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Abstract— This paper investigates Grid computing from the 
point of view three basic computing platforms. The platform 
consists of virtual compute resources, a programming 
environment allowing for the development of grid applications, 
and a grid operating system to execute user programs and to 
make solving complex user problems easier.  Three platforms are 
discussed: compute Grid, metacompute Grid and Intergrid. 
Service protocol-oriented architectures are contrasted with 
service object-oriented architectures, then the SORCER 
metacompute Grid based on the service object-oriented 
paradigm is presented. Finally, we explain how SORCER, with 
its core services and federated file system, can be used as a 
traditional compute Grid and an Intergrid—a hybrid of compute 
and metacompute Grids. 

I. INTRODUCTION 
The term “Grid computing” originated in the early 1990s as 

a metaphor for making computer power as easy to access as 
an electric power grid. Today there are many definitions of 
Grid computing with a varying focus on architectures, 
resource management, access, virtualization, provisioning, 
and sharing between heterogeneous compute domains. Thus, 
diverse compute resources across different administrative 
domains form a Grid for the shared and coordinated use of 
resources in dynamic, distributed, and virtual computing 
federations [9]. Therefore, the Grid requires a platform that 
describes some sort of framework to allow software to run 
utilizing virtual federations. These federations are dynamic 
subsets of departmental Grids, enterprise Grids, and global 
Grids, which allow programs to run. Different platforms of 
Grids can be distinguished along with corresponding types of 
virtual federations. However, in order to make any Grid-based 
computing possible, computational modules have to be 
defined in terms of platform data, operations, and relevant 
control strategies. For a Grid program, the control strategy is a 
plan for achieving the desired results by applying the platform 
operations to the data in the required sequence, leveraging the 
dynamically federating resources.  We can distinguish three 
generic Grid platforms, which are considered below. 

Each programming language reflects a relevant abstraction, 
and usually the type and quality of the abstraction implies the 
complexity of problems we are able to solve. For example, a 
procedural language provides an abstraction of an underlying 
machine language. An executable file represents a computing 
component whose content is meant to be interpreted as a 
program by the underlying platform. A request can be 
submitted to a Grid resource broker to execute a program in a 
particular way, e.g, parallelizing it and collocating it 
dynamically to the right processors in the Grid. That can be 

done, for example, with the Nimrod-G [23] Grid resource 
broker scheduler or the Condor-G [5], [39] high-throughput 
scheduler. Both rely on Globus/GRAM [9] (Grid Resource 
Allocation and Management) protocol. In this type of grid, 
called a compute Grid, executable files are moved around the 
Grid to form virtual federations of required processors. This 
approach is reminiscent of batch processing in the era when 
operating systems were not yet developed. A series of 
programs ("jobs") is executed on a computer without human 
interaction or the possibility to view any results before the 
execution is complete. 

A Grid programming language is the abstraction of 
hierarchically organized networked processors running a Grid 
computing program—metaprogram—that makes decisions 
about programs such as when and how to run them. Nowadays 
the same computing module abstraction is applied to a single 
computer module as it usually is applied to a Grid computing 
module, even though they are structurally completely different 
entities. Most Grid modules are still written as monolithic 
programs using compiled languages such as FORTRAN, C, 
C++, Java, and scripting languages such as Perl and Python. 
The current trend is to have these programs and scripts define 
Grid computational modules. Thus, most Grid computing 
modules are developed using the same abstractions and, in 
principle, run the same way on the Grid as on a single 
processor. There is presently no Grid programming 
methodologies to deploy a metaprogram that will dynamically 
federate all needed resources in the Grid according to a 
control strategy using some Grid algorithmic logic. Applying 
the same programming abstractions to the Grid as to a single 
computer does not foster transitioning from the current phase 
of early Grid adopters to public recognition, and then to mass 
adoption phases. 

The reality at present is that Grid resources are still very 
difficult for most users to access, and that detailed 
programming must be carried out by the user through 
command line and script execution to carefully tailor jobs on 
each end to the resources on which they will run or for the 
data structure that they will access.  This produces frustration 
on the part of the user, delays in adoption of Grid techniques, 
and a multiplicity of specialized “grid-aware” tools that are 
not, in fact, aware of each other that defeat the basic purpose 
of the Grid. 

Instead of moving executable files around the Grid, we can 
autonomically provision the corresponding computational 
components as uniform services on the Grid. All Grid services 
can be interpreted as instructions (metainstructions) of the 
metacompute Grid. Now we can submit a metaprogram in 



 

This is a DRAFT document and work in progress. Version: 04/07/2007 

terms of metainstructions to the Grid platform (operating 
system) that manages a dynamic federation of service 
providers and related resources and enables the metaprogram 
to interact with the providers according to the metaprogram 
control strategy. 

Thus, we can distinguish three types of Grids depending on 
the nature of computational components: compute Grids 
(cGrids), metacompute Grids (mcGrids), and the hybrid of the 
previous two—Intergrids (iGrids). Note that cGrid is a virtual 
federation of processors (roughly CPUs) that execute 
submitted executable files with the help of a Grid resource 
broker. However, a mcGrid is a federation of service 
providers managed by the mcGrid operating system. Thus, the 
latter approach requires a metaprogramming methodology 
while in the former case the conventional procedural 
programming languages are used. The hybrid of both cGrid 
and mcGrid abstractions allows for iGrid to execute both 
programs and metaprograms as depicted in Fig. 1, where 
platform layers P1, P2, and P3 are resources, resource 
management, and programming environment correspondingly. 

One of the first mcGrids was developed under the 
sponsorship of the National Institute for Standards and 
Technology (NIST)—the Federated Intelligent Product 
Environment (FIPER) [8], [26], [29], [30]. The goal of FIPER 
is to form a federation of distributed services that provide 
engineering data, applications and tools on a network. A 
highly flexible software architecture had been developed 
(1999-2003), in which engineering tools like computer-aided 
design (CAD), computer-aided engineering (CAE), product 
data management (PDM), optimization, cost modeling, etc., 
act as federating service providers and service requestors. The 
Service-Oriented Computing Environment (SORCER) [36], 
[32], [35], [34], [1] builds on top of FIPER to introduce a 

metacomputing operating system with all basic services 
necessary, including a federated file system, to support 
service-oriented programming. It provides an integrated 
solution for complex metacomputing systems. 

The paper is organized as follows. Section II provides a 
brief description of a service-oriented architecture used in 
Grid computing with a related discussion of distribution 
transparency; Section III describes the SORCER 
metacomputing philosophy and mcGrid; Section IV describes 
SORCER cGrid, Section V the metacomputing file system, 
and Section VI SORCER iGrid; Section VII provides 
concluding remarks. 

II. SOA = SPOA + SOOA 
Various definitions of a Service-Oriented Architecture 

(SOA) leave a lot of room for interpretation. Nowadays SOA 
becomes the leading architectural approach to most Grid 
developments. In general terms, SOA is a software 
architecture using loosely coupled software services that 
integrates them into a distributed computing system by means 
of service-oriented programming. Service providers in the 
SOA environment are made available as independent service 
components that can be accessed without a priori knowledge 
of their underlying platform or implementation. While the 
client-server architecture separates a client from a server, 
SOA introduces a third component, a service registry. In SOA, 
the client is referred to as a service requestor and the server as 
a service provider. The provider is responsible for deploying a 
service on the network, publishing its service to one or more 
registries, and allowing requestors to bind and execute the 
service. Providers advertise their availability on the network; 
registries intercept these announcements and add published 
services. The requestor looks up a service by sending queries 
to registries and making selections from the available services. 
Queries generally contain search criteria related to the service 
name/type and quality of service. Registries facilitate 
searching by storing the service representation and making it 
available to requestors. Requestors and providers can use 
discovery and join protocols to locate registries and then 
publish or acquire services on the network. We can distinguish 
the service object-oriented architectures (SOOA), where 
providers, requestors, and proxies are network objects, from 
service protocol oriented architectures (SPOA), where a 
communication protocol is fixed and known beforehand by 
the provider and requestor. Using SPOA, a requestor can use 
this fixed protocol and a service description obtained from a 
service registry to create a proxy for binding to the service 
provider and for remote communication over the fixed 
protocol.  In SPOA a service is usually identified by a name. 
If a service provider registers its service description by name, 
the requestors have to know the name of the service 
beforehand. 

In SOOA (see Fig. 2), a proxy—an object implementing 
the same service interfaces as its service provider—is 
registered with the registries and it is always ready for use by 

Fig. 1 Three types of Grids: compute grid, metacompute grid, and 
Intergrid. A cybernode provides a lightweight dynamic virtual processor, 
turning heterogeneous compute resources into homogeneous services 
available to the metacomputing OS [22]. 
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requestors. Thus, the service provider publishes the proxy as 
the active surrogate object with a codebase annotation, e.g., 
URLs to the code defining proxy behavior (RMI and Jini ERI 
[6]). In SPOA, by contrast, a passive service description is 
registered (e.g., an XML document in WSDL for Web/OGSA 
services [22], [38], or an interface description in IDL for 
CORBA); the requestor then has to generate the proxy (a stub 
forwarding calls to a provider) based on a service description 
and the fixed communication protocol (e.g., SOAP in 
Web/OGSA services, IIOP in CORBA [27]). This is referred 
to as a bind operation. The binding operation is not needed in 
SOOA since the requestor holds the active surrogate object 
obtained from the registry. 

Web services and OGSA services cannot change the 
communication protocol between requestors and providers 
while the SOOA approach is protocol neutral [42]. In SOOA, 
the way an object proxy communicates with a provider is 
established by the contract between the provider and its 
published proxy and defined by the provider implementation. 
The proxy’s requestor does not need to know who implements 
the interface or how it is implemented. So-called smart 
proxies (e.g., provided by Jini ERI) grant access to local and 
remote resources. They can also communicate with multiple 
providers on the network regardless of who originally 
registered the proxy, thus separate providers on the network 
can implement different parts of the smart proxy interface. 
Communication protocols may also vary, and a single smart 
proxy can also talk over multiple protocols including 
application specific protocols.  

SPOA and SOOA differ in their method of discovering the 
service registry. SORCER uses dynamic discovery protocols 
to locate available registries (lookup services) as defined in 
the Jini architecture [15]. Neither the requestor who is looking 
up a proxy by its interfaces nor the provider registering a 
proxy needs to know specific locations. In SPOA, however, 
the requestor and provider usually do need to know the 

explicit location of the service registry—e.g., a URL for RMI 
registry, a URL for UDDI registry, an IP address of a COS 
Name Server—to open a static connection and find or register 
a service. In deployment of Web and OGSA services, a UDDI 
registry is sometimes even omitted (WSDL descriptions are 
shared via files outside of the system); in SOOA, lookup 
services are mandatory due to the dynamic nature of objects 
identified by service types. Interactions in SPOA are more like 
client-server connections (e.g., HTTP, SOAP, IIOP) in many 
cases with no need to use service registries at all. 

Crucial to the success of SOOA is interface 
standardization. Services are identified by interfaces (service 
types); the exact identity of the service provider is not crucial 
to the architecture. As long as services adhere to a given set of 
rules (common interfaces), they can collaborate to execute 
published operations, provided the requestor is authorized to 
do so.  

Let’s emphasize the major distinction between SOOA and 
SPOA: in SOOA, a proxy is created and always owned by the 
service provider, but in SPOA, the requestor creates and owns 
a proxy which has to meet the requirements of the protocol 
that the provider and requestor agreed upon a priori. Thus, in 
SPOA the protocol is always a generic one, reduced to a 
common denominator—one size fits all—that leads to 
inefficient network communication in some cases. In SOOA, 
each provider can decide on the most efficient protocol(s) 
needed for a particular distributed application. 

Service providers in SOOA can be considered as 
independent network objects finding each other via a service 
registry using object types (interfaces) and communicating 
through message passing. A collection of these object sending 
and receiving messages—the only way these objects 
communicate with one another—looks very much like a 
service object-oriented distributed system.  

Do you remember the eight fallacies of network 
computing[7]? We cannot just take an object-oriented 
program developed without distribution in mind and make it a 
distributed system, ignoring the unpredictable network 
behavior. Most RPC systems, with notable exception of Jini 
[15], hide the network behavior and try to transform local 
communication into remote communication by creating 
distribution transparency based on a local assumption of what 
the network might be. However, every single distributed 
object cannot do that in a uniform way as the network is a 
distributed system and cannot be represented completely 
within a single entity.  

The network is dynamic, can’t be constant, and introduces 
latency for remote invocations. Network latency also depends 
on potential failure handling and recovery mechanisms, so we 
cannot assume that a local invocation is similar to remote 
invocation. Thus, complete transparency distribution—by 
making calls on distributed objects as though they were 
local—is impossible to achieve in practice. The distribution is 
simply not just an object-oriented implementation of a single 
distributed object; it’s a metasystemic issue in object-oriented 

Fig. 2 Service object-oriented architecture 
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distributed programming. In that context Web/OGSA service 
define distributed objects, but do not have anything common 
with object-oriented distributed systems. 

Exertion-based programming [32], [30] was introduced to 
handle the metasystemic distribution in SORCER. It uses 
indirect remote method invocation with no service provider 
explicitly specified in a network request called an exertion. 
Specialized infrastructure objects support exertion-oriented 
programming. That infrastructure defines SORCER’s 
distributed object modularity, extensibility, and reuse of 
service-oriented components consistent with the relevant 
metacomputing granularity and dependency injection—key 
features of object-oriented distributed programming that are 
usually missing in SPOA programming environments. 

III. SORCER METACOMPUTING GRID 
SORCER is a federated service-to-service (S2S) 

metacomputing environment that treats service providers as 
network objects with well-defined semantics of a federated 
service object-oriented architecture (FSOOA).  It is based on 
Jini semantics of services [15] in the network and the Jini 
programming model [6] with explicit leases, distributed events, 
transactions, and discovery/join protocols. While Jini [16], [17] 
focuses on service management in a networked environment, 
SORCER is focused on exertion-oriented programming and 
the execution environment for exertions.  

As described in Section II, SOOA consists of three major 
types of network objects: providers, requestors, and registries. 
The provider is responsible for deploying the service on the 
network, publishing its service to one or more registries, and 
allowing requestors to access its service. Providers advertise 
their availability on the network; registries intercept these 
announcements and cache proxy objects to the provider 
services. The requestor looks up proxies by sending queries to 
registries and making selections from the available service 
types. Queries generally contain search criteria related to the 
type and quality of service. Registries facilitate searching by 
storing proxy objects of services and making them available to 
requestors. Providers use discovery/join protocols to publish 
services on the network, requestors use discovery/join 

protocols to obtain service proxies on the network. SORCER 
uses Jini discovery/join protocols to implement its FSOOA.  

In SOOA, a service provider is an object that accepts 
remote messages from service requestors to execute an item of 
work. These messages are called service exertions. An 
exertion encapsulates service data, operations, and control 
strategy. A task exertion is an elementary service request, a 
kind of elementary remote instruction (elementary statement) 
executed by a single service provider or a small-scale 
federation. A composite exertion called a job exertion is 
defined hierarchically in terms of tasks and other jobs, a kind 
of network procedure executed by a large-scale federation. 
The executing exertion is a service-oriented program that is 
dynamically bound to all needed and currently available 
service providers on the network. This collection of providers 
identified in runtime is called an exertion federation. This 
federation is also called an exertion space. While this sounds 
similar to the object-oriented paradigm, it really isn’t. In the 
object-oriented paradigm, the object space is a program itself; 
here the exertion space is the execution environment for the 
exertion that is a service-oriented distributed program. This 
changes the programming paradigm completely. In the former 
case the object space is hosted by a single computer, but in the 
latter case the service providers are hosted by the network of 
computers. 

The overlay network of service providers is called the 
service provider grid and an exertion federation is called a 
virtual metacomputer. The metainstruction set of the 
metacomputer consists of all operations offered by all service 
providers in the grid. Thus, a service-oriented program is 
composed of metainstructions with its own service-oriented 
control strategy and service context [43] representing the 
metaprogram parameters. Service signatures specify 
metainstructions in SORCER. Each signature primarily is 
defined by a service type (interface name), operation in that 
interface, and a set of attributes. Three types of signatures are 
distinguished: PROCESS, PREPROCESS, and 
POSTPROCESS. A PROCESS signature—of which there is 
only one allowed per exertion—defines the dynamic late 
binding to a provider that implements the signature’s 
interface. The service context describes the data that tasks and 
jobs work on. Exertion-oriented programs (metaprograms) 
allow for a dynamic federation to transparently coordinate 
their execution within the grid. Please note that these 
metacomputing concepts are defined differently in classical 
grid computing where a job is just an executing process for a 
submitted executable code with no federation being formed 
for the executable. 

In a federated service environment, the system is not made 
up of just a single service, but the cooperation of many 
services. A service exertion may consist of hierarchically 
nested exertions that require different service types. A service 
can be broken down into small component services instead of 
being one monolithic all-in-one service. These smaller 
component services—treated as virtual metacomputer 

Fig. 3 SORCER layered platform, where P1 resources, P2 resource 
management, P3 programming environment 
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instructions—can then be distributed among different hosts to 
allow for reusability, scalability, reliability, and load 
balancing. 

Each SORCER provider (peer) implementing the common 
Servicer interface, offers services to other peers [32] on the 
object-oriented overlay network. These services are exposed 
indirectly by methods in well-known public remote interfaces 
and considered as elementary (tasks) or compound (jobs) 
statements of the FSOOA. Requestors do not need to know 
the exact location of a provider beforehand; they can find it 
dynamically by discovering service registries (lookup 
services) and then looking up a needed service implementing 
required service types. 

Despite the fact that every Servicer can accept any exertion, 
Servicers have well defined roles in the SORCER S2S 
platform (see Figure 3): 
a) Taskers – process service tasks  
b) Jobbers – process service jobs 
c) Contexters – provide service contexts for APPEND 

Signatures 
d) FileStorers – provide access to federated file system 

providers [34], [1], [3], [40] 
e) Catalogers – Servicer registries 
f) Persisters – persist service contexts, tasks, and jobs to be 

reused for interactive exertion-based programming 
g) Spacers – manage exertion spaces shared across Servicers 

for space-based computing [10] 
h) Relayers – gateway providers; transform exertions to native 

representation, for example integration with Web services 
and JXTA 

i) Autenticators, Authorizers, Policers, KeyStorers – provide 
support for service-oriented security 

j) Auditors, Reporters, Loggers – support for accountability, 
reporting and logging 

k) Griders, Callers, Methoders – support conventional grid 
computing (in cGrids) 

l) Generic ServiceTasker and ServiceJobber implementations 
are used to configure domain specific providers via 
dependency injection—configuration files for smart 
proxying and embedding business objects, called service 
beans, into service providers. 
An exertion can be created interactively [33] or 

programmatically (using SORCER APIs), and its execution 
can be monitored and debugged [35], [21] in the overlay 
service network via service user interfaces (Service UI [41]) 
attached to providers and  installed on the fly by service 
browsers [14]. Service providers do not have mutual 
associations prior to the execution of an exertion; they come 
together dynamically (federate) for all nested tasks and jobs in 
the exertion. Domain specific providers within the federation, 
or task peers called Taskers, execute service tasks. Jobs are 
coordinated by rendezvous peers: a Jobber or Spacer, two of 
the SORCER core services (see Fig. 3 for details), of the 
SORCER platform. However, a job can be sent to any service 
provider (peer). A peer that is not a Jobber type is responsible 

for forwarding the job to an available job peer in the SORCER 
grid and returning results to the requestor. Thus implicitly, 
any peer can handle any job or task. Once the job execution is 
complete, the federation dissolves and the providers disperse 
to seek other exertions to join. 

An Exertion is invoked by calling on its exert method. The 
SORCER API defines the following three related operations:  
1. Exertion.exert(Transaction):Exertion - join the federation 
2. Servicer.service(Exertion, Transaction):Exertion – request a 

service in the federation initiated by the receiver 

3. Exerter.exert(Exertion, Transaction):Exertion – execute the 
component exertion by the target provider in the federation 

This Triple Command pattern [32], [13] defines various 
implementations of these interfaces: Exertion (metaprogram), 
Servicer (generic peer provider), and Exerter (service provider 
exerting a particular type of Exertion). This approach allows 
for the P2P environment [24] via the Servicer interface, 
extensive modularization of Exertions and Exerters, and 
extensibility from the triple design pattern so requestors can 
submit any service-oriented programs (exertions) they want 
with or without transactional semantics. The triple Command 
Pattern is used as follows: 
1. An exertion can be invoked by calling 

Exertion.exert(Transaction). The Exertion.exert operation 
implemented in ServiceExertion uses ServiceAccessor to 
locate in runtime the provider matching the exertion’s 
PROCESS signature .  

2. If the matching provider is found, then on its access proxy 
(which can also be a smart proxy) the 
Servicer.service(Exertion, Transaction) method is invoked.  

3. When the requestor is authenticated and authorized by the 
provider to invoke the method defined by the exertion’s 
PROCESS signature, then the provider calls its own exert 
operation: Exerter.exert(Exertion, Transaction).  

4. Exerter.exert method calls exert on either of ServiceTasker or 
ServiceJobber (depending on the type of the exertion: either 
Task or Job) that by reflection calls the method specified in 
the PROCES signature (interface and selector) of the 
exertion. All application domain methods of any 
application interface (custom Tasker interfaces) have the 
same signature: a single Context type parameter and a 
Context type return vale. Thus a custom interface looks like 
an RMI interface with the above simplification on the 
common signature for all interface methods. 

The fundamentals of exertion-oriented programming and 
SORCER federated method invocation are described in [32]. 

In Fig. 4 four use cases are presented to illustrate push vs. 
pull exertion-oriented computing. We assume that an exertion 
is a job with two component exertions executed in parallel (a 
and b). The Job exertion can be submitted directly to either 
Jobber (use cases: 1. access is PUSH, and 2. access is DROP) 
or Spacer (use cases: 3. access is PUSH, and 4. access is 
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DROP) depending on the exertion’s interface defined in its 
PROCES signature. In cases 1 and 2 the signature is Jobber 
and in cases 3 and 4 the signature is Spacer. The exertion’s 
ServicerAccessor delivers the right service proxy, either for a 
Jobber or Spacer. Depending on the access type of the parent 
exertion, all the component exertions are pushed to relevant 
providers according to their signatures (case 1 and 3), or 
dropped into the exertion space by the Jobber (case 2) and 
Spacer (case 4). In the cases 2 and 4, the component exertions 
are pulled from the exertion space by providers matching their 
signatures as soon as they are available to do any processing 
(case 2 and 4). Thus Spacers provide efficient load balancing 
for processing the exertion space. 

IV. SORCER COMPUTING GRID 
Also, to use legacy applications, SORCER supports a 

traditional approach to grid computing similar to those found 
in Condor [5] and Globus [38]. Here, instead of exertions 
being executed by services providing business logic for 
requested exertions, the business logic comes from the service 
requestor's executable programs that seek compute resources 
on the network.  

The cGrid-based services in the SORCER environment 
include Grider collaborating Jobber for compute grid job 
submission, and Caller and Methoder services for task 
execution [32]. Callers execute conventional programs via a 
system call as described in the Caller’s service context of the 
submitted task. Methoders download required Java code (task 
method) from requestors to process any submitted context 
accordingly with the downloaded code. In either case, the 
business logic comes from requestors; it is conventional 
executable code invoked by Callers with the standard Caller’s 
service context or mobile Java code executed by Methoders 
with any service context provided by the requestor. 

The SORCER cGrid with Methoders was used to deploy an 
algorithm called Basic Local Alignment Search Tool  
(BLAST) [1] to compare newly discovered, unknown DNA 
and protein sequences against a large database with more than 
3 gigabytes of known sequences. BLAST (C++ code) searches 
the database for sequences that are identical or similar to the 
unknown sequence. This process enables scientists to make 
inferences about the function of the unknown sequence based 
on what is understood about the similar sequences found in 
the database. Many projects at the USDA–ARS’s Livestock 

Issues Research Unit, for example, involve as many as 10,000 
unknown sequences, each of which must be analyzed via the 
BLAST algorithm. A project involving 10,000 unknown 
sequences requires about three weeks to complete on a single 
desktop computer. The S-BLAST implemented in SORCER 
[19], a federated form of the BLAST algorithm, reduces the 
amount of time required to perform searches for large sets of 
unknown sequences. S-BLAST is comprised of BlastProvider 
(with the attached BLAST Service UI), Jobbers, Spacers, and 
Methoders. Methoders in S-BLAST download Java code (a 
service task method) that initializes a required database before 
making system call for the BLAST code. Armed with the S-
BLAST’s cGrid and 17 commodity computers, projects that 
previously took three weeks to complete can now be finished 
in less than one day. 

The SORCER cGrid with Griders, Jobbers, Spacers, and 
Callers has been successfully deployed with the Proth program 
(C code) and easy-to-use zero-install Service UIs attached to a 
Grider and the SORCER federated file system.  

V. SORCER FEDERATED FILE SYSTEM 
 
The SILENUS federated file system [1], [3] was designed 

and developed to provide data access for metaprograms. It 
complements the file store developed for FIPER [34] with the 
true P2P services. The SILENUS system itself is a collection 
of service providers that use the SORCER framework for 
communication. 

In classical client-server file systems, a heavy load may 
occur on a single file server. If multiple grid requestors try to 
access large files at the same time, the server will be 
overloaded. In a P2P architecture, every host is a client and a 
server at the same time. The load can be balanced between all 
peers if files are spread across all of them. The SORCER 
architecture splits up the functionality of the metacomputer 
into smaller service peers (Servicers), and this approach was 
applied the distributed file system as well. 

The SILENUS federated file system is comprised of several 
network services that run within the SORCER environment. 
These services include a byte store service for holding file 
data, a metadata service for holding metadata information 
about the files, several optional optimizer services, and facade 
services to assist in accessing federating services. SILENUS is 
designed so that many instances of these services can run on a 
network, and the required services will federate together to 
perform the necessary functions of a file system. In fact the 
SILENUS system is completely decentralized, eliminating all 
potential single point failures. SILENUS services can be 
broadly categorized into gateway components, data services, 
and management services.  

The SILENUS facade service provides a gateway service to 
the SILENUS Grid for requestors that want to use the file 
system. Since the metadata and actual file contents are stored 
by different services, there is need to coordinate 
communication between these two services. The facade 
service itself is split into a provider component, called the 
coordinator, and a smart proxy component that contains 

Fig. 4 Push vs. Pull exertion computing 
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needed inner proxies provided dynamically by the coordinator. 
These inner proxies facilitate P2P communications for file 
upload and download between the requestor and SILENUS 
federating services like metadata and byte stores.  

Core SILENUS services have been successfully deployed 
as SORCER services along with WebDAV and NFS adapters. 
The SILENUS file system scales very well with a virtual disk 
space adjusted as needed by the corresponding number of 
required byte store providers and the appropriate number of 
metadata stores required to satisfy the needs of current users 
and service requestors. The system handles several types of 
network and computer outages very well by utilizing 
disconnected operation and data synchronization mechanisms. 
It provides a number of user agents including a zero-install 
file browser (service UI) attached to the SILENUS Facade. 
This file browser with file upload and download functions is 
combined with an HTML editor and multiple viewers for 
documents in HTML, RTF, and PDF formats. Also a simpler 
version of SILENUS file browser is available for smart MIDP 
phones.  

SILENUS supports storing very large files [40] by 
providing two services: a splitter service and a tracker service. 
When a file is uploaded to the file system, the splitter service 
determines how that file should be stored. If a file is 
sufficiently large enough, the file will be split into multiple 
parts, or chunks, and stored across many byte store services. 
Once the upload is complete, a tracker service keeps a record 
of where each chunk was stored. When a user requests to 
download the full file later on, the tracker service can be 
queried to determine the location of each chunk and the file 
can be reassembled to the original form. 

VI. SORCER IGRID 
Relayers are SORCER gateway providers that transform 

exertions to native representations and vice versa. The 
following Exertion gateways have been developed: JxtaRelayer 
for JXTA, and WsRpcRelayer and WsDocRelayer for for RPC 
and document style Web services, respectively. Relayers 
exhibit native and mcGrid behavior. Some native cGrid 
providers play SORCER role (SORCER wrappers) thus, are 
available in the iGrid along with mcGrid providers. Also, 
native cGrid providers via own relayers can access iGrid 
services (bottom-up). 

The iGrid-integrating framework is depicted in Fig 5, 
where horizontal native technology grids (bottom) are 
seamlessly integrated with horizontal SORCER mcGrids via 
the SORCER operating system services. Through the use of 
open standards-based communication—Jini, Web Services, 
Globus/OGSA, and Java interoperability—iGrid leverages 
SORCER mcGrid’s SOOA with its inherent protocol, location, 
and provider implementation neutrality, along with 
architectural qualities—flexibility, scalability, and adaptability 
for Intergrid computing. 

VII. CONCLUSIONS 
A Grid is not just a collection of distributed objects; it’s the 

network of objects. From an object-oriented point of view, the 

network of objects is the problem domain of object-oriented 
distributed programming that requires relevant abstractions in 
the solution space. The SORCER architecture shares the 
features of grid systems, P2P systems and provides a platform 
for procedural programming and service-oriented 
metaprogramming. Exertion-based programming introduces 
new network abstractions with federated method invocation in 
SOOA. Service providers register proxies, including smart 
proxies, via dependency injection using twelve methods 
investigated in SORCER. Executing a top-level exertion 
means a dynamic federation of currently available providers in 
the network collaboratively process service contexts of all 
nested exertions. Services are invoked by passing exertions on 
to providers indirectly via object proxies that act as access 
proxies allowing for service providers to enforce a security 
policy on access to services. When permission is granted, then 
the operation defined by a signature is invoked by reflection. 
SORCER allows for the P2P computing via the common 
Service interface, extensive modularization of Exertions and 
Exerters, and extensibility from the triple command design 
pattern. The SORCER federated file system is modularized 
into a collection of distributed providers with multiple remote 
Façades. Façades supply uniform access points via their smart 
proxies available dynamically to file requestors. A Façade’s 
smart proxy encapsulates inner proxies to federating providers 
accessed directly (P2P) by file requestors. 

The SORCER iGrid has been successfully tested in 
multiple concurrent engineering, large-scale distributed 
applications [26], [28], [4], [11], [12], [18], [20]. Due to the 
large-scale complexity of the evolving iGrid environment, it is 
still a work in progress and continues to be refined and 
extended by the SORCER Research Group at Texas Tech 
University [36] in collaboration with Air Force Research Lab, 
WPAFB.  
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Fig. 5 Integrating and wrapping cGrids with SORCER mcGrids. Two 
requestors, one in JXTA iGrid, one in OGSA iGrid submits exertion to a 
corresponding relayer. Two federations are formed that include providers 
from all the two horizontal layers below the iGrid layer (as indicated by 
continues and dashed links). 
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computing and to validate so many diverse and controversial 
opinions on distributed objects and iGrid computing. 
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