 
the provider is located—three neutralities of SOOA. So-called smart proxies, for 
example provided by Jini ERI, can grant access to both local and remote 
resources. They can also communicate with multiple providers on the network 
regardless of who originally registered the proxy, thus separate providers on the 
network can implement different parts of the smart proxy interface(s). 
Communication protocols may also vary, and a single smart proxy can also talk 
over multiple protocols including application-specific protocols.  

SPOA and SOOA differ in their method of discovering the service registry. 
For example, SORCER uses dynamic discovery protocols to locate available 
registries (lookup services) as defined in the Jini architecture [17]. Neither the 
requestor who is looking up a proxy by its interfaces nor the provider registering 
a proxy needs to know specific registry locations. In SPOA, however, the 
requestor and provider usually do need to know the explicit location of the 
service registry—e.g., a URL for RMI registry [26], a URL for UDDI registry 
[23], an IP address and port of a COS Name Server [29]—to open a static 
connection and find or register a service. In deployment of Web and OGSA 
services, a UDDI registry can be omitted just by using WSDL files available 
directly from service developers. In SOOA, lookup services are mandatory due to 
the dynamic nature of object proxies registered by bootstrapping providers and 
identified by service types. Interactions with registries in SPOA are more like 
static client-server connections while in SOOA they are dynamic (Jini 
discovery/join protocols) as proxy registrations are leased to registering 
providers. 

Crucial to the success of SOOA is interface standardization. Services are 
identified by interface types (e.g., Java interfaces) and additional provider’s 
specific properties if needed; the exact identity of the service provider is not 
crucial to the architecture. As long as services adhere to a given set of rules 
(common interfaces), they can collaborate to execute published operations, 
provided the requestor is authorized to do so.  

Let us emphasize the major distinction between SOOA and SPOA: in SOOA, 
a proxy is created and always owned by the service provider, but in SPOA, the 
requestor creates and owns a proxy which has to meet the requirements of the 
protocol that the provider and requestor agreed upon a priori. Thus, in SPOA the 
protocol is always a generic one (e.g., HTTP, SOAP, IIOP), reduced to a 
common denominator—one size fits all—that leads to inefficient network 
communication in many cases. In SOOA, each provider can decide on the most 
efficient protocol(s) needed for a particular service provider. 



M. Sobolewski 
 

8 

Service providers in SOOA can be considered as independent network objects 
finding each other via service registries. These objects are identified by service 
types and communicating through message passing. A collection of these objects 
sending and receiving messages—the only way these objects communicate with 
one another—looks very much like a service object-oriented distributed system. 
However, do you remember the eight fallacies [7] of network computing? We 
cannot just take an object-oriented program developed without distribution in 
mind and make it a distributed system, ignoring the unpredictable network 
behavior. Most RPC systems, with notable exception of Jini [6] and SORCER, 
hide the network behavior and try to transform local communication into remote 
communication by creating distribution transparency based on a local assumption 
of what the network might be. However, every single distributed object cannot do 
that in a uniform way as the network is a dynamic, heterogeneous, and 
unreliable. Thus a distributed system cannot be represented completely as a 
collection of independent objects, each of them incorporating a transparent and 
local view of the network.  

The network is dynamic, cannot preserve constant topology, and introduces 
latency for remote invocations. Network latency also depends on potential failure 
handling and recovery mechanisms, so we cannot assume that a local invocation 
is similar to remote invocation. Thus, complete distribution transparency—by 
making calls on distributed objects as though they were local—is impossible to 
achieve in practice. The network distribution is simply not just an object-oriented 
implementation of a isolated distributed objects; it is a metasystemic issue in 
object-oriented distributed programming. In that context, Web/OGSA services 
define independent distributed “objects”, but do not have anything common with 
dynamic object-oriented distributed systems that for example the Jini architecture 
emphasizes. 

Object-oriented programming can be seen as an attempt to abstract both data 
and related operations in an entity called object. Thus, an object-oriented 
program may be seen as a collection of cooperating objects communicating via 
message passing, as opposed to a traditional view in which a program may be 
seen as a list of instructions to the computer. Instead of objects and messages, in 
exertion-oriented programming (EO) [33] service providers and exertions 
constitute a program. An exertion is a kind of meta-request sent onto the 
network. The exertion can be considered as the specification of distributed 
collaboration that encapsulates data, related operations, and control strategy. 
The operation signatures specify implicitly the required service providers on the 
network. The invoked (activated) exertion creates a federation of service 
providers at runtime to execute a collaboration according to the exertion’s control 
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strategy. Thus, the exertion is the metaprogram and its metashell that submits the 
request onto the network to run the collaboration in which all federated providers 
pass to one another the component exertions only. This type of metashell that 
coordinates in runtime the execution of an exertion by federated providers was 
created for the SORCER metacompute operating system (see Fig. 3)—the 
exemplification of SOOA with autonomic management of system and domain-
specific service providers to run EO programs. 

The SORCER environment, described in the next Section, defines the object-
oriented distribution for EO programming. It uses indirect federated remote 
method invocation [34] with no explicit location of service providers specified in 
exertions. A specialized infrastructure of distributed services provides support for 
management of exertions and services, the exertion shell, federated file system, 
service discovery/join, and the system services for coordination of executing 
runtime federations. That infrastructure defines SORCER’s object-oriented 
distributed modularity, extensibility, and reuse of providers and exertions—key 
features of object-oriented distributed programming that are usually missing in 
SPOA programming environments. 

Fig 3. SORCER layered platform, where P1 resources, P2 resource management, P3 
programming environment. 
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3. Metacompute Grid 

SORCER is a federated service-to-service (S2S) metacomputing environment 
that treats service providers as network peers with well-defined semantics of a 
federated service object-oriented architecture (FSOOA). It is based on Jini 
semantics of services [17] in the network and the Jini programming model [6] 
with explicit leases, distributed events, transactions, and discovery/join protocols. 
While Jini focuses on service management in a networked environment, 
SORCER hides all low-level programming details of the Jini programming 
model and is focused on EO programming and the execution environment for 
exertions based on the Triple Command pattern [34] presented in Section 5. 

As described in Section 2, SOOA consists of four major types of network 
objects: providers, requestors, registries, and proxies. The provider is responsible 
for deploying the service on the network, publishing its proxy to one or more 
registries, and allowing requestors to access its proxy. The requestor looks up 
proxies by sending queries to registries and making selections from the available 
services. Queries generally contain search criteria related to the type and quality 
of service. Registries facilitate searching by storing proxy objects with related 
attributes and making them available to requestors. Providers use discovery/join 
protocols to publish services on the network; requestors use discovery/join 
protocols to obtain service proxies on the network. The SORCER metacompute 
OS uses Jini discovery/join protocols to implement its FSOOA.  

In FSOOA, a service provider is a remote object that receives exertions from 
service requestors to execute collaborations. An exertion encapsulates 
collaboration data, operations, and control strategy. A task exertion is an 
elementary service request, a kind of elementary remote instruction (elementary 
statement) executed by a single service provider or a small-scale federation. A 
composite exertion called a job exertion is defined hierarchically in terms of 
tasks and other jobs, including control exertions that manage the flow of control 
in a collaboration. A job exertion is a kind of network procedure executed by a 
large-scale federation. Thus, the executing exertion is a service-oriented program 
that is dynamically bound to all required and currently available service 
providers on the network. This collection of providers identified at runtime is 
called an exertion federation. While this sounds similar to the object-oriented 
paradigm, it really is not. In the object-oriented paradigm, the object space is a 
program itself; here the exertion federation is not the program, it is the execution 
environment for the exertion, and the exertion is the object-oriented program—
the specification of service collaboration. This changes the programming 
paradigm completely. In the former case the object space is hosted by a single 
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computer, but in the latter case the top-level and its component exertions along 
with related service providers are hosted by the network of computers. 

The overlay network of all service providers is called the service grid and an 
exertion federation is called a virtual metacomputer. The metainstruction set of 
the metacomputer consists of all operations offered by all providers in the service 
grid. Thus, a service-oriented program is composed of metainstructions with its 
own service-oriented control strategy and service context representing the 
metaprogram data. Service signatures specify metainstructions in SORCER. 
Each signature primarily is defined by a service type (interface name), operation 
in that interface, and a set of optional attributes. Four types of signatures are 
distinguished: PROCESS, PREPROCESS, POSTPROCESS, and APPEND. A PROCESS 
signature—of which there is only one allowed per exertion—defines the dynamic 
late binding to a provider that implements the signature’s interface. The service 
context [47, 31] describes the data that tasks and jobs work on. An APPEND 
signature defines the context received from the provider specified by this 
signature. The received context is then appended in runtime to the service context 
later processed by PREPROCESS, PROCESS, and POSTPROCESS operations of the 
exertion. Appending a service context allows a requestor to use actual shared 
network data with other requestors at runtime. A job exertion allows for a 
dynamic federation to transparently coordinate the execution of all component 
exertions within the service grid.  

Please note that these metacomputing concepts are defined differently in 
traditional grid computing where a job is just an executing process for a 
submitted executable code with no federation being formed for that code 
managed by the local operation system on a selected processor by the grid 
scheduler. 

An exertion can be activated by calling exertion’s exert operation: 
Exertion.exert(Transaction):Exertion, where a parameter of the 
Transaction type is required when a transactional semantics is needed for all 
nested exertions participating within the parent exertion’s collaboration. Thus, 
EO programming allows us to submit an exertion onto the network implicitly (no 
receiving provider identified a priori) and to perform execution of exertion’s 
signatures on various service providers in runtime by the exertion metashell. 
Top-level S2S communication between collaborating services is managed by 
rendezvous services through the use of the generic Servicer interface and the 
operation service that all SORCER services are required to provide: 
 Servicer.service(Exertion, Transaction):Exertion. 

This top-level service operation takes an exertion as an argument and gives back 
an exertion as the return value. 
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Despite the fact that every Servicer can accept any exertion, Servicers have 
well defined roles in the S2S platform (see Fig. 3): 

1. Taskers—process service tasks; 
2. Jobbers—rendezvous providers that process service jobs; 
3. Spacers—rendezvous providers that process tasks and jobs via shared 

exertion space for space-based computing [10]; 
4. Contexters—provide service contexts for APPEND signatures; 
5. FileStorers—provide access to federated file system providers [36, 1, 2, 

44]; 
6. Catalogers—SORCER services registries; 
7. Persisters—persist service contexts, tasks, and jobs to be reused for 

interactive EO programming; 
8. Relayers—gateway providers; transform exertions to native 

representation, for example integration with Web services and JXTA 
[16]; 

9. Autenticators, Authorizers, Policers, KeyStorers—provide support 
for service security; 

10. Auditors, Reporters, Loggers—support for accountability, reporting, 
and logging; 

11. Griders, Callers, Methoders—support traditional compute grid; 
12. ServiceTasker, ServiceJobber, and ServiceSpacer are basic three 

implementations of providers used to configure domain-specific providers 
via dependency injection—configuration files for smart proxying and 
embedding business objects, called service beans, into service providers. 
Also, domain-specific providers can subclass any of these three providers 
and implement required domain-specific interfaces with operations 
returning a service context and taking a service context as its single 
parameter. These domain-specific interfaces and operations are usually 
used in service task signatures; and 

13. ServiceProviderBeans—to enable autonomic provisioning of service 
providers with the Rio framework [27]. 

Service providers do not have mutual associations prior to the execution of an 
exertion; they come together dynamically (federate) for all nested tasks and jobs 
in the top-level exertion. Domain specific providers within the federation, or task 
peers, execute service tasks. Job collaborations are coordinated by rendezvous 
peers: a Jobber or Spacer, two of the SORCER platform system services. 
However, a job can be sent to any peer. A peer that is not a rendezvous peer is 
responsible for forwarding the job to an available rendezvous peer and returning 
results to the requestor. Thus implicitly, any peer can handle any exertion type. 
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Once the exertion execution is complete, the federation dissolves and the 
providers disperse to seek other exertions to join. 

Exertions can be created interactively [35] or programmatically (using 
SORCER API), and its execution can be monitored and debugged [39] in the 
overlay service network via service user interfaces [45] attached to providers and 
installed on-the-fly by generic service browsers [15]. 

3.1  Federated File System 

The SILENUS federated file system [1, 2] was designed and developed to 
provide data access for metaprograms. It expands the file store developed for 
FIPER [36] with the true P2P services. The SILENUS system itself is a 
collection of service providers that use the SORCER framework for 
communication. 

In classical client-server file systems, a heavy load may occur on a single file 
server. If multiple service requestors try to access large files at the same time, the 
server will be overloaded. In a P2P architecture, every provider is a client and a 
server at the same time. The load can be balanced between all peers if files are 
spread across all of them. The SORCER architecture splits up the functionality of 
the metacomputer into smaller service peers (Servicers), and this approach was 
applied to the distributed file system as well. 

The SILENUS federated file system is comprised of several network services 
that run within the SORCER environment. These services include a byte store 
service for holding file data, a metadata service for holding metadata information 
about the files, several optional optimizer services, and façade [14] services to 
assist in accessing federating services. SILENUS is designed so that many 
instances of these services can run on a network, and the required services will 
federate together to perform the necessary functions of a file system. In fact, the 
SILENUS system is completely decentralized, eliminating all potential single 
point failures. SILENUS services can be broadly categorized into gateway 
components, data services, and management services.  

The SILENUS façade service provides a gateway service to the SILENUS 
grid for requestors that want to use the file system. Since the metadata and actual 
file contents are stored by different services, there is a need to coordinate 
communication between these two services. The façade service itself is a 
combination of a control component, called the coordinator, and a smart proxy 
component that contains needed inner proxies provided dynamically by the 
coordinator. These inner proxies facilitate direct P2P communications for file 
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upload and download between the requestor and SILENUS federating services 
like metadata and byte stores.  

Core SILENUS services have been deployed as SORCER services along with 
WebDAV and NFS adapters. The SILENUS file system scales well with a virtual 
disk space adjusted as needed by the corresponding number of required byte store 
providers and the appropriate number of metadata stores required to satisfy the 
needs of current users and service requestors. The system handles several types 
of network and computer outages by utilizing disconnected operation and data 
synchronization mechanisms [3]. It provides a number of user agents including a 
zero-install file browser attached to the SILENUS façade. Also a simpler version 
of SILENUS file browser is available for smart MIDP phones.  

SILENUS supports storing very large files [44] by providing two services: a 
splitter service and a tracker service. When a file is uploaded to the file system, 
the splitter service determines how that file should be stored. If a file is 
sufficiently large enough, the file will be split into multiple replicated parts, or 
chunks, and stored across many byte store services. Once the upload is complete, 
a tracker service keeps a record of where each chunk was stored. When a user 
requests to download the full file later on, the tracker service can be queried to 
determine the location of each chunk and the file can be reassembled to the 
original form. 

4. Exertion-oriented Programming 

Each programming language provides a specific computing abstraction. 
Procedural languages are abstractions of assembly languages. Object-oriented 
languages abstract entities in the problem domain that refer to “objects” 
communicating via message passing as their representation in the corresponding 
solution domain, e.g., Java and SORCER objects. EO programming is a form of 
distributed programming that allows us to describe the distributed problem 
explicitly in terms of the intrinsic unpredictable network domain instead of in 
terms of conventional distributed objects that hide the notion of the network 
domain. 

What intrinsic distributed abstractions are defined in SORCER? Well, service 
providers are “objects”, but they are specific objects—they are network objects 
with leased network resources, a network state, network behavior, and network 
typs. There is still a connection to conventional distributed objects: each service 
provider looks like a remote  object (data or compute node). However, service 
providers act as network peers with leased network resources; they implement 
the same top-level interface; they are replicated and dynamically provisioned for 



Object-Oriented Metacomputing with Exertions 
 

15 

reliability to compensate for network failures [27]; they can be found 
dynamically at runtime by types they implement; they can federate for executing 
a specific network request called an exertion and process collaboratively nested 
(component) exertions. An exertion encapsulates in a modular way service data, 
operations, and requestor’s control strategy. The component exertions may need 
to share context data of ancestor exertions, and the top-level exertion is complete 
only if all nested exertions are successful. 

With that very concise introduction to the abstraction of EO programming, 
let’s look into a simple analogy to Unix shell scripts execution and then in detail 
at how FSOOA is defined.  

Let's first look at the EO approach to see how it works. EO programs consist 
of exertion objects called tasks and jobs. An exertion task corresponds to an 
individual network request to be executed on a service provider. An exertion job 
consists of a structured collection of tasks and other jobs. The data upon which to 
execute a task or job is called a service context. Tasks are analogous to executing 
a single program or command on a computer, and the service context would be 
the input and output streams that the program or command uses. A job is 
analogous to a batch script that can contain various commands and calls to other 
scripts. Pipelining Unix commands allows us to perform complex tasks without 
writing complex programs. As an example, consider a script sort.sh connecting 
simple processes in a pipeline as follows: 

cat hello.txt | sort | uniq > bye.txt 

The script is similar to an exertion job in that it consists of individual tasks 
that are organized in a particular fashion. Also, other scripts can call the script 
sort.sh. An exertion job can consist of tasks and other jobs, much like a script 
can contain calls to commands and other scripts. 

Each of the individual commands, such as cat, sort, and uniq, would be 
analogous to a task. Each task works with a particular service context. The input 
context for the cat “task” would be the file hello.txt, and the “task” would 
return an output context consisting of the contents of hello.txt. This output 
context can then be used as the input context for another task, namely the sort 
command. Again the output context for sort could be used as the input context 
for the uniq task, which would in turn give an output service context in the form 
of bye.txt.  

To further clarify what an exertion is, an exertion consists mainly of three 
parts: a set of service signatures, which is a description of operations in a 
collaboration, the associated service context upon which to execute the exertion, 
and control strategy (default provided) that defines how signatures are applied in 
the collaboration. A service signature specifies at least the provider’s interface 
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that the service requestor would like to use and a selected operation to run within 
that interface. There are four types of signatures that can be used for an exertion: 
PREPROCESS, PROCESS, POSTPROCESS, and APPEND. An exertion must have one 
and only one PROCESS signature that specifies what the exertion should do and 
who works on it. An exertion can optionally have multiple PREPROCESS, 
POSTPROCESS, and APPEND signatures that are primarily used for formatting the 
data within the associated service context. A service context consists of several 
data nodes used for either input, output, or both. A task may work with only a 
single service context, while a job may work with multiple service contexts since 
it can contain multiple tasks. The requestor can define a control strategy as 
needed for the underlying exertion by choosing relevant control exertion types 
and configuring attributes of service signatures accordingly (see Section 4.2, 4.4 
and 4.5 for details).  

Here is the basic structure of the EO program that is analogous to the sort.sh 
script. 

 
1.  // Create service signatures 

2.  Signature catSignature, sortSignature, uniqSiganture; 

3.  catSignature = new ServiceSignature("Reader", "cat"); 

4.  sortSignature = new ServiceSignature("Sorter", "sort"); 

5.  uniqSiganture = new ServiceSignature("Filter", "uniq"); 

6. 

7.  // Create component exertions 

8.  Task catTask, sortTask, uniqTask; 

9.  catTask = new Task("cat", catSignature); 

10. sortTask = new Task("sort", sortSignature); 

11. uniqTask = new Task("uniq", uniqSiganture); 

12. 

13. // Create top-level exertion 

14. Job sortJob = new Job("main-sort"); 

15. sortJob.addExertion(catTask); 

16. sortJob.addExertion(sortTask); 

17. sortJob.addExertion(uniqTask); 

18. 

19. // Create service contexts 
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20. Context catContext, sortContext, uniqContext; 

21. catContext = new ServiceContext("cat");  

22. sortContext = new ServiceContext("sort"); 

23. uniqContext = new ServiceContext("uniq"); 

24. 

25. catContext.putInValue("/text/in/URL", 

26. "http://host/hello.txt"); 

27. catContext.putOutValue("/text/out/contents", null); 

28. 

29. sortContext.putInValue("/text/in/contents", null); 

30. sortContext.putOutValue("/text/out/sorted", null); 

31. 

32. uniqContext.putInValue("/text/in/sorted", null); 

33. uniqContext.putOutValue("/text/out/URL", 

34. "http://host/bye.txt"); 

35. 

36. //Map context outputs to inputs 

37. catContext.map("/text/out/contents",  

38. "/text/in/contents", sortContext); 

39. sortContext.map("/text/out/sorted",  

40. "/text/in/sorted", uniqContext); 

41. 

42. catTask.setContext(catContext); 

43. sortTask.setContext(sortContext); 

44. uniqTask.setContext(uniqContext); 

45. 

46. // exert collaboration 

47. sortJob.exert(null); 

 
In the above EO program we create three signatures (lines 2-5), each 

signature is defined by the interface name and the operation name that we want to 
run by any remote object implementing the interface. We use the three signatures 
to create three tasks (lines 8-11) and by line 12, we have three separate 
commands cat, sort, and uniq to be used in the sort.sh script. The three tasks 
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are combined into the job by analogy to piping Unix commands in the sort.sh 
script. Thus, by line 18, we have added these commands to sort.sh script, but 
have not provided input/output parameters nor piped them together: 

as is: cat             sort   uniq 

to be: cat hello.txt | sort | uniq > bye.txt 

Lines 20-34 create and define three service contexts for our three tasks. By 
line 35, we have specified some input and output parameters, but still no piping: 

as is: cat hello.txt   sort   uniq   bye.txt 
to be: cat hello.txt | sort | uniq > bye.txt 

Lines 37-40 define mapping of context output to the related context input 
parameters. The parameters are context paths from a source context to a target 
context. The target context is the last parameter in the map operation. By line 45, 
we have piping setup and by the analogy our sort.sh script is complete now: 

as is: cat hello.txt | sort | uniq > bye.txt 
On line 47, we execute the script. If we use the Tenex C shell (tcsh), invoking 
the script is equivalent to: tcsh sort.sh, i.e., passing the script sort.sh on to 
tcsh. Similarly, to invoke the exertion sortJob, we call sortJob.exert(null). 
Thus, the exertion is the program and the network shell at the same time, which 
might first come as a surprise, but close evaluation of this fact, shows it to be 
consistent with the meaning of object-oriented distributed programming. Here, 
the virtual metacomputer is a federation that does not exist when the exertion is 
created. Thus, the notion of the virtual metacomputer is encapsulated in the 
exertion that creates the required federation on-the-fly. The federation provides 
the implementation (metacomputer instructions) as specified in signatures of the 
EO program before the exertion runs on the network.  

The sortJob program described above can be rewritten with just one exertion 
task only instead of exertion job as follow: 

 
1.  // Create service signatures 

2.  Signature catSignature, sortSignature, uniqSiganture; 

3.  catSignature = new ServiceSignature("Reader", 

4.  "cat", Type.PREPROCESS); 

5.  sortSignature = newServiceSignature("Sorter",  

6.  "sort", Type.PROCESS); 

7.  uniqSiganture = new ServiceSignature("Filter", 

8.  "uniq", Type.POSTPROCESS); 

9. 

10. // Create an exertion task 

11. Task sortTask = new Task("task-sort"); 
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12. sortTask.addSignature(catSignature); 

13. sortTask.addSignature(sortSignature); 

14. sortTask.addSignature(uniqSiganture); 

15. 

16. // Create a service context 

17. Context taskContext = new ServiceContext("c-sort"); 

18. taskContext.putInValue("/text/in/URL",  

19.  "http://host/hello.txt"); 

20. taskContext.putOutValue("/text/out/contents", null); 

21. taskContext.putOutValue("/text/out/sorted", null); 

22. taskContext.putOutValue("/text/out/URL", 

23.  "http://host/bye.txt"); 

24. 

25. sortTask.setContext(taskContext); 

26. 

27. // Activate the task exertion 

28. sortTask.exert(null); 

 
In this version of the sort.sh analogy—taskSort, we create three signatures 

(lines 2-8), but in this case three signature types are assigned, so we can batch 
them into a single task (lines 11-14). In the jobSort version all signatures are of 
the default PROCESS type and each task is created with its own context. Here we 
create one common taskContext (lines 17-23) that is shared by all signature 
operations. Finally, on line 28, we execute the exertion task sortTask. 

The major difference between the two EO programs jobSort and taskSort is 
in the exertion execution. The execution of jobSort is in fact coordinated by a 
Jobber, but the execution of the taskSort is coordinated by the service provider 
implementing the Sorter interface that binds to the PROCESS signature 
sortSignature. If the provider implementing the Sorter interface, implements 
also two other interfaces Reader and Filter, then the execution of taskSort is 
more efficient as all three operations can be executed by the same provider with 
no need of network communication between a Jobber and three collaborating 
providers in the jobSort federation. 

4.1.  Service Messaging and Exertions 

In object-oriented terminology, a message is the single means of passing 
control to an object. If the object responds to the message, it has an operation and 
its implementation (method) for that message. Because object data is 
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encapsulated and not directly accessible, a message is the only way to send data 
from one object to another. Each message specifies the name (identifier) of the 
receiving object, the name (selector) of operation to be invoked, and its 
parameters. In the unreliable network of objects; the receiving object might not 
be present or can go away at any time. Thus, we should postpone receiving object 
identification as late as possible. Grouping related messages per one request for 
the same data set makes a lot of sense due to network invocation latency and 
common errors in handling. These observations lead us to service-oriented 
messages called exertions. An exertion encapsulates multiple service signatures 
that define operations, a service context that defines data, and a control strategy 
that defines how operations flow during exertion execution. Different types of 
control exertions (Section 4.4) can be used to define collaboration control 
strategies that can also be configured with signature flow type and access type 
attributes (see Section 4.2). Two basic exertion categories are distinguished: 
elementary and composite exertion called exertion task and exertion job, 
respectively. Corresponding task and job control strategies are described in 
Section 4.5. 

As explained in Section 3, an exertion can be activated by calling exertion’s 
exert operation: Exertion.exert(Transaction):Exertion, where a parameter 
of the Transaction type is required when a transactional semantics is needed for 
all participating nested exertions within the parent one. Thus, EO programming 
allows us to submit an exertion onto the network and to perform executions of 
exertion’s signatures on various service providers, but where does the service-to-
service communication come into play? How do these services communicate 
with one another if they are all different? Top-level communication between 
services, or the sending of service requests (exertions), is done through the use of 
the generic Servicer interface and the operation service that all SORCER 
services are required to provide—Servicer.service(Exertion, 

Transaction):Exertion. This top-level service operation takes an exertion as 
an argument and gives back an exertion as the return value. In Section 5 we 
describe how this operation is realized in the federated method invocation 
framework. 

So why are exertions used rather than directly calling on a provider's method 
and passing service contexts? There are three basic answers to this.  

First, passing exertions helps to aid with the network-centric messaging. A 
service requestor can send an exertion out onto the network—
Exertion.exert()—and any service provider can pick it up. The receiving 
provider can then look at the interface and operation requested within the 
exertion, and if it doesn't implement the desired PROCESS interface or provide its 
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desired method, it can continue forwarding it to another service provider who can 
service it.  

Second, passing exertions helps with fault detection and recovery. Each 
exertion has its own completion state associated with it to specify if it has yet to 
run, has already completed, or has failed. Since full exertions are both passed and 
returned, the user can view the failed exertion to see what method was being 
called as well as what was used in the service context input nodes that may have 
caused the problem. Since exertions provide all the information needed to 
execute an exertion including its control strategy, a user would be able to pause a 
job between tasks, analyze it and make needed updates. To figure out where to 
resume an exertion, the service provider would simply have to look at the 
exertion’s completion states and resume the first component one that wasn't 
completed yet. In other words, EO programming allows the user, not 
programmer to update the metaprogram on-the-fly, what practically translates 
into creation new collaborative applications at the exertion runtime [35]. 

Third, the provider can analyze the received exertion for compliance with 
security polices before any of its signatures can be executed. In particular the 
Authenticator provider is used to check for the requestor proper identity, and 
the Authorizer provider is consulted if all exertion’s signatures are accessible to 
the requestor. 

4.2.  Service Signatures 

An activated exertion—Exertion.exert()—initiates the dynamic federation 
of all needed service providers dynamically—as late as possible—as specified by 
signatures of top-level and nested exertions. An exertion signature is compared to 
the operations defined in the service provider’s interface along with a set of 
signature attributes describing the provider, and if a match is found, the 
appropriate operation can be invoked on the service provider. In federated 
method invocation (FMI) [34] signatures specify indirect invocations of provider 
methods via the service operation of the top-level Servicer interface as 
described in Section 4.1. 

A service Signature is defined by: 
• signature name—a custom name 
• service type name—a service name corresponding to the  provider’s type 

(Java interface) 
• selector of the service operation—an operation name defined in the service 

type 
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• operation type—Signature.Type: PROCESS (default), PREPROCESS, 
POSTPROCESS, APPEND 

• service access type—Signature.Access: PUSH (default) - direct binding to 
service providers, or PULL – indirect binding via a shared exertion space 
maintained by the Spacer service 

• flow of control type—Signature.FlowType: SEQUENTIAL (default), 
PARALLEL, CONCURRENT 

• priority—integer value used by exertion’s control strategy 
• execution time flag—if true, the execution time is returned in the service 

context 
• notifyees—list of email addresses to notify upon exertion completion 
• service attributes—required requestor’s attributes matching provider’s 

registration attributes 
An exertion can comprise of a collection of PREPRROCESS, POSTPROCESS, and 

APPEND signatures, but having only one PROCESS signature. The PROCESS 
signature defines the binding provider for the exertion. An APPEND signature 
defines the service context received from the provider specified by this signature. 
The received context is then appended in runtime to the exiting context that is 
processed later by PREPROCESS, PROCESS, and POSTPROCESS operations of the 
exertion. Appending a service context allows a requestor to use actual network 
data in runtime not available to the requestor when the exertion is activated.  

Different languages have different interpretations as to what constitutes and 
operation signature. For example, in C+ and Java the return type is ignored. In 
FMI the parameters and return type are all of the Context type. Using the UML 
advanced operation syntax, the exertion operation (prefixing it with the 
<<service>> stereotype and postfixing with tagged values), can be defined as 
follow: 

Context { interface = service-type-name, type = operation-type, 

access = access-type, flow = flow-type, priority = integer, 

timing = boolean, notfiees = notfiees-list, attributes = 

registration-attribute-list }. 

4.3.  Service Contexts 

A service context, or simply a context, defined by the Context interface, is a 
data structure that describes service provider ontology along with related data. A 
provider‘s ontology is controlled by the provider vocabulary that describes data 
and the relations between them in a provider's namespace within a specified 
service domain of interest. A requestor submitting an exertion to a provider has 
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to comply with that ontology as it specifies how the context data is interpreted 
and used by the provider. In service context, attributes and their values are used 
as atomic conceptual primitives, and complements are used as composite ones. A 
complement is an attribute sequence (path) with a value at the last position. A 
context consists of a subject complement and a set of defining context 
complements. The context usually corresponds to a sentence of natural language 
(a subject with multiple complements) [38]. 

A service context is a tree-like structure described conceptually by the EBNF 
syntax specification as follows:  

 
1. context = [ subject  ":" ] complement { complement }. 
2. subject = element. 
3. complement = element ";". 
4. element= path [ "=" value ]. 
5. path = ["/"] attribute { "/" attribute }  [  {  "<" 

association ">"  }  ] [ { "/" attribute } ]. 

6. value = object. 
7. attribute = identifier. 
8. relation = domain "|" product. 
9. association = domain "|" tuple. 
10. product = attribute { "|" attribute }. 
11. tuple = value { "|" value }. 
12. attribute  = identifier. 
13. domain = identifier. 
14. association = identifier. 
15. identifier = letter { letter | digit }. 

 
A relation with a single attribute taking values, is called a property and is 

denoted as attribute|attribute. To illustrate the idea of service context, let’s 
consider the following example (graphically depicted in Fig. 4 where the subject 
/laboratory/name=SORCER is indicated in green color and the association person 
in red): 

 
/laboratory/name=SORCER: /university=TTU; 

/university/department/name=CS; 

/university/department/room; 

number=20B; 

phone/number=806-742-1194; 

phone/ext=237; 
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Fig. 4. An example of a service context 

/director<person|Mike|W|Sobolewski>/email=sobol@cs.ttu.edu; 

 

where absolute and relative paths are used, and the relation person is defined 
as follows: 

person|firstname|initial|lastname and the following properties are 
used: firstname, initial, lastname, name, university, email, number, ext. 

A context leaf node or data node is where the actual data resides. All absolute 
context paths define a service namespace. The context namespace with data 
nodes appended to its context paths is called a context model, or simply a context. 
A context path is a hierarchical name for a data item in a leaf node. Note that a 
limited service context can be represented as an XML document—what has been 
done in SORCER for interoperability—but the power of the Context type comes 
from the fact that any Java object can be naturally used as a data node. In 
particular, exertions themselves can be used as data nodes and then executed by 
providers as needed to run complex iterative programs, e.g., nonlinear 
multidisciplinary optimization [20]. 
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4.4.  Exertion Types 

A Task instance specifies an elementary step in EO program. It is an analog 
of a statement in procedural programming languages (see the examples in 
Section 4). Thus, it is a minimal unit of structuring in EO programming. If the 
provider binds to a Task, it has a method for the task's PROCESS signature. Other 
signatures associated with the Task exertion provide for appending, 
preprocessing, and postprocessing service contexts by the same provider or its 
collaborating providers. An APPEND signature defines the context received from 
the provider specified by this signature. The received context is then appended at 
runtime to the task context later processed by PREPROCESS, PROCESS, and 
POSTPROCESS operations of the task. Appending a service context allows a 
requestor to use shared network data in runtime. A Task is the single means of 
passing control to an application service provider in FSOOA. Note that a task can 
specify a batch of operations that operate on the same service context—a Task’s 
shared execution state. All operations of the task, which are defined by its 
signatures, can be executed by the receiving provider or a group of federating 
providers coordinated by the provider receiving the task. 

A Job instance specifies a “block” of task and other jobs. It is the analog of a 
procedure in imperative programming languages. In EO programming it is a 
composite of exertions that makeup the network collaboration. A Job can reflect 
a workflow with branching and looping by using control exertions (see Fig. 5).  

The following control exertions define algorithmic logic in EO programming: 
IfExertion, WhileExertion, ForExertion, DoExertionThrowExertion, 
TryExertion, BreakExertion, ContinueExertion. Currently implemented in 
SORCER exertions including control types are depicted in Fig. 5.  

4.5.  Exertion Control Strategies 

In Section 4.1 and 4.2 top-level exertion messaging and service signatures 
were described. This section will present how they are used, at the task level and 
job level, to manage flow of control in EO programs. Before we delve into a task 
and job execution strategy, let’s look at three related infrastructure providers 
identified by the following interfaces: Jobber, Spacer, and Cataloger.  
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Fig. 5. Exertion types including control exertions that allow for algorithmic 
logic in EO programming. 

To begin processing a job, a service requestor must exert the job that finds its 
way dynamically to either a Jobber or Spacer service using: 

 Exertion.exert(Transaction):Exertion. 

The Jobber is responsible for coordinating the execution of the job, much 
like a command shell coordinates the execution of a batch script (see the 
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programming examples in Section 4). The Jobber acts as a service broker by 
calling upon the proper service providers to execute the component exertions 
within the given job. The Jobber can dispatch nested service requests either 
directly, when the jobber finds a proper provider by way of a Cataloger service 
or falling back to the Jini lookup service, or it can be dispatched indirectly via a 
shared exertion space through the use of a Spacer service. 

SORCER extends the discovery and registration capabilities of the service-
oriented architecture through the use of a service called the Cataloger service. A 
cataloger service looks through all the Jini lookup services that it is aware of and 
requests all the SORCER service registrations it can get. The cataloger organizes 
these registrations that include service proxies, into groups of the same type. 
Whenever a service requestor needs a certain service, it can go to a cataloger 
instead of a lookup service to find what it needs. The cataloger will distribute 
registrations for the same service in a round-robin fashion to help balance the 
load between service providers of the same service type. 

SORCER also extends task/job execution abilities through the use of a 
Spacer service. The Spacer service can drop an exertion into a shared object 
space, provided by the Jini JavaSpaces service [10], in which several providers 
can retrieve relevant exertions from the object space, execute them, and return 
the results back to the object space. 

As described before, an exertion is associated with a collection of signatures. 
There is only one PROCESS signature in this collection and multiple instances of 
APPEND, PREPROCESS, and POSTPROCESS signatures. The PROCESS signature is 
responsible for binding to the service provider that executes the exertion. The 
exertion activated by a service requestor can be submitted directly or indirectly to 
the matching service provider. In the direct approach, when signature’s access 
type is PUSH, the exertion’s ServicerAccessor (see Fig. 6) finds the matching 
service provider against the service type and attributes of the PROCESS signature 
and submits the exertion to the found provider. Alternatively, when signature’s 
access type is PULL, a ServiceAccessor can use a Spacer provider that simply 
drops the exertion into the shared exertion space to be pulled by matching 
providers. Each SORCER service provider looks continuously into the space for 
exertions that match a provider’s interfaces and attributes. Each service provider 
that picks up a matched exertion from the exertion space returns the exertion 
being executed back into the space, then the requestor (Tasker, Jobber, or 
Spacer) picks up the executed exertion from the space. The exertion space 
provides a kind of automatic load balancing—the fastest available service 
provider gets an exertion from the space and joins the exertion’s federation.  
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Fig. 6. The primary types of SORCER providers: Tasker, 
Jobber, and Spacer with supporting ServicerAccessor. 

When a receiving service provider gets a task (directly or indirectly) then the 
task signatures are executed as follows: 
• First, all APPEND signatures are processed by the receiving provider in the 

order specified in the task. The order of signatures is defined by signature 
priorities, if the task’s flow type is SEQUENTIAL; otherwise they are dispatch 
in parallel. In the result the task’s service context is appended with dynamic 
data delivered from context providers specified by the append signatures. 
Appended complementary shared contexts are managed by the receiving 
provider according to the remote Observer/Observable design pattern [14]. 
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• Second, all PREPROCESS signatures are executed in the order specified in the 
task. The order is defined as in 1) above. In the result the task context is 
ready for applying its PROCESS method. 

• Third, the PROCESS signature is executed and results are captured in the task 
context including any exceptions and errors. 

• Forth, all POSTPROCESS signatures are executed in the order specified in the 
task. The order is defined as in 1) above. Finally the resulting task with the 
processed context is returned to the requestor. 

A domain-specific provider calls by reflection the method specified in the 
exertion PROCESS signature (interface and selector). All application domain 
methods that are used in exertion signatures have the same signature: a single 
Context type parameter and a Context type return vale. Thus a domain-specific 
interface looks like a common Java RMI interface with the above simplification 
on the common signature for all application-specific operations defined in the 
provider remote interfaces.  

The default job’s PROCESS signature defines a runtime binding to a Jobber. 
Alternatively the Spacer interface can be used in a job PROCESS signature. Two 
major parameters: job PROCESS signature’s access type and its flow type 
determine the top-level control strategy. Additionally, job’s service context, 
called a control context, defines job’s execution preferences. When a Jobber or 
Spacer gets an exertion job then a relevant dispatcher is assigned by a dispatcher 
factory that takes into account job’s access type, flow type, and its control 
context configuration. In the SORCER environment there are twelve types of 
dispatchers that implement different types of control strategies. The assigned 
dispatcher manages the execution of the job’s component exertions either 
sequentially or in parallel (depending on the value of flow type), and accessing 
collaborating providers either directly or indirectly (depending on the value of 
access type). The default top-level control strategy implements a master/slave 
computing model with sequential or parallel execution of slave exertions with the 
master exertion executed as the last one, if any. In general, full algorithmic logic 
operations: concatenation, branching, and looping are supported. A job’s 
workflow can be defined in terms of control exertions defined in Section 4.4. The 
access types of job signatures specify the way a jobber or spacer accesses 
collaborating service providers: directly or indirectly. Thus the Spacer provider 
is usually used for asynchronous access and the Jobber service is usually used to 
access needed service providers synchronously. 
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4.6.  Service-to-Service Infrastructure 

Exertion tasks are usually executed by service providers of the Tasker type 
and exertion jobs by rendezvous providers of Jobber or Spacer type. While a 
Tasker manages a single service context for the received task, a rendezvous 
provider manages a shared context (shared execution state) for the job federation 
and provides substitutions for input parameters that are mapped to output 
parameters (see the first programming example in Section 4) in service contexts 
of component exertions. Either one, a Tasker or rendezvous provider creates a 
federation of required service providers in runtime, but federations managed by 
rendezvous providers are usually larger in size than those managed by Taskers. 
All SORCER service providers implement the top-level Servicer interface. A 
peer of the Servicer type that is unable to execute an Exertion for any reason 
forwards the Exertion to any available Servicer matching the exertion’s 
PROCESS signature and returns the resulting exertion back to its requestor.  

Thus, each Servicer can initiate a federation created in response to 
Servicer.service(Exertion, Transaction). Servicers come together to 
form a federation participating in collaboration for the activated exertion. When 
the exertion is complete, Servicers leave the federation and seek a new exertion 
to join. Note that the same exertion can form a different federation for each 
execution due to the dynamic nature of looking up Servicers by their required 
interfaces. Despite the fact that every Servicer can accept any exertion, many 
specialized Servicers have well defined roles in FSOOA as described in Section 
3. 

5. The Triple Command Pattern 

Polymorphism let us encapsulate a request then establish the signature of 
operation to call and vary the effect of calling the underlying operation by 
varying its implementation. The Command design pattern [14] establishes an 
operation signature in a generic interface and defines various implementations of 
the interface. In Federated Method Invocation (FMI), the three interfaces are 
defined with the following three commands:  

1. Exertion.exert(Transaction):Exertion—join the federation; 
2. Servicer.service(Exertion, Transaction):Exertion— 

request a service in the federation from the top-level Servicer obtained for 
the activated exertion;  

3. Exerter.exert(Exertion, Transaction):Exertion— 
execute the argument exertion by the target provider in the federation. 
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These three commands define the Triple Command pattern that makes EO 
programming possible via various implementations of the three interfaces: 
Exertion, Servicer, and Exerter. The FMI approach allows for: 
• the P2P environment via the Servicer interface,  
• extensive modularization of programming P2P collaborations by the 

Exertion type,  
• the customized execution of exertions by providers of the Exerter type, and  
• common synergistic extensibility (exertions, servicers, exerters) from the 

triple design pattern.  
Thus, requestors can exert simple (tasks) and structured metaprograms (jobs with 
control exertions) with or without transactional semantics as specified in 1) 
above. The Triple Command pattern in SORCER works as follows: 

1. An exertion is invoked by calling Exertion.exert(Transaction). The 
exert operation implemented in ServiceExertion uses ServicerAccessor 
to locate in runtime the provider matching the exertion’s PROCESS signature. 
If a Subject in the exertion is not set, the requestor has to authenticate itself 
with the Authenticator service. A Subject represents a grouping of related 
security information (public and private credentials) for the requestor. After 
the successful requestor’s authentication the Subject instance is created and 
the exertion can be passed onto the network. 

2. If the matching provider is found, then on its access proxy (that can also be a 
smart proxy) the Servicer.service(Exertion, Transaction) method is 
invoked. The matching provider first verifies with the Authorizer service if 
the exertion’s Subject is authorized to execute the operation defined by the 
exertion’s PROCESS signature. 

3. When the requestor is authenticated and authorized by the Servicer to 
invoke the method defined by the exertion’s PROCESS signature, then the 
Servicer calls its Exerter operation: Exerter.exert(Exertion, 

Transaction). 
4. Exerter.exert method calls exert on Tasker, Jobber, or Spacer 

depending on the type of the exertion (Task or Job) and its control strategy. 
Permissions to execute the remaining signatures, if any, of APPEND, 
PREPROCESS, and POSTPROCESS types are checked with the Authorizer 
service. If all of them are authorized, then the provider calls the APPEND, 
PREPROCESS, PROCESS, and POSTPROCESS methods as described in Section 
4.5.  

In the FMI approach, a requestor can create an exertion, composed from any 
hierarchically nested exertions, with required service contexts. The provider’s 
object proxy, service context template, and registration attributes are network-
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centric; all of them are part of the provider’s registration, so they can be accessed 
via Cataloger or lookup services by requestors on the network, for example 
service browsers [15], or custom service UI agents [45]. In SORCER, using these 
zero-install service UIs, the user can define data nodes in downloaded service 
context templates directly from providers and create related tasks/job 
interactively to be executed and monitored on the virtual metacomputer. 

Individual service providers either Taskers or rendezvous peers, implement 
their own exert(Exertion, Transaction) method according to their service 
semantics and related control strategy. SORCER taskers, jobbers, and spacers are 
implemented by ServiceTasker, ServiceJobber, and ServiceSpacer classes 
respectively (see Fig. 6). A SORCER domain-specific provider can be a subclass 
of ServiceTasker, ServiceJobber, or ServiceSpacer. Alternatively, any of 
these three providers can be set up as an application provider by dependency 
injection—using the Jini configuration methodology. Twelve proxying methods 
have been developed in SORCER to configure off-the-shelf ServiceTasker, 
ServiceJobber, or ServiceSpacer. In general, many different implementations 
of taskers, jobbers, and spacers can be used in the SORCER environment with 
different implementations of exertions. A service requestor via related attributes 
in its signatures will make appropriate runtime choices as to what 
implementations to run in exertion collaboration. 

Invoking an exertion, let’s say program, is similar to invoking an executable 
program program.exe at the command prompt. If we use the Tenex C shell 
(tcsh), invoking the program is equivalent to: “tcsh program.exe”, i.e., passing 
the executable program.exe to tcsh. Similarly, to invoke a metaprogram using 
FMI, in this case the exertion program, we call “program.exert(null)”, if no 
transactional semantics is required. Thus, the exertion is the metaprogram and the 
network shell of the SORCER metaoperating system. Here, the virtual 
metacomputer is a federation that does not exist when the exertion is created. 
Thus, the notion of the virtual metacomputer is encapsulated in the exertion that 
is managed by the FMI framework. In Fig. 7 a cloud represents a service grid 
while the metacomputer is a subset of providers that federate for the job shown 
below the cloud. 

The fact that the exertion is the metaprogram and the network shell at the 
same time brings us back to the distribution transparency issue discussed in 
Section 2. It might appear that Exertion objects are network wrappers as they 
hide network intrinsic unpredictable behavior. However, Exertions are not 
distributed objects, as they do not implement any remote interfaces; they are 
local objects representing network requests only. Servicers are distributed 
objects, but Servicers collaborate dynamically with other FMI infrastructure 
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Fig. 7. A job federation. The solid line (the first from the left) indicates the originating FMI 
invocation: Exertion.exert(Transaction). The top-level job with component 
exertions is depicted below the service grid (a cloud). Late bindings of all signatures are 
indicated by dashed lines that define the job’s federation (metacomputer). 

providers addressing real aspects of networking. The network intrinsic 
unpredictable behavior is addressed by the SORCER distributed objects: 
Taskers, Jobbers, Spacers, Catalogers, FileStorers, Authenticators, 
Authorizers, KeyStorers, Policers, etc. (see Fig. 3) that define metacomputing 
operating system services. The FMI infrastructure facilitates EO programming 
and concurrent metaprogram execution using the presented framework and 
allows for constructing large-scale reliable object-oriented distributed systems 
from unreliable distributed components—Servicers. 

 

6. Conclusions 

A distributed system is not just a collection of independent distributed objects—it 
is the network of dynamic objects that come and go. From the object-oriented 
point of view, the network of dynamic objects is the problem domain of object-
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oriented distributed system that requires relevant abstractions in the solution 
space—for example the presented FMI framework. The exertion-based 
programming introduces the new abstraction of the solution space with service 
providers and exertions instead of object-oriented conventional objects and 
messages. Exertions not only encapsulate operations, data, and control strategies; 
they encapsulate relevant federations of dynamic service providers as well. 

Service providers can be easily deployed in SORCER by injecting 
implementation of domain-specific interfaces into the FMI framework. These 
providers register proxies, including smart proxies, via dependency injection 
using twelve methods investigated in SORCER lab already. Executing a top-level 
exertion means sending it onto the network and forming a federation of currently 
available infrastructure (FMI) and domain-specific providers at runtime. The 
federation works on service contexts of all nested exertions collaboratively as 
specified by control strategies of the top-level and component exertions. The fact 
that control strategy is exposed directly to the user in a modular way allows 
him/her to create new distributed applications on-the-fly. For the updated 
exertion and its refined control strategy, the created federation becomes the new 
implementation of the applied exertion—a truly adaptable exertion–oriented 
application. When the federation is formed then each exertion operation has its 
corresponding method (code) on the network available. Services, as specified by 
exertion signatures, are invoked only indirectly by passing exertions on to 
providers via service object proxies that in fact are access proxies allowing for 
service providers to enforce security policies on access to required services. If the 
access to use the operation is granted, then the operation defined by an exertion’s 
PROCESS signature is invoked by reflection. 

The FMI framework allows for the P2P computing via the Servicer 
interface, extensive modularization of Exertions and Exerters, and extensibility 
from the Triple Command design pattern. The presented EO programming 
methodology has been successfully deployed and tested in multiple concurrent 
engineering and large-scale distributed applications [5, 20, 30, 18, 22, 19, 35, 2, 
44, 13, 12, 21, 11]. 
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