

This is a DRAFT document and continues to be revised. The latest version can be found at
http://sorcer.cs.ttu.edu/publications/papers/sorcer-intergrid.pdf. Please send comments and remarks to

sobol@cs.tt.edu.

SORCER: Computing and Metacomputing Intergrid
Michael Sobolewski

Computer Science, Texas Tech University
Lubbock, Texas

sobol@cs.ttu.edu

Abstract— This paper investigates Grid computing from the
point of view three basic computing platforms. The platform
consists of virtual compute resources, a programming
environment allowing for the development of grid applications,
and a grid operating system to execute user programs and to
make solving complex user problems easier. Three platforms are
discussed: compute Grid, metacompute Grid and Intergrid.
Service protocol-oriented architectures are contrasted with
service object-oriented architectures, then the SORCER
metacompute Grid based on the service object-oriented
paradigm is presented. Finally, we explain how SORCER, with
its core services and federated file system, can be used as a
traditional compute Grid and an Intergrid—a hybrid of compute
and metacompute Grids.

I. INTRODUCTION
The term “Grid computing” originated in the early 1990s as

a metaphor for making computer power as easy to access as
an electric power grid. Today there are many definitions of
Grid computing with a varying focus on architectures,
resource management, access, virtualization, provisioning,
and sharing between heterogeneous compute domains. Thus,
diverse compute resources across different administrative
domains form a Grid for the shared and coordinated use of
resources in dynamic, distributed, and virtual computing
federations [9]. Therefore, the Grid requires a platform that
describes some sort of framework to allow software to run
utilizing virtual federations. These federations are dynamic
subsets of departmental Grids, enterprise Grids, and global
Grids, which allow programs to run. Different platforms of
Grids can be distinguished along with corresponding types of
virtual federations. However, in order to make any Grid-based
computing possible, computational modules have to be
defined in terms of platform data, operations, and relevant
control strategies. For a Grid program, the control strategy is a
plan for achieving the desired results by applying the platform
operations to the data in the required sequence, leveraging the
dynamically federating resources. We can distinguish three
generic Grid platforms, which are considered below.

Each programming language reflects a relevant abstraction,
and usually the type and quality of the abstraction implies the
complexity of problems we are able to solve. For example, a
procedural language provides an abstraction of an underlying
machine language. An executable file represents a computing
component whose content is meant to be interpreted as a
program by the underlying platform. A request can be
submitted to a Grid resource broker to execute a program in a
particular way, e.g, parallelizing it and collocating it
dynamically to the right processors in the Grid. That can be

done, for example, with the Nimrod-G [23] Grid resource
broker scheduler or the Condor-G [5], [39] high-throughput
scheduler. Both rely on Globus/GRAM [9] (Grid Resource
Allocation and Management) protocol. In this type of grid,
called a compute Grid, executable files are moved around the
Grid to form virtual federations of required processors. This
approach is reminiscent of batch processing in the era when
operating systems were not yet developed. A series of
programs ("jobs") is executed on a computer without human
interaction or the possibility to view any results before the
execution is complete.

A Grid programming language is the abstraction of
hierarchically organized networked processors running a Grid
computing program—metaprogram—that makes decisions
about programs such as when and how to run them. Nowadays
the same computing module abstraction is applied to a single
computer module as it usually is applied to a Grid computing
module, even though they are structurally completely different
entities. Most Grid modules are still written as monolithic
programs using compiled languages such as FORTRAN, C,
C++, Java, and scripting languages such as Perl and Python.
The current trend is to have these programs and scripts define
Grid computational modules. Thus, most Grid computing
modules are developed using the same abstractions and, in
principle, run the same way on the Grid as on a single
processor. There is presently no Grid programming
methodologies to deploy a metaprogram that will dynamically
federate all needed resources in the Grid according to a
control strategy using some Grid algorithmic logic. Applying
the same programming abstractions to the Grid as to a single
computer does not foster transitioning from the current phase
of early Grid adopters to public recognition, and then to mass
adoption phases.

The reality at present is that Grid resources are still very
difficult for most users to access, and that detailed
programming must be carried out by the user through
command line and script execution to carefully tailor jobs on
each end to the resources on which they will run or for the
data structure that they will access. This produces frustration
on the part of the user, delays in adoption of Grid techniques,
and a multiplicity of specialized “grid-aware” tools that are
not, in fact, aware of each other that defeat the basic purpose
of the Grid.

Instead of moving executable files around the Grid, we can
autonomically provision the corresponding computational
components as uniform services on the Grid. All Grid services
can be interpreted as instructions (metainstructions) of the
metacompute Grid. Now we can submit a metaprogram in

This is a DRAFT document and work in progress. Version: 04/07/2007

terms of metainstructions to the Grid platform (operating
system) that manages a dynamic federation of service
providers and related resources and enables the metaprogram
to interact with the providers according to the metaprogram
control strategy.

Thus, we can distinguish three types of Grids depending on
the nature of computational components: compute Grids
(cGrids), metacompute Grids (mcGrids), and the hybrid of the
previous two—Intergrids (iGrids). Note that cGrid is a virtual
federation of processors (roughly CPUs) that execute
submitted executable files with the help of a Grid resource
broker. However, a mcGrid is a federation of service
providers managed by the mcGrid operating system. Thus, the
latter approach requires a metaprogramming methodology
while in the former case the conventional procedural
programming languages are used. The hybrid of both cGrid
and mcGrid abstractions allows for iGrid to execute both
programs and metaprograms as depicted in Fig. 1, where
platform layers P1, P2, and P3 are resources, resource
management, and programming environment correspondingly.

One of the first mcGrids was developed under the
sponsorship of the National Institute for Standards and
Technology (NIST)—the Federated Intelligent Product
Environment (FIPER) [8], [26], [29], [30]. The goal of FIPER
is to form a federation of distributed services that provide
engineering data, applications and tools on a network. A
highly flexible software architecture had been developed
(1999-2003), in which engineering tools like computer-aided
design (CAD), computer-aided engineering (CAE), product
data management (PDM), optimization, cost modeling, etc.,
act as federating service providers and service requestors. The
Service-Oriented Computing Environment (SORCER) [36],
[32], [35], [34], [1] builds on top of FIPER to introduce a

metacomputing operating system with all basic services
necessary, including a federated file system, to support
service-oriented programming. It provides an integrated
solution for complex metacomputing systems.

The paper is organized as follows. Section II provides a
brief description of a service-oriented architecture used in
Grid computing with a related discussion of distribution
transparency; Section III describes the SORCER
metacomputing philosophy and mcGrid; Section IV describes
SORCER cGrid, Section V the metacomputing file system,
and Section VI SORCER iGrid; Section VII provides
concluding remarks.

II. SOA = SPOA + SOOA
Various definitions of a Service-Oriented Architecture

(SOA) leave a lot of room for interpretation. Nowadays SOA
becomes the leading architectural approach to most Grid
developments. In general terms, SOA is a software
architecture using loosely coupled software services that
integrates them into a distributed computing system by means
of service-oriented programming. Service providers in the
SOA environment are made available as independent service
components that can be accessed without a priori knowledge
of their underlying platform or implementation. While the
client-server architecture separates a client from a server,
SOA introduces a third component, a service registry. In SOA,
the client is referred to as a service requestor and the server as
a service provider. The provider is responsible for deploying a
service on the network, publishing its service to one or more
registries, and allowing requestors to bind and execute the
service. Providers advertise their availability on the network;
registries intercept these announcements and add published
services. The requestor looks up a service by sending queries
to registries and making selections from the available services.
Queries generally contain search criteria related to the service
name/type and quality of service. Registries facilitate
searching by storing the service representation and making it
available to requestors. Requestors and providers can use
discovery and join protocols to locate registries and then
publish or acquire services on the network. We can distinguish
the service object-oriented architectures (SOOA), where
providers, requestors, and proxies are network objects, from
service protocol oriented architectures (SPOA), where a
communication protocol is fixed and known beforehand by
the provider and requestor. Using SPOA, a requestor can use
this fixed protocol and a service description obtained from a
service registry to create a proxy for binding to the service
provider and for remote communication over the fixed
protocol. In SPOA a service is usually identified by a name.
If a service provider registers its service description by name,
the requestors have to know the name of the service
beforehand.

In SOOA (see Fig. 2), a proxy—an object implementing
the same service interfaces as its service provider—is
registered with the registries and it is always ready for use by

Fig. 1 Three types of Grids: compute grid, metacompute grid, and
Intergrid. A cybernode provides a lightweight dynamic virtual processor,
turning heterogeneous compute resources into homogeneous services
available to the metacomputing OS [22].

This is a DRAFT document and work in progress. Version: 04/07/2007

requestors. Thus, the service provider publishes the proxy as
the active surrogate object with a codebase annotation, e.g.,
URLs to the code defining proxy behavior (RMI and Jini ERI
[6]). In SPOA, by contrast, a passive service description is
registered (e.g., an XML document in WSDL for Web/OGSA
services [22], [38], or an interface description in IDL for
CORBA); the requestor then has to generate the proxy (a stub
forwarding calls to a provider) based on a service description
and the fixed communication protocol (e.g., SOAP in
Web/OGSA services, IIOP in CORBA [27]). This is referred
to as a bind operation. The binding operation is not needed in
SOOA since the requestor holds the active surrogate object
obtained from the registry.

Web services and OGSA services cannot change the
communication protocol between requestors and providers
while the SOOA approach is protocol neutral [42]. In SOOA,
the way an object proxy communicates with a provider is
established by the contract between the provider and its
published proxy and defined by the provider implementation.
The proxy’s requestor does not need to know who implements
the interface or how it is implemented. So-called smart
proxies (e.g., provided by Jini ERI) grant access to local and
remote resources. They can also communicate with multiple
providers on the network regardless of who originally
registered the proxy, thus separate providers on the network
can implement different parts of the smart proxy interface.
Communication protocols may also vary, and a single smart
proxy can also talk over multiple protocols including
application specific protocols.

SPOA and SOOA differ in their method of discovering the
service registry. SORCER uses dynamic discovery protocols
to locate available registries (lookup services) as defined in
the Jini architecture [15]. Neither the requestor who is looking
up a proxy by its interfaces nor the provider registering a
proxy needs to know specific locations. In SPOA, however,
the requestor and provider usually do need to know the

explicit location of the service registry—e.g., a URL for RMI
registry, a URL for UDDI registry, an IP address of a COS
Name Server—to open a static connection and find or register
a service. In deployment of Web and OGSA services, a UDDI
registry is sometimes even omitted (WSDL descriptions are
shared via files outside of the system); in SOOA, lookup
services are mandatory due to the dynamic nature of objects
identified by service types. Interactions in SPOA are more like
client-server connections (e.g., HTTP, SOAP, IIOP) in many
cases with no need to use service registries at all.

Crucial to the success of SOOA is interface
standardization. Services are identified by interfaces (service
types); the exact identity of the service provider is not crucial
to the architecture. As long as services adhere to a given set of
rules (common interfaces), they can collaborate to execute
published operations, provided the requestor is authorized to
do so.

Let’s emphasize the major distinction between SOOA and
SPOA: in SOOA, a proxy is created and always owned by the
service provider, but in SPOA, the requestor creates and owns
a proxy which has to meet the requirements of the protocol
that the provider and requestor agreed upon a priori. Thus, in
SPOA the protocol is always a generic one, reduced to a
common denominator—one size fits all—that leads to
inefficient network communication in some cases. In SOOA,
each provider can decide on the most efficient protocol(s)
needed for a particular distributed application.

Service providers in SOOA can be considered as
independent network objects finding each other via a service
registry using object types (interfaces) and communicating
through message passing. A collection of these object sending
and receiving messages—the only way these objects
communicate with one another—looks very much like a
service object-oriented distributed system.

Do you remember the eight fallacies of network
computing[7]? We cannot just take an object-oriented
program developed without distribution in mind and make it a
distributed system, ignoring the unpredictable network
behavior. Most RPC systems, with notable exception of Jini
[15], hide the network behavior and try to transform local
communication into remote communication by creating
distribution transparency based on a local assumption of what
the network might be. However, every single distributed
object cannot do that in a uniform way as the network is a
distributed system and cannot be represented completely
within a single entity.

The network is dynamic, can’t be constant, and introduces
latency for remote invocations. Network latency also depends
on potential failure handling and recovery mechanisms, so we
cannot assume that a local invocation is similar to remote
invocation. Thus, complete transparency distribution—by
making calls on distributed objects as though they were
local—is impossible to achieve in practice. The distribution is
simply not just an object-oriented implementation of a single
distributed object; it’s a metasystemic issue in object-oriented

Fig. 2 Service object-oriented architecture

This is a DRAFT document and work in progress. Version: 04/07/2007

distributed programming. In that context Web/OGSA service
define distributed objects, but do not have anything common
with object-oriented distributed systems.

Exertion-based programming [32], [30] was introduced to
handle the metasystemic distribution in SORCER. It uses
indirect remote method invocation with no service provider
explicitly specified in a network request called an exertion.
Specialized infrastructure objects support exertion-oriented
programming. That infrastructure defines SORCER’s
distributed object modularity, extensibility, and reuse of
service-oriented components consistent with the relevant
metacomputing granularity and dependency injection—key
features of object-oriented distributed programming that are
usually missing in SPOA programming environments.

III. SORCER METACOMPUTING GRID
SORCER is a federated service-to-service (S2S)

metacomputing environment that treats service providers as
network objects with well-defined semantics of a federated
service object-oriented architecture (FSOOA). It is based on
Jini semantics of services [15] in the network and the Jini
programming model [6] with explicit leases, distributed events,
transactions, and discovery/join protocols. While Jini [16], [17]
focuses on service management in a networked environment,
SORCER is focused on exertion-oriented programming and
the execution environment for exertions.

As described in Section II, SOOA consists of three major
types of network objects: providers, requestors, and registries.
The provider is responsible for deploying the service on the
network, publishing its service to one or more registries, and
allowing requestors to access its service. Providers advertise
their availability on the network; registries intercept these
announcements and cache proxy objects to the provider
services. The requestor looks up proxies by sending queries to
registries and making selections from the available service
types. Queries generally contain search criteria related to the
type and quality of service. Registries facilitate searching by
storing proxy objects of services and making them available to
requestors. Providers use discovery/join protocols to publish
services on the network, requestors use discovery/join

protocols to obtain service proxies on the network. SORCER
uses Jini discovery/join protocols to implement its FSOOA.

In SOOA, a service provider is an object that accepts
remote messages from service requestors to execute an item of
work. These messages are called service exertions. An
exertion encapsulates service data, operations, and control
strategy. A task exertion is an elementary service request, a
kind of elementary remote instruction (elementary statement)
executed by a single service provider or a small-scale
federation. A composite exertion called a job exertion is
defined hierarchically in terms of tasks and other jobs, a kind
of network procedure executed by a large-scale federation.
The executing exertion is a service-oriented program that is
dynamically bound to all needed and currently available
service providers on the network. This collection of providers
identified in runtime is called an exertion federation. This
federation is also called an exertion space. While this sounds
similar to the object-oriented paradigm, it really isn’t. In the
object-oriented paradigm, the object space is a program itself;
here the exertion space is the execution environment for the
exertion that is a service-oriented distributed program. This
changes the programming paradigm completely. In the former
case the object space is hosted by a single computer, but in the
latter case the service providers are hosted by the network of
computers.

The overlay network of service providers is called the
service provider grid and an exertion federation is called a
virtual metacomputer. The metainstruction set of the
metacomputer consists of all operations offered by all service
providers in the grid. Thus, a service-oriented program is
composed of metainstructions with its own service-oriented
control strategy and service context [43] representing the
metaprogram parameters. Service signatures specify
metainstructions in SORCER. Each signature primarily is
defined by a service type (interface name), operation in that
interface, and a set of attributes. Three types of signatures are
distinguished: PROCESS, PREPROCESS, and
POSTPROCESS. A PROCESS signature—of which there is
only one allowed per exertion—defines the dynamic late
binding to a provider that implements the signature’s
interface. The service context describes the data that tasks and
jobs work on. Exertion-oriented programs (metaprograms)
allow for a dynamic federation to transparently coordinate
their execution within the grid. Please note that these
metacomputing concepts are defined differently in classical
grid computing where a job is just an executing process for a
submitted executable code with no federation being formed
for the executable.

In a federated service environment, the system is not made
up of just a single service, but the cooperation of many
services. A service exertion may consist of hierarchically
nested exertions that require different service types. A service
can be broken down into small component services instead of
being one monolithic all-in-one service. These smaller
component services—treated as virtual metacomputer

Fig. 3 SORCER layered platform, where P1 resources, P2 resource
management, P3 programming environment

This is a DRAFT document and work in progress. Version: 04/07/2007

instructions—can then be distributed among different hosts to
allow for reusability, scalability, reliability, and load
balancing.

Each SORCER provider (peer) implementing the common
Servicer interface, offers services to other peers [32] on the
object-oriented overlay network. These services are exposed
indirectly by methods in well-known public remote interfaces
and considered as elementary (tasks) or compound (jobs)
statements of the FSOOA. Requestors do not need to know
the exact location of a provider beforehand; they can find it
dynamically by discovering service registries (lookup
services) and then looking up a needed service implementing
required service types.

Despite the fact that every Servicer can accept any exertion,
Servicers have well defined roles in the SORCER S2S
platform (see Figure 3):
a) Taskers – process service tasks
b) Jobbers – process service jobs
c) Contexters – provide service contexts for APPEND

Signatures
d) FileStorers – provide access to federated file system

providers [34], [1], [3], [40]
e) Catalogers – Servicer registries
f) Persisters – persist service contexts, tasks, and jobs to be

reused for interactive exertion-based programming
g) Spacers – manage exertion spaces shared across Servicers

for space-based computing [10]
h) Relayers – gateway providers; transform exertions to native

representation, for example integration with Web services
and JXTA

i) Autenticators, Authorizers, Policers, KeyStorers – provide
support for service-oriented security

j) Auditors, Reporters, Loggers – support for accountability,
reporting and logging

k) Griders, Callers, Methoders – support conventional grid
computing (in cGrids)

l) Generic ServiceTasker and ServiceJobber implementations
are used to configure domain specific providers via
dependency injection—configuration files for smart
proxying and embedding business objects, called service
beans, into service providers.
An exertion can be created interactively [33] or

programmatically (using SORCER APIs), and its execution
can be monitored and debugged [35], [21] in the overlay
service network via service user interfaces (Service UI [41])
attached to providers and installed on the fly by service
browsers [14]. Service providers do not have mutual
associations prior to the execution of an exertion; they come
together dynamically (federate) for all nested tasks and jobs in
the exertion. Domain specific providers within the federation,
or task peers called Taskers, execute service tasks. Jobs are
coordinated by rendezvous peers: a Jobber or Spacer, two of
the SORCER core services (see Fig. 3 for details), of the
SORCER platform. However, a job can be sent to any service
provider (peer). A peer that is not a Jobber type is responsible

for forwarding the job to an available job peer in the SORCER
grid and returning results to the requestor. Thus implicitly,
any peer can handle any job or task. Once the job execution is
complete, the federation dissolves and the providers disperse
to seek other exertions to join.

An Exertion is invoked by calling on its exert method. The
SORCER API defines the following three related operations:
1. Exertion.exert(Transaction):Exertion - join the federation
2. Servicer.service(Exertion, Transaction):Exertion – request a

service in the federation initiated by the receiver

3. Exerter.exert(Exertion, Transaction):Exertion – execute the
component exertion by the target provider in the federation

This Triple Command pattern [32], [13] defines various
implementations of these interfaces: Exertion (metaprogram),
Servicer (generic peer provider), and Exerter (service provider
exerting a particular type of Exertion). This approach allows
for the P2P environment [24] via the Servicer interface,
extensive modularization of Exertions and Exerters, and
extensibility from the triple design pattern so requestors can
submit any service-oriented programs (exertions) they want
with or without transactional semantics. The triple Command
Pattern is used as follows:
1. An exertion can be invoked by calling

Exertion.exert(Transaction). The Exertion.exert operation
implemented in ServiceExertion uses ServiceAccessor to
locate in runtime the provider matching the exertion’s
PROCESS signature .

2. If the matching provider is found, then on its access proxy
(which can also be a smart proxy) the
Servicer.service(Exertion, Transaction) method is invoked.

3. When the requestor is authenticated and authorized by the
provider to invoke the method defined by the exertion’s
PROCESS signature, then the provider calls its own exert
operation: Exerter.exert(Exertion, Transaction).

4. Exerter.exert method calls exert on either of ServiceTasker or
ServiceJobber (depending on the type of the exertion: either
Task or Job) that by reflection calls the method specified in
the PROCES signature (interface and selector) of the
exertion. All application domain methods of any
application interface (custom Tasker interfaces) have the
same signature: a single Context type parameter and a
Context type return vale. Thus a custom interface looks like
an RMI interface with the above simplification on the
common signature for all interface methods.

The fundamentals of exertion-oriented programming and
SORCER federated method invocation are described in [32].

In Fig. 4 four use cases are presented to illustrate push vs.
pull exertion-oriented computing. We assume that an exertion
is a job with two component exertions executed in parallel (a
and b). The Job exertion can be submitted directly to either
Jobber (use cases: 1. access is PUSH, and 2. access is DROP)
or Spacer (use cases: 3. access is PUSH, and 4. access is

This is a DRAFT document and work in progress. Version: 04/07/2007

DROP) depending on the exertion’s interface defined in its
PROCES signature. In cases 1 and 2 the signature is Jobber
and in cases 3 and 4 the signature is Spacer. The exertion’s
ServicerAccessor delivers the right service proxy, either for a
Jobber or Spacer. Depending on the access type of the parent
exertion, all the component exertions are pushed to relevant
providers according to their signatures (case 1 and 3), or
dropped into the exertion space by the Jobber (case 2) and
Spacer (case 4). In the cases 2 and 4, the component exertions
are pulled from the exertion space by providers matching their
signatures as soon as they are available to do any processing
(case 2 and 4). Thus Spacers provide efficient load balancing
for processing the exertion space.

IV. SORCER COMPUTING GRID
Also, to use legacy applications, SORCER supports a

traditional approach to grid computing similar to those found
in Condor [5] and Globus [38]. Here, instead of exertions
being executed by services providing business logic for
requested exertions, the business logic comes from the service
requestor's executable programs that seek compute resources
on the network.

The cGrid-based services in the SORCER environment
include Grider collaborating Jobber for compute grid job
submission, and Caller and Methoder services for task
execution [32]. Callers execute conventional programs via a
system call as described in the Caller’s service context of the
submitted task. Methoders download required Java code (task
method) from requestors to process any submitted context
accordingly with the downloaded code. In either case, the
business logic comes from requestors; it is conventional
executable code invoked by Callers with the standard Caller’s
service context or mobile Java code executed by Methoders
with any service context provided by the requestor.

The SORCER cGrid with Methoders was used to deploy an
algorithm called Basic Local Alignment Search Tool
(BLAST) [1] to compare newly discovered, unknown DNA
and protein sequences against a large database with more than
3 gigabytes of known sequences. BLAST (C++ code) searches
the database for sequences that are identical or similar to the
unknown sequence. This process enables scientists to make
inferences about the function of the unknown sequence based
on what is understood about the similar sequences found in
the database. Many projects at the USDA–ARS’s Livestock

Issues Research Unit, for example, involve as many as 10,000
unknown sequences, each of which must be analyzed via the
BLAST algorithm. A project involving 10,000 unknown
sequences requires about three weeks to complete on a single
desktop computer. The S-BLAST implemented in SORCER
[19], a federated form of the BLAST algorithm, reduces the
amount of time required to perform searches for large sets of
unknown sequences. S-BLAST is comprised of BlastProvider
(with the attached BLAST Service UI), Jobbers, Spacers, and
Methoders. Methoders in S-BLAST download Java code (a
service task method) that initializes a required database before
making system call for the BLAST code. Armed with the S-
BLAST’s cGrid and 17 commodity computers, projects that
previously took three weeks to complete can now be finished
in less than one day.

The SORCER cGrid with Griders, Jobbers, Spacers, and
Callers has been successfully deployed with the Proth program
(C code) and easy-to-use zero-install Service UIs attached to a
Grider and the SORCER federated file system.

V. SORCER FEDERATED FILE SYSTEM

The SILENUS federated file system [1], [3] was designed

and developed to provide data access for metaprograms. It
complements the file store developed for FIPER [34] with the
true P2P services. The SILENUS system itself is a collection
of service providers that use the SORCER framework for
communication.

In classical client-server file systems, a heavy load may
occur on a single file server. If multiple grid requestors try to
access large files at the same time, the server will be
overloaded. In a P2P architecture, every host is a client and a
server at the same time. The load can be balanced between all
peers if files are spread across all of them. The SORCER
architecture splits up the functionality of the metacomputer
into smaller service peers (Servicers), and this approach was
applied the distributed file system as well.

The SILENUS federated file system is comprised of several
network services that run within the SORCER environment.
These services include a byte store service for holding file
data, a metadata service for holding metadata information
about the files, several optional optimizer services, and facade
services to assist in accessing federating services. SILENUS is
designed so that many instances of these services can run on a
network, and the required services will federate together to
perform the necessary functions of a file system. In fact the
SILENUS system is completely decentralized, eliminating all
potential single point failures. SILENUS services can be
broadly categorized into gateway components, data services,
and management services.

The SILENUS facade service provides a gateway service to
the SILENUS Grid for requestors that want to use the file
system. Since the metadata and actual file contents are stored
by different services, there is need to coordinate
communication between these two services. The facade
service itself is split into a provider component, called the
coordinator, and a smart proxy component that contains

Fig. 4 Push vs. Pull exertion computing

This is a DRAFT document and work in progress. Version: 04/07/2007

needed inner proxies provided dynamically by the coordinator.
These inner proxies facilitate P2P communications for file
upload and download between the requestor and SILENUS
federating services like metadata and byte stores.

Core SILENUS services have been successfully deployed
as SORCER services along with WebDAV and NFS adapters.
The SILENUS file system scales very well with a virtual disk
space adjusted as needed by the corresponding number of
required byte store providers and the appropriate number of
metadata stores required to satisfy the needs of current users
and service requestors. The system handles several types of
network and computer outages very well by utilizing
disconnected operation and data synchronization mechanisms.
It provides a number of user agents including a zero-install
file browser (service UI) attached to the SILENUS Facade.
This file browser with file upload and download functions is
combined with an HTML editor and multiple viewers for
documents in HTML, RTF, and PDF formats. Also a simpler
version of SILENUS file browser is available for smart MIDP
phones.

SILENUS supports storing very large files [40] by
providing two services: a splitter service and a tracker service.
When a file is uploaded to the file system, the splitter service
determines how that file should be stored. If a file is
sufficiently large enough, the file will be split into multiple
parts, or chunks, and stored across many byte store services.
Once the upload is complete, a tracker service keeps a record
of where each chunk was stored. When a user requests to
download the full file later on, the tracker service can be
queried to determine the location of each chunk and the file
can be reassembled to the original form.

VI. SORCER IGRID
Relayers are SORCER gateway providers that transform

exertions to native representations and vice versa. The
following Exertion gateways have been developed: JxtaRelayer
for JXTA, and WsRpcRelayer and WsDocRelayer for for RPC
and document style Web services, respectively. Relayers
exhibit native and mcGrid behavior. Some native cGrid
providers play SORCER role (SORCER wrappers) thus, are
available in the iGrid along with mcGrid providers. Also,
native cGrid providers via own relayers can access iGrid
services (bottom-up).

The iGrid-integrating framework is depicted in Fig 5,
where horizontal native technology grids (bottom) are
seamlessly integrated with horizontal SORCER mcGrids via
the SORCER operating system services. Through the use of
open standards-based communication—Jini, Web Services,
Globus/OGSA, and Java interoperability—iGrid leverages
SORCER mcGrid’s SOOA with its inherent protocol, location,
and provider implementation neutrality, along with
architectural qualities—flexibility, scalability, and adaptability
for Intergrid computing.

VII. CONCLUSIONS
A Grid is not just a collection of distributed objects; it’s the

network of objects. From an object-oriented point of view, the

network of objects is the problem domain of object-oriented
distributed programming that requires relevant abstractions in
the solution space. The SORCER architecture shares the
features of grid systems, P2P systems and provides a platform
for procedural programming and service-oriented
metaprogramming. Exertion-based programming introduces
new network abstractions with federated method invocation in
SOOA. Service providers register proxies, including smart
proxies, via dependency injection using twelve methods
investigated in SORCER. Executing a top-level exertion
means a dynamic federation of currently available providers in
the network collaboratively process service contexts of all
nested exertions. Services are invoked by passing exertions on
to providers indirectly via object proxies that act as access
proxies allowing for service providers to enforce a security
policy on access to services. When permission is granted, then
the operation defined by a signature is invoked by reflection.
SORCER allows for the P2P computing via the common
Service interface, extensive modularization of Exertions and
Exerters, and extensibility from the triple command design
pattern. The SORCER federated file system is modularized
into a collection of distributed providers with multiple remote
Façades. Façades supply uniform access points via their smart
proxies available dynamically to file requestors. A Façade’s
smart proxy encapsulates inner proxies to federating providers
accessed directly (P2P) by file requestors.

The SORCER iGrid has been successfully tested in
multiple concurrent engineering, large-scale distributed
applications [26], [28], [4], [11], [12], [18], [20]. Due to the
large-scale complexity of the evolving iGrid environment, it is
still a work in progress and continues to be refined and
extended by the SORCER Research Group at Texas Tech
University [36] in collaboration with Air Force Research Lab,
WPAFB.

ACKNOWLEDGMENT
I would like to thank all my students in the SORCER

Research Group [37] for their motivation, innovation, and
excitement they generate when working on the iGrid
development. Without their research efforts, it would not be
possible to integrate so many different views of Grid

Fig. 5 Integrating and wrapping cGrids with SORCER mcGrids. Two
requestors, one in JXTA iGrid, one in OGSA iGrid submits exertion to a
corresponding relayer. Two federations are formed that include providers
from all the two horizontal layers below the iGrid layer (as indicated by
continues and dashed links).

This is a DRAFT document and work in progress. Version: 04/07/2007

computing and to validate so many diverse and controversial
opinions on distributed objects and iGrid computing.

REFERENCES
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J.,

Basic Local Alignment Search Tool." J. Mol. Biol. 215:403-410, 1990.
[2] Berger, M., Sobolewski, M., SILENUS – A Federated Service-oriented

Approach to Distributed File Systems, In Next Generation Concurrent
Engineering [31]. pp. 89-96, 2005.

[3] Berger, M., Sobolewski, M., Lessons Learned from the SILENUS
Federated File System, Proceeding of the 14th Conference on
Concurrent Engineering, São José dos Campos, Brazil, Springer Verlag,
2007.

[4] Burton S.A., Tappeta R., Kolonay R.M., Padmanabhan D., Turbine
Blade Reliability-based Optimization Using Variable-Complexity
Method, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, April 2002, Denver, Colorado.
AIAA 2002-1710, 2002.

[5] Condor: High Throughput Computing, Available at:
http://www.cs.wisc.edu/condor/condor_globus.html. Accessed on:
March 15, 2007.

[6] Edwards W.K., Core Jini, 2nd ed., Prentice Hall, ISBN: 0-13-089408,
2000.

[7] Fallcies of Distributed Computing. Available at:
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing.
Accessed on: March 15, 2007.

[8] FIPER: Federated Intelligent Product EnviRonmet. Available at:
http://sorcer.cs.ttu.edu/fiper/fiper.html. Accessed on: March 15, 2007.

[9] Foster I., Kesselman C., Nick J., S. Tuecke S., The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration., Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002. Available at:
http://www.globus.org/alliance/publications/papers/ogsa.pdf. Accessed
on: March 15, 2007.

[10] Freeman, E., Hupfer, S., & Arnold, K. JavaSpaces™ Principles,
Patterns, and Practice, Addison-Wesley, ISBN: 0-201-30955-6 (1999)

[11] Goel S., Shashishekara, Talya S.S., Sobolewski M., Service-based P2P
overlay network for collaborative problem solving, Decision Support
Systems, Volume 43, Issue 2, March 2007, pp. 547-568, 2007.

[12] Goel, S, Talya S., and Sobolewski, M., Preliminary Design Using
Distributed Service-based Computing, In Next Generation Concurrent
Engineering [31], pp. 113-120, 2005.

[13] Grand M., Patterns in Java, Volume 1, Wiley, ISBN: 0-471-25841-5,
1999.

[14] Inca X™ Service Browser for Jini Technology. Available at:
http://www.incax.com/index.htm?http://www.incax.com/service-
browser.htm. Accessed on: March 15, 2007.

[15] Jini architecture specification, Version 1.2., 2001. Available at:
http://www.sun.com/software/jini/specs/jini1.2html/jini-title.html.
Accessed on: March 15, 2007.

[16] Jini, Wikipedia. Available at: http://en.wikipedia.org/wiki/Jini.
Accessed on: March 15, 2007.

[17] Jini.org, Available at: http://www.jini.org/.
Accessed on: March 15, 2007.

[18] Kao K.J., Seeley C.E., Yin Su, Kolonay R.M., Rus T., Paradis M.J.,
Business-to-Business Virtual Collaboartion of Aircraft Engine
Combustor Design, Proceedings of DETC’03 ASME 2003 Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Chicago, Illinois USA, Sept. 2003.

[19] Khurana V., Berger M., Sobolewski M., A Federated Grid
Environment with Replication Services. In Next Generation
Concurrent Engineering [31], pp. 97-103, 2005.

[20] Kolonay, R.M., Sobolewski, M., Tappeta, R., Paradis, M., Burton, S.
2002, Network-Centric MAO Environment. The Society for Modeling
and Simulation International, Westrn Multiconference, San Antonio,
TX, 2002.

[21] Lapinski, M., Sobolewski, M., Managing Notifications in a Federated
S2S Environment, International Journal of Concurrent Engineering:
Research & Applications, Vol. 11, pp. 17-25, 2003.

[22] McGovern J., Tyagi S., Stevens M.E., Mathew S., Java Web Services
Architecture, Morgan Kaufmann, 2003.

[23] Nimrod: Tools for Distributed Parametric Modelling. Availabel at:
http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm.
Accessed on: March 15, 2007.

[24] Oram Andy, Editor, Peer-to-Peer: Harnessing the Benefits of
Disruptive Technology, O'Reilly (2001)

[25] Project Rio, A Dynamic Service Architecture for Distributed
Applications. Available at: https://rio.dev.java.net/. Accessed on:
March 15, 2007.

[26] Röhl, P.J., Kolonay, R.M., Irani, R.K., Sobolewski, M., Kao, K. A
Federated Intelligent Product Environment, AIAA-2000-4902, 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Long Beach, CA, September 6-8, 2000.

[27] Ruh W.A., Herron T., Klinker P., IIOP Complete: Understanding
CORBA and Middleware Interoperability, Addison-Wesley (1999)

[28] Sampath R., Kolonay R.M, Kuhne C.M., “2D/3D CFD Design
Optimization Using the Federated Intelligent Product Environment
(FIPER) Technology”, AIAA-2002-5479, 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Atlanta,
GA, Sept. 2002

[29] Sobolewski M., Federated P2P services in CE Environments,
Advances in Concurrent Engineering, A.A. Balkema Publishers, 2002,
pp. 13-22, 2002.

[30] Sobolewski M., FIPER: The Federated S2S Environment, JavaOne,
Sun's 2002 Worldwide Java Developer Conference, 2002. Available at:
http://sorcer.cs.ttu.edu/publications/papers/2420.pdf.
Accessed on: March 15, 2007.

[31] Sobolewski M., Ghodous P. (Eds), Next Generation Concurrent
Engineering. Proceeding of the 12th Conference on Concurrent
Engineering: Research and Applications, ISPE/Omnipress (2005)

[32] Sobolewski M., Metacomputing with Federated Method Invocation,
Technical Report SL-TR-11, March 2007. Available at:
http://sorcer.cs.ttu.edu/publications/papers/FMI.pdf. Accessed on:
April 5, 2007.

[33] Sobolewski M., Kolonay R., Federated Grid Computing with
Interactive Service-oriented Programming, International Journal of
Concurrent Engineering: Research & Applications, Vol. 14, No 1., pp.
55-66 , 2006.

[34] Sobolewski, M., Soorianarayanan, S., Malladi-Venkata, R-K. 2003,
Service-Oriented File Sharing, Proceedings of the IASTED Intl.,
Conference on Communications, Internet, and Information technology,
pp. 633-639, Nov 17-19, Scottsdale, AZ. ACTA Press, 2003.

[35] Soorianarayanan, S., Sobolewski, M., Monitoring Federated Services
in CE, Concurrent Engineering: The Worldwide Engineering Grid,
Tsinghua Press and Springer Verlag, pp. 89-95, 2004.

[36] SORCER Research Group. Available at: http://sorcer.cs.ttu.edu/.
Accessed on: March 15, 2007.

[37] SORCER Research Topics. Available at: http://sorcer.cs.ttu.edu/theses/.
Accessed on: March 15, 2007.

[38] Sotomayor B., Childers L., Globus® Toolkit 4: Programming Java
Services, Morgan Kaufmann (2005)

[39] Thain D., Tannenbaum T., Livny M.. Condor and the Grid. In Berman
F., Hey A.J.G., Fox G., editors, Grid Computing: Making The Global
Infrastructure a Reality. John Wiley , 2003.

[40] Turner A., Sobolewski M., FICUS - A Federated Service-Oriented File
Transfer Framework, Proceeding of the 14th Conference on Concurrent
Engineering, São José dos Campos, Brazil, Springer Verlag (2007)

[41] The Service UI Project. Available at:
http://www.artima.com/jini/serviceui/index.html.
Accessed on: March 15, 2007.

[42] Waldo J., The End of Protocols, Available at:
http://java.sun.com/developer/technicalArticles/jini/protocols.html.
Accessed on: March 15, 2007.

[43] Zhao, S., and Sobolewski, M., Context Model Sharing in the FIPER
Environment, Proc. of the 8th Int. Conference on Concurrent
Engineering: Research and Applications, Anaheim, CA , 2001.

