

Version Control Management for Federated Service-
oriented File Sharing

Michael Sobolewskia,b and Amaresh Ghosha

SORCER Research Group, SORCERsoft.org
aTexas Tech University, Lubbock, Texas
bPolish-Japanese Institute of IT, Warsaw, Poland

Abstract. The major objective of the Service Oriented Computing Environment (SORCER)
is to form dynamic federations of network services that provide for concurrent engineering
systems: shared data, applications, tools, and utilities on a service grid along with exertion-
oriented programming. To meet the requirements of these services in terms of design data
sharing and managing in the form of data files, a corresponding federated file system was
developed. The file system fits the SORCER philosophy of interactive exertion-oriented
programming for distributed collaborative applications, where users create service-oriented
programs and can access data files in the same way they use their local file system.
However, there was no efficient management of file explicit versions during complex design
in related concurrent engineering systems. Thus, a separate Version Control Management
Framework was developed to fit with the SORCER metacomputing philosophy and to
manage effectively versions of all files in a uniform way.

Keywords: version control management, service-oriented architectures, metacomputing

1 Introduction

Building on the OO paradigm is the service-object oriented (SOO) paradigm, in
which the service objects are distributed, or more precisely they are remote objects
that play some predefined roles. Before we delve into the proposed new
metacomputing and metaprogramming concepts, the introduction of some
terminology used throughout the paper is required:
• A computation is a process following a well-defined model that is understood

and can be symbolically expressed and physically accomplished (physically
expressed). There are many ways of expressing a process in a logic circuit,
function, algorithm, message, protocol, network topology, virtual organization,
etc. Four orthogonal classes of computations can be distinguished: digital vs.
analog, sequential vs. parallel vs. concurrent, batch vs. interactive, monolithic
vs. distributed. A computation can be seen as a purely physical phenomenon
occurring inside a system called a computer.

• Computing requires a computing platform (runtime) to operate. Computing
platforms that allow programs to run require a processor, operating system,

2 M. Sobolewski and A. Ghosh

and programming environment with related tools to create symbolic process
expressions—programs. Usually, a computation is physically expressed by a
processor and symbolically expressed by a program created in the relevant
programming environment. Thus, a computation is the actualization of a
program by operating system on its processor.

• A distributed computation allows for sharing computing resources usually
collocated on several remote computers (compute nodes) to collaboratively
run a single complex computation in a transparent and coherent way. In
distributed computing a computation is divided into subcomputations that
execute on a collection of compute nodes. Thus, in distributed computing,
computations are decomposed into programs, processes, and compute nodes.
A metacomputer is an interconnected and balanced set of compute nodes that
operate as a single unit, which is accessible by its computing platform
(metaprocessor, metaoperating system, and metaprogramming environment).

• A metacomputation is a form of distributed computation (a computation of
computations) determined by collaborating computations that a metacomputer
can interpret and execute. In metacomputing computations are decomposed
into services, service providers, and processors. The service provider selected
at runtime by a metaoperating system defines a required service—a
metainstruction being a provider's program. A collection of all service
providers selected and managed for a metacomputation is called a virtual
metaprocessor.

• A metaprogram is an expression of metacomputation, represented in a
programming language, which a metacomputer follows in processing shared
data for a service collaboration (workflow) managed by its metaoperating
system on its virtual metaprocessor.

• A service-oriented architecture (SOA) is a software architecture using loosely
coupled service providers that integrates them into a distributed computing
system by means of service-oriented programming. Service providers in
service-oriented programming are made available as independent service
components that can be accessed without a priori knowledge of their
underlying platform, implementation, and location. While the client-server
architecture separates a client from a server, SOA introduces a third
component, a service registry. The registry allows metaoperating system to
find service providers with no need to define their static locations on the
overlay network.

Therefore, every metacomputer requires a platform that allows software to run
utilizing multiple autonomous computing nodes that communicate through a
computer network. Different distributed platforms can be distinguished along with
corresponding metaprocessors—virtual organizations of computing nodes.
SORCER [10], [13] is a metacomputing platform for concurrent engineering
applications.

In SORCER a service provider is a service object that accepts requests from
service requestors to execute a collaborative work. A specification of the
collaborative work is called an exertion. An exertion exerts the service providers
dynamically federating (virtual metaprocessor) for its service collaboration. A task
exertion is an elementary service request—a kind of elementary remote

 Version Control Management for Federated Service-oriented File Sharing 3

metaroutine, being a program, executed by a service provider. A composite
exertion, called a job exertion, is defined in terms of tasks and other jobs—a kind
of metacoroutine executed by collaborating providers managed by the
metaoperating system. The executing exertion is a SOO metaprogram that is
dynamically bound to all relevant and currently available service providers on the
network. This collection of collaborating providers identified in runtime is called
an exertion federation. The overlay network of all service providers is called the
service grid and the exertion federation forms a virtual metaprocessor at runtime.
The metainstruction set of the metaprocessor consists of the operations defined by
all service providers in the service grid. Creating and executing a SOO program in
terms of metainstructions requires a completely different approach than creating a
regular OO program [9], [10].

The SORCER environment provides the means to create interactive SOO
programs and execute them as complex concurrent engineering applications.
Exertions can be created using interactive user interfaces downloaded directly from
service providers, allowing the user to execute and monitor the execution of
exertions in the virtual metacomputer. The exertions can also be persisted for later
reuse. This feature allows the user to quickly create new applications or programs
on the fly in terms of existing tasks and jobs. SORCER introduces federated
method invocation based on peer-to-peer (P2P) and dynamic service-oriented Jini
architecture [5].

SILENUS [1], [2] builds on top of the SORCER philosophy and provides data
reliability and availability in the form of file replication. However, once a file
version is created and replicated there is no management of these replica versions
(revisions). Thus, to manage the versions of replicas a separate framework was
developed called FVS (Federated Versioning for service-oriented file System).

This paper is organized as follows: Section 2 briefly describes the SORCER
metacomputing system; Section 3 presents federated file system methodology;
Section 4 describes the version management architecture; and Section 5 provides
concluding remarks.

2 SORCER

SORCER (Service Oriented Computing EnviRonment) is a federated service-to-
service (S2S) metacomputing environment that treats service providers as service
objects with well-defined semantics of a federated service-object oriented
architecture. It is based on Jini [5] semantics of services in the network and Jini
programming model with explicit leases, distributed events, transactions, and
discovery/join protocols. While Jini focuses on service management in a
networked environment, SORCER focuses on exertion-oriented programming and
the execution environment for exertions [10]. SORCER uses Jini discovery/join
protocols to implement its exertion-oriented architecture (EOA) using federated
method invocation [10], but hides all the low-level programming details of the Jini
programming model.

In EOA, a service provider is a service object that accepts requests from service
requestors to execute collaboration. These requests are called service exertions and

4 M. Sobolewski and A. Ghosh

describe service data, operations and provider’s control strategy. An exertion task
(or simply a task) is an elementary service request executed by a single service
provider or a small-scale federation managed by the receiving provider for the
same service data. A composite exertion called an exertion job (or simply a job) is
defined hierarchically in terms of tasks and other jobs. A large-scale federation
managed by the SORCER OS executes a job. The executing exertion is
dynamically bound to all required and currently available service providers on the
network. This collection of providers identified in runtime is called an exertion
federation. The federation provides the implementation for the collaboration as
specified by its exertion. When the federation is formed, each exertion’s operation
has its corresponding code available on the network. Thus, the network exerts the
collaboration with the help of the dynamically formed service federation. In other
words, we send the request onto the network implicitly, not to a particular service
provider explicitly.

The overlay network of all service providers is called the service grid and an
exertion federation is in fact a virtual metaprocessor. The metainstruction set of
the metaprocessor consists of all operations offered by all service providers in the
grid. Thus, an exertion-oriented (EO) program is composed of metainstructions
with its own control strategy and a data context. The data context describes the
data that tasks and jobs work on. Each service provider offers services to other
service peers on the object-oriented overlay network. These services are exposed
indirectly by operations in well-known public remote interfaces and considered to
be elementary (tasks) or compound (jobs) activities in EOA. Indirectly means here,
that you cannot invoke any operation defined in provider’s interface directly. These
operations can be specified in a requestor’s exertion only, and the exertion can be
passed on to any service provider via the top-level Servicer interface
implemented by all service providers called servicers—service peers. Servicers do
not have mutual associations prior to the execution of an exertion; they come
together dynamically (federate) for a collaboration as defined by its exertion. In
EOA requestors do not have to lookup for any service provider at all, they can
submit an exertion, onto the network by calling:

Exertion#exert(Transaction):Exertion
on the exertion. The exert operation will create a required federation that will run
the collaboration as specified in the EO program and return the resulting exertion
back to the exerting requestor. Since an exertion encapsulates everything needed
(data, operations, and control strategy) for the collaboration, all results of the
execution can be found in the returned exertion’s data context.

Domain specific servicers within the federation, or task peers (taskers), execute
task exertions. Rendezvous peers (jobbers and spacers) [10] coordinate execution
of job exertions. Providers of the Tasker, Jobber, and Spacer type are basic
system providers of the SORCER operating system; see Figure 1. In view of the
P2P architecture defined by the Servicer interface, a job can be sent to any
servicer. A peer that is not a Jobber type is responsible for forwarding the job to
one of available rendezvous peers in the SORCER environment and returning
results to the requestor.

Thus implicitly, any peer can handle any job or task. Once the exertion
execution is complete, the federation dissolves and the providers disperse to seek

 Version Control Management for Federated Service-oriented File Sharing 5

other collaborations to join. Also, SORCER supports a traditional approach to grid
computing similar to those found, for example in Condor [15]. Here, instead of
exertions being executed by services providing business logic for invoked
exertions, the business logic comes from the service requestor's executable codes
that seek compute resources on the network.

Grid-based services [13] in the SORCER environment include Grider services
collaborating with Jobber and Spacer services for traditional grid job
submission. Caller and Methoder services are used for task execution. Callers
execute conventional programs via a system call as described in the service context
of submitted task. Methoders can download required Java code (task method) from
requestors to process any submitted data context accordingly with the code
downloaded from the network. In either case, the business logic comes from
requestors; it is a conventional executable code invoked by Callers with the
standard Caller’s data context, or mobile Java code executed by Methoders with a
matching data context provided by the requestor.

3 SILENUS File System

SILENUS [1], [2], [16] is a federated file system, which builds on top of the
SORCER philosophy. It provides dynamic access to files referenced in data
contexts of exertions. SILENUS consists of several services that federate together
to provide the functionality of the file system. Each service may be replicated on as
many hosts as needed. These services may be categorized into gateway services,
data services, and management services. The service-oriented nature of SILENUS

Figure 1. SORCER platform: metaprocessor (green shades), meta-OS (orange),
programming environment-exertions (blue).

6 M. Sobolewski and A. Ghosh

makes it very easy for someone to create new functionality for the file system by
implementing additional services.

The SILENUS file system makes a few assumptions about the data being
stored. First, file metadata is very small. Second, file data is relatively large
therefore it should be replicated for reliability and availability but not onto every
data store [1], [2].

1. Data services
The data services consist of a metadata store service and a byte store service. The
metadata store service stores attributes that can be derived from the files
themselves. This includes name, creation date, size, file type, location, etc. The
metadata service provides functionality to create, list, and traverse directories [2].

The byte store service is used for storing the actual file data. It does not provide
for storing attributes about the file but does allow for retrieving attributes of a file
e.g., retrieving the file size and checksum to verify integrity of the file. Stored files
are usually encrypted but may be stored unencrypted for performance reasons [2].

2. Management services
SILENUS includes several management services such as the SILENUS Façade,
Jini Transaction Manager, Byte Replicator, and other optimizer services. The
SILENUS Façade manages the coordination and provides a dynamic entry point
between the metadata stores and byte stores [1], [2]. The Façade also provides a
zero install user interface, through the use of a Service UI [7], which allows the
users to view the files in the system similar to the way they would view files in a
traditional file system.

The Transaction Manager is a Jini standard service that the SILENUS Façade
uses to ensure two-phase commit semantics for file uploads and downloads. The
Byte Replicator and other optimizer services are used for autonomic
administration. The optimizer services may make decisions on where to move files,
which services should be started or shutdown, and where to store replicas. Each
optimizer service is a separate component so it makes it very easy for and
administrator to create more optimizer services. In traditional file systems an
administrator has to provide some management of the data but in SILENUS an
administrator may select which kind of optimizer services to deploy and where to
deploy them [1], [2]. This also makes SILENUS highly scalable.

3. Gateway services
The gateway services provided by SILENUS are client modules that provide
access to the SILENUS file system. Some examples of gateway services are the
NFS Adapter, JXTA Adapter, WebDAV Adapter, and Mobile Adapter. The NFS
Adapter provides a mapping from the NFS protocol to SILENUS for older UNIX
systems that do not have WebDAV support. A WebDAV Adapter was developed
to provide support for newer operating systems that support WebDAV such as
Windows, Mac OS X, and newer versions of UNIX [1], [2]. These are just a few of
the gateway services that have been created. The service-oriented nature of
SORCER makes it very easy for someone to create new services for SILENUS.

 Version Control Management for Federated Service-oriented File Sharing 7

4 Version Control Management Architecture

An important element in the modern CE process is version control (also known as
revision or source control). Cooperating designers commit their changes
incrementally to a common source repository, which allows them to collaborate on
data without resorting to crude file-sharing techniques (shared directories, drives,
emails). Source control tools track all prior versions of all files, allowing designers
to "time travel" backward and forward in their data to determine when and where
changes are introduced. These tools also identify conflicting simultaneous
modifications made by two (poorly-communicating) team members, forcing them
to work out the correct solution (rather than blindly overwriting one or the other
original submission).

The FVS (Federated Versioning for service-oriented file System) system is
collaboration of three services described below. The FVS architecture in the form
of the UML component diagram is depicted in Figure 2.

 4.1 FVS Version Manager

The FVS Version Manager is similar to SILENUS metadata store. It contains
metadata information of various versions of files. Metadata information of
federated versioning system includes information about:

a. all changed paths
b. log message
c. name of the author of the commit
d. the timestamp when the commit was made
e. special character describing how the path was changed ('A' - added, 'D' -

deleted or 'M' - modified).
f. information about SVN ENTRY UUID
g. information about committed revision number
h. information about SVN ENTRY CHECKSUM

Each version of file contains a file name and unique Version ID (VID). FVS uses
this service same way as SILENUS metadatastore does except the FVS Version
Manager points to the FVS tracker rather than the SILENUS tracker. The version
management service is responsible for storing all the metadata information for the
managed files. Metadata information is stored in a database running in this service.
The version management store provides attributes for the files stored in the file
system. The analogy in a traditional storage system is the file system. The metadata
information creates the well-known hierarchical structure. Files in the version
management store are identified by UUIDs and VIDs. The metadata provides
mapping from and to file names. Version manager services are synchronized while
connected. All version manager services contain the same information. Should a
version manager services be disconnected while its information changes, it will be
resynchronized when it is connected back to the other metadata version manager
services.

As in internal database, an embedded Berkeley database is used. Using an
embedded database makes installation much easier; it does not require the
installation of external database management system. The database access itself is

8 M. Sobolewski and A. Ghosh

implemented using the data access object pattern [6] for extensibility and support
for other database management systems if needed.

4.2 FVS Byte Store

The FVS byte store service persists file content of all versions within the
SIELNUS file system. A byte store service holds no metadata information about
the files; it maintains other than physical data that can be calculated directly from
the files it stores, such as file size or checksums. Even file names are replaced with
a type of UUID and VID when stored to one of these storage nodes. A byte store
service provides the ability to store and retrieve file data based on the file's UUID
and VID, which can be obtained from a version manager.

The ID of the byte store and an entry ID in the byte store identify files in a byte
store uniquely. These ID numbers never change. This makes the file storage
independent from file metadata such as the file name. The byte store services
provide nothing but support for file storage. The advantage is that this service can
be then optimized for performance. Unlike the version manager, the byte stores are

Figure 2. FVS Architecture; SUI-Service UI [7].

 Version Control Management for Federated Service-oriented File Sharing 9

not synchronized. File data is much larger than file metadata. Would the file data
be replicated on every node the storage capacity would be filled very quickly? It is
the job of the optimizer services to provide file data replication.

4.3 FVS Façade

The FVS Façade service acts as an entry point to the file system and provides
access to basic file system operations. Its main function is to coordinate with the
various services found on the network, combining the abilities of each to perform
requested tasks on the behalf of a user.

FVS includes the FVS Façade service that helps coordinate the other services to
provide the flexible file system functionality. For example, when a user wants to
download a file, the façade service contacts with version manager to get the
version and storage location of the file, then it contacts the given FVS byte store to
begin transferring the file data to the user's local machine.

The FVS Façade is split up into two parts: a provider and a smart proxy. In
contrast to a dumb proxy that provides business logic to requestor only on the
provider side, a smart proxy provides business logic on the both: the requestor and
provider. The FVS Façade provider is responsible for doing a lot of background
processing and service discovery that end-user machines should not have to
manage. In particular, the FVS Façade provider will check with a Registrar service
to find any available version manager available on the network and for reliability
would maintain a cache of proxies for each required service that is found. When a
FVS Façade proxy is requested from the network (for example, by a service
browser), the Registrar service provides the smart proxy registered by the FVS
Facade provider. The FVS Façade proxy is the component responsible for doing
much of the coordination between the different services to perform versioning
system operations. When the Façade smart proxy obtained from the Registrar
service, the proxy provides a Service UI [7] (the FVS user agents, see Figure 2) to
allow the user to interact with the file system via a file browser. The proxy asks its
parent FVS Façade provider for a version manager proxy from its cache to allow
the FVS Facade proxy to browse and display the file system to the user. When a
user asks to save or store a file to the file system, the FVS Facade proxy obtains the
necessary service proxies to carry out the transactional request.

Acknowledgments. This work was partially supported by Air Force Research
Lab, Air Vehicles Directorate, Multidisciplinary Technology Center, the contract
number F33615-03-D-3307, Service-Oriented Optimization Toolkit for Distributed
High Fidelity Engineering Design Optimization.

5 Conclusions

Till now through the course of FVS research, several file version systems have
been examined to investigate how they are setup, what sort of computing
environments they use, and what additional functionality they provide. Several
modern day file versioning systems are unable to effectively cope with a high

10 M. Sobolewski and A. Ghosh

volume of very large files, especially in a metacomputing environment where
several federations may want to access the same set of files concurrently.

By leveraging Jini network technology, SORCER allows for various services to
run on a network, dynamically discover each other, and collaborate with one
another to provide larger overarching services to the end user. Through the use of
such services, it is possible to break a file system and a version system down into
its separate functional parts (services), and then have these functional parts
collaborate with each other to provide file version system capabilities. SORCER
allows for these services to be managed, maintained, and even used in a consistent
manner, and with the use of smart proxies, there is no need to install such services
on every machine that will use them. Through the use of dependency injection,
small and simple configuration files can be used to launch various services in a
variety of different ways in a fairly simple manner. Autonomic provisioning
services can also help to regulate the health of service-oriented federations by
making sure that all the required services for a metaprogram are available at all
times.

FICUS [16] was designed to utilize SORCER and SILENUS as a basis for
creating a service-to-service based file system with file tracking and file splitting
capabilities. FVS extends the FICUS functionality by adding file version control
management capabilities.

FVS provides dedicated, cohesive and decoupled FVS version manager to
maintain file history for the FVS service requestor. The Version Management store
contains all versions for each file and persists those versions using the SILENUS
[1] framework. So we can easily roll back to earlier version of file based on
retained history of files.

Adding the file versioning capabilities the FVS framework helps to enhance
and expand the benefits provided by SILENUS. Replicating significantly large
version files in their entirety on different storage nodes may not be feasible
because it may be difficult to find any storage nodes with enough free space to
hold the entire file. By splitting such file version up, fractions of the version of a
file can be stored much more easily across multiple machines. An increase in file
replication can help to increase version system reliability in the event that a storage
node goes down. Since split file versions are stored across multiple storage nodes,
each of the nodes can contribute bandwidth to download the file for reassembly
rather than relying on the shared bandwidth of a single file server. This means that
multiple parts of a large file version can be downloaded from multiple sources
simultaneously rather than retrieving the full file from a single server where
bandwidth may be shared among all the connected clients.

Since file version can be downloaded from multiple sources at once,
bottlenecks in transfer speeds are fewer as the same file can be provided by a
different FVS service collaboration. Splitting files into chunks can also help to
reduce the cost of transfer errors. When transferring a full file to a single source, an
error in communication can often mean that the entire file has to be transferred
again. However if a file splits then a communication error occurs; only part of the
file would need to be retransferred. Overall, FVS provides many benefits by using
a service-oriented architecture when compared to the client-server model employed
by many versioning systems in use today.

 Version Control Management for Federated Service-oriented File Sharing 11

6 References

[1] Berger, M., Sobolewski, M. “Lessons Learned From the SILENUS Federated File
System”, Springer Verlag, Sao Jose Dos Campos, Brazil, July 16-20, 2007.

[2] Berger, M., Sobolewski, M. “SILENUS – A Federated Service Oriented Approach to
Distributed File Systems”, Next Generation Concurrent Engineering, New York, 2005.

[3] Coulouris, G., Dollimore, J., Kindberg, T. Distributed Systems Concepts and Designs,
Addison-Wesley, London and Palo Alto, June 2000.

[4] Deutsch, P. (1994). The Eight Fallacies of Distributed Computing. Available at:
<http://blogs.sun.com/jag/resource/Fallacies.html>. Accessed on: February 20, 2010.

[5] Jini Architecture Specification. Available at:
<http://www.sun.com/software/jini/specs/jini1.2html/jini-title.html>.
Accessed on: April 20, 2010.

[6] Nock, C., Data Access Patterns: Database Interactions in Object-Oriented Applications,
Addison-Wesley Professional, ISBN: 0321555627, 2003.

[7] The ServiceUI Project. Available at: <http://www.artima.com/jini/serviceui/>.
Accessed on: April 20, 2010.

[8] Silberschatz, A., Galvin, P.B., & Gagne, G. Operating System Concepts (7th ed.).
Hoboken, NJ: John Wiley & Sons, Inc, 2005.

[9] M. Sobolewski, “Object-Oriented Metacomputing with Exertions,” Handbook On
Business Information Systems, A. Gunasekaran, M. Sandhu, World Scientific, ISBN:
978-981-283-605-2, 2010.

[10] M. Sobolewski, "Metacomputing with Federated Method Invocation", Advances in
Computer Science and IT, edited by M. Akbar Hussain, In-Tech, intechweb.org, ISBN
978-953-7619-51-0, s. 337-363, 2009. Available from:
http://sciyo.com/articles/show/title/metacomputing-with-federated-method-invocation

[11] Sobolewski, M., Exertion Oriented Programming, IADIS, vol. 3 no. 1, pp. 86-109,
ISBN: ISSN: 1646-3692, 2008.

[12] M. Sobolewski, “Federated Collaborations with Exertions,” Proceedings of the 2008
IEEE 17th Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, IEEE Computer Society, 2008, pp. 127-132.

[13] Sobolewski M., SORCER: Computing and Metacomputing Intergrid, 10th International
Conference on Enterprise Information Systems, Barcelona, Spain, 2008.
Available at: http://sorcersoft.org/publications/papers/2008/C3_344_Sobolewski.pdf.

[14] SORCER Lab. Available at: <http://sorcersoft.org/>. Accessed on: April 20, 2010.
[15] Thain D., Tannenbaum T., Livny M. Condor and the Grid. In Fran Berman, Anthony

J.G. Hey, and Geoffrey Fox, editors, Grid Computing: Making The Global
Infrastructure a Reality. John Wiley, 2003.

[16] Turner, A., Sobolewski, M. “A Federated Service-Oriented File Transfer Framework”,
Springer Verlag, Sao Jose Dos Campos, Brazil, July 16-20, 2007.

