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Abstract 
The default Java implementation for security policies 
based on policy files doesn’t comply with the specific 
needs of metacomputing environments. Managing a large 
number of policy files for all Java runtime systems in the 
metacomputing system doesn’t scale. This paper presents 
a federated approach for security policy management in 
Java-based metacomputing systems. Security policies are 
stored in a policy base, which is managed by its policy 
service provider (Policer). The policy base and its Policer 
are replicated and the replicated policy bases are 
synchronized with each other in order to avoid a single 
point of failure. Any bootstrapping service provider gets 
its security policy from any available Policer on the 
network. The proposed solution ensures uniform policy-
based authorization for all the services in the 
metacomputing environment through the use of the 
scalable policy management methodology. The Service 
ORiented Computing Environment (SORCER) is 
considered as a validation case for service-oriented 
security policy management solution presented in this 
paper. 
 
1. Introduction 

Built on the OO paradigm is the service-object 
oriented (SOO) paradigm, in which the objects are 
distributed, or more precisely they are remote (network) 
objects and play some predefined roles. A service 
provider is an object that accepts remote messages, called 
exertions, from service requestors to execute an 
elementary item of work (instruction) – a service task, or 
a composite item of work (procedure) – a service job. 

The exertion becomes an SOO program that is 
dynamically bound to all relevant and currently available 
service providers on the network. This collection of 
providers dynamically participating in this federated 
remote invocation is called an exertion federation. 
This federation is also called a virtual metacomputer as 
federating services executing component exertions are 
located on multiple physical compute nodes held 
together by an SOO infrastructure so that, to the 
individual requestor submitting the exertion, it looks and 
acts like a single computer. 

The SORCER environment [14] provides the means to 
create interactive SOO programs and execute them 
without writing a line of source code [13]. Exertions can 
be created using interactive user interfaces downloaded 
directly from service providers. Using these 

interfaces the user can execute and monitor the execution 
of exertions in the SOO metacomputer. The exertions can 
be persisted for later reuse. This feature allows the user 
quickly to create new applications or programs on the fly 
in terms of existing tasks and jobs. 

In this paper a security policy management system is 
described to allow the exertion federation for a secure 
collaboration with presented policy services that enforce 
security permissions on all the federating providers. 
 
2. Background review 

The default implementation for security policy 
management in a Java runtime system relies on policy 
configuration files. These files have a simple hierarchical 
syntax composed of grant statements, each of which can 
be associated with a code base, a set of principals 
(optionally) and a set of permissions. A grant statement as 
a whole specifies the security permissions allowed to code 
downloaded from the code base, on the local Java runtime 
system. When a set of principals is included, the 
permissions are granted only to the entities corresponding 
to those principals. Since policy files have such a simple 
syntax and are saved in plaintext, they can be created 
manually using a text editor. Another option is to use the 
graphical utility called Policy Tool [16]. By default there 
is only one system policy file (java.policy saved in 
the lib/security directory in the Java runtime 
installation directory) and one (optional) user policy file 
(saved in the user’s home directory) [15]. In order to 
enforce checking of the permissions stored in policy files, 
the security manager must be enabled at runtime. It 
ensures that a static Policy object is instantiated and 
populated based on the information coming from the 
system and user’s policy files. 

Such an approach is sufficient in the vast majority of 
cases, but being a default implementation, it may not be 
adequate for special types of applications. Policy files 
have a well-known syntax, are saved in plaintext and the 
location where they are stored is commonly known [7]. 
This means that even unauthenticated and unauthorized 
personnel can make harmful changes to their content 
when the policy file write access is not set correctly. 
Thus, policy files can create a breach in the security of a 
system and do not represent an adequately secure solution 
for applications that require high level security. As well, 
policy objects created from policy files are static objects 
and changes made to the policy files are not reflected by 
the Java runtime system unless it is restarted. In this case, 



the default implementation with policy files shows a lack 
of flexibility that might be essential for some distributed 
applications. 

Jini services [8], which employ the SOO paradigm, 
also use policy files to handle security permissions. In this 
case though, the policy object is dynamically created 
when the service is discovered [8]. The policy object 
created at bootstrapping is an instance of the 
AggregatePolicyProvider class, which supports the 
association of sub-policies with context class loaders. The 
sub-policy associated with the current context class loader 
or any of its parents is the active policy. If no such policy 
is found, then the fallback sub-policy (main policy) 
becomes the active one. An object instantiating a class 
implementing the DynamicPolicy interface is always 
defined as the main policy. A sub-policy instance of the 
LoaderSplitPolicyProvider class is associated with the 
current class loader. The LoaderSplitPolicyProvider sub-
policy delegates permission queries and grants to either a 
sub-policy instance of the PolicyFileProvider class (if the 
current class loader, its children or the null class loader 
are involved in the query) or a sub-policy implementing 
the DynamicPolicy interface. All permission checks are 
handled by the currently active policy. In order to 
populate the sub-policy implementing the 
PolicyFileProvider class, the policy file specified in the 
service’s configuration file is consulted. 

Relying on policy files to enforce authorization on Jini 
services can cause a scalability problem. For example, if 
the same service is deployed on hundreds of hosts and 
later on some modification to the policy file is required, 
this change will need to be manually replicated on all 
related hosts. This can be not only time consuming and 
error-prone but as well difficult to perform in a quick and 
correct manner. 

In federated computing environments in general, the 
scalability and security problems raised by enforcing 
authorization with policy files still exist. On top of that, 
there is another issue regarding the rigid syntax of policy 
files [7]. A security policy management based on roles 
may be needed for metacomputing systems, but it cannot 
currently be represented in a policy file. A more flexible 
syntax is required for such environments. 
 
3. Security policy management framework 

 In the federated computing environments that use 
policy files to handle authorization, a large number of 
policy files reside on hosts. For each service provider 
there is one policy file (see Figure 1). If there are multiple 
service providers started on the same host, the host will 
contain one policy file for each type of started service 
provider. This means that on the whole federated 
environment there can be hundreds of policy files to 
manage. Modifying all these files and especially keeping 
the policy files synchronized is definitely cumbersome. 

Although policy files have a simple syntax, understanding 
which permissions should be allowed and to what 
downloaded code can be very difficult, especially in the 
case of metacomputing environments. This increases the 
possibility of untrained (and of course not authenticated 
or not authorized) personnel making changes that can 
affect the security of the system, even unintentionally. 

 
Figure 1. Federated computing environments using policy 

files 
 
 The solution to these security and scalability problems 
in the federated computing environment is to centrally 
manage the security policies. In order to do that we 
propose to store all the security permission information in 
a central base managed by a special service provider 
(Policer). Having all the permissions stored in the central 
base eases the management and updating operations, since 
they are performed in one place only, not on all the hosts. 
On the other hand, having all the security policy 
information stored in a single place can generate the one-
point failure.  
 Having a centrally managed policy base and avoiding 
the one-point failure problem can be combined by 
replicating the Policer and its policy base in the federated 
computing environment. At all times it must be ensured 
that at least one Policer is active and able to enforce 
authorization in the environment. The policy bases of all 
the active policers must be synchronized. Thus, when a 
policer bootstraps, it contacts any other active policer and 
synchronizes its policy base to that of the active policer. 
 An authenticated and authorized administrator is able 
to modify the security information stored in policers’ 
bases through the administrative user agent. This is a 
graphical interface that allows the administrator to 
modify, insert and delete security policies in the policy 
base. If all policers would provide the administrative user 
agent, this could create problems in the case of concurrent 
modifications in multiple policers. The same security 
policy should be present in all policy bases at all times for 
the same service provider. But, for example, if at the same 
time two different authorized administrators make 
conflicting changes on the same security policy, then the 
policers would not know which one of the two 



modifications is the correct one, the one to persist in the 
policy base.  
 This concurrency problem is solved currently by 
allowing only one of the active replicated policers in the 
environment to provide the user agent at all times. If the 
active policer enabling policy administration 
(AdminPolicer) suddenly becomes inactive, a new 
AdminPolicer is elected from the group of already active 
policers. This master-slave approach (where the master is 
the AdminPolicer and the slaves are all the other policers) 
simplifies the synchronization of the policy bases. 
Whenever the AdminPolicer receives a modification from 
an authorized administrator through the user agent, it 
notifies all other active policers about the current update. 
Through this mechanism all active slave policers 
continually maintain their policy bases synchronized with 
that of the AdminPolicer. This also implies that two 
policers must be active in the environment all the time: 
the master policer and a slave policer that can take over 
the role of the master whenever the current master 
becomes inactive. 

Any policer (master or slave) is able to provide the 
security policy object to a requesting service provider. At 
service bootstrapping, every service provider contacts 
dynamically an active policer and asks for its policy 
object. After mutual authentication between the 
bootstrapping service provider and the contacted policer, 
the policer retrieves the security policy information for 
the bootstrapping service provider from the policy base. It 
then creates a policy object, populates it with the security 
information retrieved from the policy base and passes this 
policy object to the service provider. On its side, the 
bootstrapping service provider reinforces all permissions 
contained in the received policy object.  

Any change made by an authorized administrator to 
the security policy of a service provider is immediately 
enforced on all active service providers of that policy 
type. The AdminPolicer receiving the change through its 
user agent is responsible for notifying all the 
corresponding active service providers of the policy 
modification and for passing the new policy object on to 
them. The service providers receiving the modified policy 
object dynamically reinforce the new security policy on 
their side. Figure 2 briefly illustrates the main 
components of the proposed framework. 

In the case of disconnected operations a strict policy 
object containing the minimal set of permissions that 
would allow normal functioning should be available to 
any service provider. Therefore, when the bootstrapping 
service provider fails to contact any of the policers due to 
intermittent lack of connectivity, the provider gets the 
default minimal policy object and reinforces it on itself. 
The provider will try to get its proper policy from any 
available policer later. 

 
Figure 2. Proposed solution for federated computing 

environments 
 
The federated policy management system is protected 

against outside intrusions by its own security solution. 
Administrators are authenticated and authorized before 
being allowed to access the administrative user agent and 
make any modifications to the existing policy base. 
Confidentiality and integrity is enforced on all remote 
communication channels. The actual schema of the policy 
base is hidden to the administrators and all other users. 
 
4. Design of a policy management system 

 The architecture of the federated policy management 
system is described in Section 3 and design details of the 
security policy management system are presented in this 
Section. Different possible approaches and design 
decisions regarding the major components (see Figure 3) 
and their interaction are discussed as well. 
 
4.1. Policy base 
 The policy base is represented by a relational database, 
which for now mimics the structure of a policy file (see 
Figure 4). Later on, the database schema can be easily 
modified to reflect any additional needs of a federated 
computing environment, for example role management.  

The main table of the schema is Policy. This contains 
all the information needed to identify a service provider’s 
security policy and to distinguish between different 
security policies stored in the database: service ID, 
service provider name, main published interface, location, 
host where the service is running and user directory where 
the service was started. A combination of these attributes 
is passed by the bootstrapping service provider to an 
active policer and is used by the contacted policer to 
retrieve the right security policy from the database (step 1 
in the interaction diagram in Figure 3).  



 
Figure 3. Interaction diagram of the policy management 

system 
 

The information that would otherwise appear in a 
grant statement in a policy file is stored in the Grant 
table: code base and an optional keystore for the signer of 
that code base. The User table stores information about 
the (optional) principals. The Permission table contains 
records similar to the permission statements of a policy 
file: permission class, target name, and optionally action 
and signer.  

 
Figure 4. Policy database schema 

 
All the strings that would appear repeatedly in 

different tables or records (such as class names, target 
names, etc.) are stored in the Map table. In the record 
where they should actually appear, the strings are 
replaced by a reference to the corresponding record in the 
Map table. The association tables Grants, Permissions 
and Principals allow for a flexible grouping of grants into 
policies, permissions into grants, and principals to grants 
respectively. Thus, the records in the Grant, Permission 
and User tables become highly reusable across different 
security policies. 

There are two main choices regarding the relational 
database to be used: either an embedded or an enterprise 

database. Since our database is fairly small (only eight 
tables) and it requires secure and fast access to data and 
limited human administration or interruption, the best 
solution seems to be an embedded database [5]. An 
enterprise database would be more adequate for a large 
enterprise system, which is not the case here. An 
embedded relational database has yet another advantage 
over the enterprise solution: there is no need to secure the 
communication between the application and the database, 
as it would be required if a stand alone database were 
used. 

On the other hand, in order to confer more flexibility to 
the framework both solutions might be implemented. 
Different embedded and enterprise databases could be 
used for storage and the requestor allowed choosing 
between these implementations. In case multiple storage 
solutions are provided, Hibernate might be considered as 
a portable middle object-oriented layer between the 
application and the various relational databases [10]. 

 
4.2. Administrative user agents 
 Only authenticated and authorized administrators are 
allowed to get the administrative user agent (steps 2, 2.1, 
and 2.1.1, Figure 3). There are different solutions for 
personnel authentication and authorization. The simplest 
one is based on login and password verification against 
security information stored on a policer. A more secure 
and advanced solution would require the use of smart 
cards, case in which keys are stored on the actual smart 
card only. A third solution worth considering would be 
the Kerberos protocol, which provides strong 
authentication by using secret-key cryptography [4, 6] and 
never passing the actual password through the network. In 
order to confer more flexibility to the environment, the 
best solution is to have all these approaches implemented 
and let the client select the suitable one for him. 
 The graphical interface of the Policy Tool utility [16] 
is used as a Service UI [17] model for the administrative 
user agent. Since the policy database follows a structure 
similar to that of a policy file and Policy Tool is designed 
to work with the same structure, many of the windows of 
this utility (such as the windows where grants, 
permissions, and principals are edited) are reused exactly 
as they are by the administrative user agent. 
 In order to comply with the specific needs of the 
database schema focused on federated metacomputing, 
some major changes have been made to the GUI inspired 
by Policy Tool. Fields identifying the service provider to 
which the edited policy belongs are added on the policy 
editing window: service ID, service provider name, 
implemented interface, etc. The first window to appear is 
a window listing all policies in the database. The policies 
displayed in a scroll box should be identifiable by all the 
components: service ID, service provider name, etc. The 
changes to the policy information are persisted in the 
policy base by the AdminPolicer instead into a file.  



 
4.3. Policer replication and synchronization 
 The RIO framework [9] is used for policer 
provisioning in order to ensure that at least two active 
policers exist in the environment at all times. In case the 
master policer fails, a protocol for the election of the new 
master is applied: the remaining active slave policers send 
a message to the other active policers requiring to be 
elected as the new master. The first slave policer sending 
this message becomes the new master. 
 The databases of all active policers must contain the 
latest security policy information at all times. The 
synchronization of the databases of active policers is 
managed by the master policer. It remembers all the 
active slave policers in a continuously updated structure 
(hash table) and notifies all the policers in this structure of 
any policy modification coming from an administrator 
(step 2.1.1.1, Figure 3). The synchronization of 
bootstrapping policers (step 3, Figure 3) relies on the 
order of database events rather than on an unreliable real 
time clock. A vector clock timestamp is associated with 
every record in the database. The bootstrapping policer 
compares its latest vector clock timestamp with that of an 
active policer’s to know how much behind it is. Then, 
either the modified records are updated or, if too many 
changes have occurred in the meantime, the whole 
database is copied from the active policer to the 
bootstrapping policer. 
 
4.4. Policy reinforcement on service providers 
 The policy object coming from a contacted policer can 
be either statically or dynamically reinforced on the 
bootstrapping service provider (steps 1.1 and 2.1.1.1.2.1, 
Figure 3). A static enforcement would imply the 
replacement of whatever policy object was initially 
applied to the service provider by the new policy object 
coming from the policer. A dynamic enforcement on the 
other hand would imply adding the new policy object 
under the umbrella of the existing 
AggregatePolicyProvider object. In this case, the new 
policy object passed by the policer would add a new layer 
of restrictions on top of those already existing. Again, for 
flexibility reasons, both solutions should be implemented, 
with the dynamic approach considered the default 
behavior. The provider could choose otherwise by setting 
a required option in its startup configuration. 
 
4.5. Security of the policy management 
framework 
 Authentication and authorization are enforced on the 
user agents of the AdminPolicer (step 2.1, Figure 3), 
which represent the only point of contact between the 
policy management framework and the exterior world in a 
design based on an embedded policy database. 
Confidentiality and integrity of the transferred data is 

ensured on all the communication channels between 
different policers, policers and service providers, and the 
AdminPolicer and the user agent by the use of Secure 
Socket Layer (SSL) [3]. Availability of security policy 
information is guaranteed through the automated 
replication and provisioning of policers. Modifications to 
policy information are not very frequent, thus only one 
AdminPolicer in the environment can handle all the 
workload. 
 
5. Implementation 

Parts of the proposed security policy management 
system have already been implemented. Static 
reinforcement of received policy object on the 
bootstrapping service provider’s side is already available. 
The policer provider uses the Mckoi embedded database 
for policy persistence [1].  

The SORCER [11-14] Grid (SGrid) was used as a 
validation case. An existing arithmetic service provider in 
the SGrid was modified to allow for static reinforcement 
of policy objects coming from a policer and its database. 
The goal of the arithmetic provider is to remotely execute 
various calculations requested by clients using the 
arithmetic user agent.  

The testing scenarios relied on two different 
configuration files for the arithmetic service provider. In 
the first case, the service provider was Policer Tester, 
while in the second one the provider was Restricted 
Policer Tester. The policy stored in the database for the 
Policer Tester provider allowed for all permissions to 
code coming from any source. For the Restricted Policer 
Tester provider though, only the minimal set of 
permissions required by the service to start up was 
allowed. In the latter, it didn’t include read permission for 
an “input.txt” file which was optionally used by the user 
agent to retrieve input numbers for the calculations.  

The testing worked as follows: the policer, and then 
the two arithmetic testers named Policer Tester and 
Restricted Policer Tester were started. The two arithmetic 
providers dynamically contacted the policer, asked for 
their policy objects, which the policer identified using the 
service provider names, and both providers statically 
reinforced the policies received from the policer. The 
option to read the input numbers from a provided input 
file was required for both providers. In the first case the 
calculation succeeded as expected since all permissions 
were granted to Policer Tester. In the case of Restricted 
Policer Tester the input file was not read because an 
access control exception was thrown. This was expected 
since reading the input file was not granted by the policy 
stored in the database for this provider. The required 
calculation did not succeed in this case due to enforced 
security permissions. 
 
 



6. Conclusions 

Using policy files for authorization in Java-based 
metacomputing environments doesn’t scale well. A 
scalable solution for security policy management in 
federated metacomputing environments is proposed here. 
It has the advantage of flexible database management of 
all security policies that say what system resources can be 
accessed, in what fashion, and under what circumstances. 
Thus, it provides for uniform authentication, 
authorization, and access control for all federating service 
providers. Confidentiality and integrity of policy 
information is guaranteed by securing all network 
communication channels. Consistency of policy data is 
ensured by policy base synchronization mechanisms. A 
friendly user agent is provided for the administrators to 
create and update policy information persisted in the 
database and then synchronized with other policer 
databases. Replication and autonomic provisioning of 
policers prevents service unavailability from occurring. 

The presented framework’s validity has been tested on 
the parts already implemented: static policy enforcement 
on the bootstrapping service provider; the policy object 
retrieval by policer from its policy base. The dynamic 
policy reinforcement remains to be implemented in the 
next project phase. The framework can be extended by 
adding multiple implementations to choose from for 
administrator authentication and policer’s database 
solution (embedded or enterprise). In the future, the 
policy database can be restructured so that it reflects 
special needs of a particular metacomputing environment, 
such as role management. 

This scalable methodology can be similarly applied to 
other aspects of security in metacomputing environments, 
for example federated authentication. A KeyStorer service 
provider persisting keys in a database can be designed 
following the same approach.  
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