
Grid interactive service-oriented programming environment

R.M. Kolonay
Air Force Research Laboratory, WPAFB OH

M. Sobolewski
Texas Tech University, Lubbock TX

ABSTRACT: Improvements in distributed computing, and the technologies that enable them, have led to sig-
nificant improvements in middleware functionality and quality, mainly through networking and protocols.
However, the distributed programming style has changed little over the years. Most programs are still written
line per line of code in languages like C, C++, and Java. These conventional programs that can provide grid
operations and grid data can be considered as common grid resources and shared by research and education
communities worldwide. However, there are no relevant programming methodologies to utilize efficiently
these shared service providers as a potentially vast grid repository, except through the manual writing of code.
Realization of the potential of grid computing requires significant improvements in grid programming meth-
odologies. The Grid Interactive Service-Oriented (GISO) methodology is presented that provides a program-
ming environment with development tools that permit interactive (point-and-click), true grid programming,
thus permitting the different elements of programming to be stored, reused, aggregated, and executed with a
level of concurrency and grid-level control strategy not achievable in the conventional programming lan-
guages.

1 INTRODUCTION
From the beginning of networked computing, the
desire has existed to develop protocols and methods
that facilitate the ability of people and automatic
processes across different computers to share infor-
mation and knowledge across heterogeneous sys-
tems. As ARPANET (Postel and Sunshine 1981)
began through the involvement of the NSF (Postel &
Reynolds 1987, Lynch & Rose 1992) to evolve into
the Internet for general use, the steady stream of
ideas became a flood of techniques to submit, con-
trol, and schedule jobs across distributed systems
(Lee 1992). The latest in these ideas is the grid
(Foster 2002, Kesselman et al. 2002, Tuecke et al.
2002, Foster et al. 2001), to be used by a wide vari-
ety of different users in a non-hierarchical manner to
provide access to powerful aggregates of resources
(Foster & Kesselman 1999), Grimshaw, & Wulf
1997). Grids, in the ideal, are intended to be ac-
cessed for computation, data storage and distribu-
tion, and visualization and display, among other ap-
plications without consideration for the specific
nature of the hardware and underlying operating sys-
tems on the resources on which these jobs are car-
ried out (Smarr 1997, NRC 1993).

The reality at present, however, is that grid re-
sources are still very difficult for most users to ac-
cess, and that detailed programming must be carried

out by the user through command line and script
execution to carefully tailor jobs on each end to the
resources on which they will run, or for the data
structure that they will access. This produces frus-
tration on the part of the user, delays in adoption of
grid techniques, and a multiplicity of specialized
“grid-aware” tools that are not, in fact, aware of
each other that defeat the basic purpose of the grid.
The need for further improvements in grid comput-
ing is clear, and requires significant further im-
provements in grid programming technology. By
inspection of the above paradigm, it is clear that in-
cremental improvements in the scripts and submis-
sion techniques will not suffice. A new grid
interactive service-oriented (GISO) integrated
development environment (IDE) that is based on
evolution of the concepts and lessons learned in the
FIPER project (Sobolewski 2002, Lapinski & Sobo-
lewski 2002), Röhl et al. 2000), a $21.5 million pro-
gram founded by the United States National Institute
of Standards and Technology (NIST), is presented.
It provides an environment that will permit true in-
teractive click-and-drag grid programming through
the manipulation of graphical elements that repre-
sent object-oriented grid resources, thus permitting
the different elements of grid program to store, re-
use, aggregate, and execute with a level of concur-

97

rency and grid-level control strategy not achievable
in the conventional programming languages.

The presented GISO programming approach is
characterized as follows:

1. Service-oriented grid programming is
achieved by applying the object-oriented
concepts directly to the grid as a repository
of network objects (method and context
providers)

2. Service-oriented execution infrastructure
enabling dynamic federations of grid pro-
viders to execute service-oriented pro-
grams

3. Provisioning and deploying grid objects
with an autonomic behavior, enabling grid
objects to be instantiated and managed on
compute resources available through the
grid using an adaptive quality of service
model

4. An open, web-based environment in which
existing proprietary applications and ana-
lytical packages are integrated through
Java-based wrappers that handle grid proc-
esses and data distributed across different
locations.

2 GISO CONCEPTUAL FRAMEWORK
Building on the object-oriented paradigm the ser-
vice-oriented paradigm, in which the objects are dis-
tributed, or more precisely they are network objects
and play some predefined roles. A service provider
is an object that accepts messages from service re-
questors to execute an item of work – a task. The
task object is a service request – a kind of elemen-
tary grid instruction executed by a service provider.
A service jobber is a specialized service provider
that executes a job – a compound request in terms of
tasks and other jobs. The job object is a service-
oriented program that is dynamically bound to all
relevant and currently available service providers on
the grid. This collection of grid providers dynami-
cally identified by a jobber is called a job federation.
This federation is also called a job space. While this
sounds similar to the object-oriented paradigm, it
really isn’t. In the object-oriented paradigm the ob-
ject space is a program itself; here the job space is
the execution environment for the job itself and the
job is a service-oriented program. This changes the
game completely. In the former case the object space
is a virtual computer, but in the latter case the job
space is the virtual network. This virtual network or
grid federation is the jobs’ execution environment
and the job object is a service-oriented program. In
other words, we apply the object-oriented concepts
directly to the grid in the service-oriented manner.

The GISO framework is built on the top of the
FIPER Technology (Kolonay et al. 2002) middle-
ware. The GISO environment provides the means to
create interactive service-oriented programs and
execute them without writing a line of source code.
Jobs and tasks are created using web-based user in-
terfaces. Also via web-based interfaces the user can
execute and monitor the execution of jobs or tasks.
The jobs and tasks are persisted for later reuse. This
feature allows the user quickly to create new appli-
cations or programs on the fly in terms of existing
tasks and jobs.
In all, GISO development tools provide (see Figure
1) accessibility through web-centric architecture;
self-manageability using federated grids, scalability
via network centricity, and adaptability with the
power of mobile code inserted for execution through

service providers.
Figure 1. GISO layered architecture

In this paper the focus is on the GISO program-

ming and developed tools identified in Figure 1.

3 GISO PROGRAMMING AND
DEVELOPMENT TOOLS

The peer-to-peer (P2P) service-oriented framework
presented targets multiparty grid transactions. A col-
lection of all registered service providers (active and
inactive) is called a service grid. A nested transac-
tion is composed of a federation of providers that
come together for completing a transaction. A trans-
action consists of a set of tasks with specific prece-
dence relationships. When performing a nested
transaction, be it either a banking transaction or an
engineering analysis, there are three basic compo-
nents that can be identified. These are; the process
or series of steps that must be executed to complete
the transaction, a specification of the action to be
taken in each step of the process, and the informa-
tion/data associated with each step in the process
(both input and output). Within FIPER the program
objects that represent the components of a nested
transaction are FiperExertions (FiperJob and Fiper-
Task), FiperMethod, and FiperContext. The basic
work unit within the FIPER programming environ-
ment is an exertion. Each exertion contains a Fiper-
Method and a FiperContext object. The Fiper-

98

Method specifies what action that is to be taken in a
given step in the process. The FiperContext con-
tains all the data the FiperMetod operates on or gen-
erates. The FiperContext also holds attributes for the
data much like MIME types that identify the appli-
cation(s) the data
is associated with, its format (text, binary etc.), and
other user defined modifiers. A FiperJob defines the
process. It consists of one or more exertions, the
execution strategy for the process (sequential, paral-
lel, looping and conditionals), and the map-
ping/relationship of data between exertions. The hi-
erarchy of these classes is shown in Figure 2. It is
worth nothing that recursion of FiperJobs is sup-
ported. That is any of the FiperTasks within a Fiper
Job can be a FiperJob itself.

The relationship between the FIPER program ob-
jects and the general description of a nested transac-
tion is as follows; a FiperJob represents the process,
the FiperMethod represents the action, and a Fiper-
Context represents the data/information. The Fiper-
Task acts as a container holding the FiperMethod
and FiperContext creating the basic unit of work that
is passed between various service providers.

As an example of a nested transaction in the
FIPER Environment consider the following engi-
neering application, the mechanical analysis of a gas
turbine component. The component, a turbine blade
is shown in Figure 3. The process of performing a
mechanical analysis consists of the following ac-
tions; generate solid geometry, descretize the ge-
ometry into a finite element model (FEM), apply
boundary conditions to FEM, apply materials to
FEM, and solve the FEM for structural stresses. The
necessary input data for each action and the resulting
output data are shown in Figure 4. Also depicted in
Figure 4 is the association between the three compo-
nents of a nested transaction and the FIPER program
objects.

To create the necessary program objects (Fiper-
Context, FiperMethod, FiperTask, and FiperJob) for
a nested transaction in the FIPER environment a col-
lection of web browser user agents has been devel-
oped. It is not necessary to use these user agents
for the development and execution of a FiperJob.
Any standalone application can perform program-
matically the same steps to create the necessary ob-

jects and act as a service requestor to submit the

FiperJob for execution. The following sections il-
lustrate the usage of the web user agents to create
and execute the necessary FIPER program objects to
perform the mechanical analysis of the turbine
blade. Figure 5 shows the Fiper launcher page once
logged into the Fiper environment. Here it can be

Figure 4. Process for the Mechanical Analysis of
a Turbine Blade

Figure 2. Figure 3.
Program Object Hierarchy Turbine Blade Geometry

Figure 5. FIPER Launcher and New Context Dia-
logue

99

seen that there are separate selections for the above
described program objects, FiperContext, FiperTask,
and FiperJob. The FiperMethod object is created
within the FiperTask menu selection.

3.1 Context Editor

The Context Editor allows the end-user to specify
the data or references to the data along with attrib-
utes associated with the data. When creating a new
context the end-user is presented with the dialog that
requires the following fields. The Name and De-
scription fields are user defined, the Domain and
Subdomain are selected from a drop down menu.
The Access field is a company internal access classi-
fication and the Export Control box indicates if the
data is export controlled. The ACL button produces
an Access Control List (ACL) dialogue that allows
the end-user to assign read, write, and execute per-
missions on this program object based on userid or
role. Once the end-user completes the New Context
Dialogue and selects OK the Context Editor then
appears. Figure 6 shows the Context Editor along
with the context for the first action or task in the
Turbine Mechanical Analysis Job represented in

Figure 4.

100

Figure 6 also illustrates that the FiperContext is a
tree structure with Context Nodes and Data Nodes.
The Data Nodes are further identified as either input
">" or output "<". The editor allows the end-user
the ability to create, edit, or delete Context Nodes
and Data Nodes in the FiperContext.

3.2 FiperTask Editor
From the Fiper launcher in Figure 5 the end-user se-

lects Task, New, and completes the New Task Dia-
log to gain access to the Task Editor shown .

Recalling that the FiperTask is the fundamental
building block or work unit in the FIPER Environ-
ment which contains the action and data for a nested
transaction (reference Figure 4), the Methods field
represents the action and the Context field repre-
sents the data. To view/edit more detail on theses
fields the end user selects “Update Content” which
produces an editor (see Figure 7). Figure 7 shows
the definition of the FiperMethod and the Context

that is used for the selected task, Generate Solid
Shank. The fields Interface, Command, Provider,
and Method Type define the Method. The Inter-
face and the Provider are used as the attributes to lo-
cate a service within the environment with the cur-
rent implementation. The context for this task is the
CAD Model Context presented in Figure 6. Once all
the actions/FiperTasks have been defined for a given
process/FiperJob the FiperJob itself can then be con-
structed.

3.3 FiperJob Editor

Figure 8 illustrates the creation of the FiperJob
represented in Figure 4. It contains all the tasks,
Generate Solid Shank, Mesh Shank, Apply Bound-
ary Conditions, Apply Materials, and Perform Stress
Analysis.
Figure 8. FiperJob Editor

The Job Editor lists all FiperTasks associated
with the job along with the FiperTask’s Name and
FiperMethod Attribute information (Provider Name
and requested provider’s type - interface). The
Task and Job Editor features allow the end user to
add additional FiperTasks or FiperJobs by either
browsing existing program objects or creating new

Figure 7. FiperTask, FiperMethod and FiperContext Edi-
tor

Figure 6. FiperContext Editor

objects on the fly. The Job Editor features also en-
able the specification of the Control Context and the
JobContext. The ControlContext specifies the flow
and method of execution of the FiperJob. The final
step before a FiperJob can be executed is to define
the flow of data between tasks in the job. This is
done using the JobContext dialog, which can be in-
voked from the Job Editor features on the Job Editor
Dialog in Figure 8.

The FiperJob Context dialog for the Turbine
Analysis Job is shown in Figure 9. Here the Job is
shown with each task and the context for each task
in a hierarchical tree structure. The data flow from
one task to the other is defined by dragging one
Fiper DataNode onto another Fiper DataNode. In
Figure 16 this has occurred by dragging the Auto-
Shank Output Solid Shank Node contained in Task0
onto the Solid Shank unnamed Fiper DataNode in
Task1.

Figure 9. Fiper JobContext Dialog

Once the data flow has been defined in the JobCon-
text the FiperJob is now ready for execution. To
submit the job to the Fiper Environment the Run Job
button is selected in the Job Editor (Figure 8). A
typical engineering analysis or design job could take
anywhere from a few hours up to several days or
even weeks. With jobs running this long it is critical
that the end-user have access to the status of the job
and control over the job as it executes. This is the
function of the Job Monitor.

3.4 FiperJob Monitor

The most critical capability that GISO programming
will need from an end-users perspective is the ability

to interact with the process/FiperJob once it has been
submitted to the environment. Using a GISO IDE
will require a cultural change within the end-user
community. Today's state of practice is that typical
designers and analysts execute single standalone ap-
plications either on their desktop or submit the runs
to a major shared resource (MSR) computing envi-
ronment. In either case the end-user is executing ap-
plications individually and if a failure occurs they
know at least which application the failure occurred
within. Also, when running locally or in a MSR the
end-user usually has some or all control over the
running application and can closely monitor the pro-
gress of the execution by monitoring log files and or
output files from the application. In the GISO IDE
the end-user is now combining many application to
perform a nested transaction and submitting the exe-
cution of the nested transaction to the network,
which could easily take days or weeks to complete.
In the GISO IDE the end-user may have no idea
where the execution is taking place and worse will
have no feedback as to the state of progress of the
process. In the GISO IDE the end-user surrenders all
control to the environment, a precarious proposition
for a designer who is accustomed to having com-
plete control of the applications they are running.
With these facts in mind a few essential functional-
ities are identified for GISO programming that are
necessary for end-user to accept such a working en-
vironment. The end-user must be able to monitor
the progress of the process and obtain intermediate
results from a given task. The end-user must be able
to control the process once it is submitted to the en-
vironment by stopping, suspending, or terminating
the process. For a suspended GISO program the end-
user must be able to edit not only the data within the
process but also the process itself by adding or delet-
ing tasks. After any edits to the data or process the
end-user must be able to resume the process from
any task within the process not necessarily the task
the process was suspended at. If the process fails the
end-user must obtain meaningful information that
specifies where the failure occurred and what action
needs to be taken to correct the problem. This last
requirement puts a significant burden on the service
provider developers to properly trap exceptions and
translate them into meaningful information for the
end-user.
In the FIPER Environment the monitoring/client
process interaction is done using the Job Monitor.
Figure 10 shows the Turbine Analysis Job running
in the Job Monitor. The Job Monitor can be viewed
as an "interactive debugger for program objects or
services on the network". The Job Monitor shows
the progress of the process (green complete,
green/yellow running, red failed, yellow suspended).
It also displays intermediate information from a task
(by viewing the job context) if the provider returns
such information. The client is also able to stop,

101

suspend, step and resume a running job. In addition,
for a given suspended or completed job, the client
has access to a drop down menu that allows full edit
capability of the data in the job or the job/process it-
self. Data can be changed, tasks can be ed-
ited/added/deleted and the job resumed from any
task.

4 CONCLUDING REMARKS

In the GISO approach object-oriented concepts are
applied to the network and grid-oriented programs.
A job is a service-oriented program executed in a
federated service-oriented environment across mul-
tiple virtual organizations. Jobs are created using
friendly, interactive web-based graphical interfaces.
Jini connection technology from Sun Microsystems
enables federated, platform independent, real world
grids. It allows us to create GISO programs that
process a whole aircraft engine as a virtual object-
oriented product control structure that can be ma-
nipulated by multidisciplinary teams as network-
centric, active, evolving product. New shared pro-
grams and engineering applications can be assem-
bled as needed on the fly by integrating new capa-
bilities into existing workflows, systems, devices
and applications. The presented web-centric GISO
IDE reduces the costs of solving business problems
as well as of establishing and maintaining online
business relationships. Services are provided by
shared low cost, easy to develop service providers
and are integrated into the core business of an enter-
prise. An experimental version of presented ap-
proach was successfully deployed at GE Aircraft
Engines.

REFERENCES

Foster, I. & Kesselman, C. eds.1999. “The Grid:

Blueprint for a New Computing Infrastructure,” Mor-
gan Kaufmann Publishers, San Francisco CA.

Foster, I., C. Kesselman, C., Tuecke, S. 2001. The
Anatomy of the Grid: Enabling Scalable Virtual Or-
ganizations.. International J. Supercomputer Applica-
tions, 15(3), 2001. Defines Grid computing and the
associated research field, proposes a Grid architecture,
and discusses the relationships between Grid tech-
nologies and other contemporary technologies.

Foster, I. & Kesseman, C. 2002. The Physiology of the
Grid: An Open Grid Services Architecture for Distrib-
uted Systems Integration. Open Grid Service Infra-
structure WG, Global Grid Forum, June 22, 2002. (ex-
tended version of Grid Services for Distributed
System Integration).

Grimshaw, A. S. & Wulf W. A. 1997. “The Legion vi-
sion of a worldwide virtual computer”, Communica-
tions of the ACM, 40(1), 39-45.

Hafner, K. & Lyon, M. 1996. “Where Wizards Stay Up
Late,” (a history of Internet development), Simon and
Schuster, New York.

Kolonay, R.M., Sobolewski M., Tappeta, R., Para-
dis, M., Burton, S. 2002. Network-Centric
MAO Environment, The Society for Modeling
and Simulation International, 2002 Westrn Multi-
conference, San Antonio, Texas, Jan 27-31.

Figure 10. FiperJob Monitor

Lapinski M. & Sobolewski, M. 2002. “Managing Notifi-
cations in a Federated S2S Environment,” Interna-
tional Journal of Concurrent Engineering: Research &
Applications, December.

Lee, J. ed. 1992 “Time-Sharing and Interactive Comput-
ing at MIT,” IEEE Annals of the History of Comput-
ing 14:1

Lynch, D.L. & Rose, M.T. 1992. “Internet System hand-
book,” Addison-Wesley, reading, MA.

National Research Council 1993. Reports relevant to
early grid research include the following: “National
Collaboratories: Applying Information Technology
for Scientific Research,” National Academy Press,
Washington D.C.

Postel, J., Sunshine, C. & Cohen, D. 1981. “The ARPA
Internet Protocol,” Computer Networks 5:261-271.

Postel, J. & Reynolds, J. 1987. “Request for Comments
Reference Guide (RFC1000),” Internet Engineering
Task Force.

Smarr L.1997. “Computational infrastructure: Toward the
21st century,” Special issue on plans for a National
Technology Grid, Communications of the ACM 40,
11

Sobolewski, M. 2002. FIPER: The Federated S2S
Environment, JavaOne, Sun’s 2002 Worldwide Java
Developer Conference, San Francisco, 2002.

Röhl P. J., Kolonay, R.M., Irani, R.K., Sobolewski, M.,
Kao, K. 200. “A Federated Intelligent Product Envi-
ronment, AIAA-2000-4902, 8th AIAA /USAF/
NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Long Beach, CA, Sep-
tember 6-8.

Tuecke S., Czajkowski, Foster, I., Frey, J., Gra-
ham, S., Kesselman, C. 2002. Grid Service Specifi-
cation. Open Grid Service Infrastructure WG, Global
Grid Forum, Draft 2.

102

	INTRODUCTION
	GISO CONCEPTUAL FRAMEWORK
	GISO PROGRAMMING AND DEVELOPMENT TOOLS
	Context Editor
	FiperTask Editor
	FiperJob Editor
	FiperJob Monitor

	CONCLUDING REMARKS
	REFERENCES

