

Security Policy Management in Federated Computing Environments

Daniela Inclezan and Michael Sobolewski
SORCER Research Group, Texas Tech University

http://sorcer.cs.ttu.edu

Abstract
The default Java implementation for security policies
based on policy files doesn’t comply with the specific
needs of metacomputing environments. Managing a large
number of policy files for all Java runtime systems in the
metacomputing system doesn’t scale. This paper presents
a federated approach for security policy management in
Java-based metacomputing systems. Security policies are
stored in a policy base, which is managed by its policy
service provider (Policer). The policy base and its Policer
are replicated and the replicated policy bases are
synchronized with each other in order to avoid a single
point of failure. Any bootstrapping service provider gets
its security policy from any available Policer on the
network. The proposed solution ensures uniform policy-
based authorization for all the services in the
metacomputing environment through the use of the
scalable policy management methodology. The Service
ORiented Computing Environment (SORCER) is
considered as a validation case for service-oriented
security policy management solution presented in this
paper.

1. Introduction

Built on the OO paradigm is the service-object
oriented (SOO) paradigm, in which the objects are
distributed, or more precisely they are remote (network)
objects and play some predefined roles. A service
provider is an object that accepts remote messages, called
exertions, from service requestors to execute an
elementary item of work (instruction) – a service task, or
a composite item of work (procedure) – a service job.

The exertion becomes an SOO program that is
dynamically bound to all relevant and currently available
service providers on the network. This collection of
providers dynamically participating in this federated
remote invocation is called an exertion federation.
This federation is also called a virtual metacomputer as
federating services executing component exertions are
located on multiple physical compute nodes held
together by an SOO infrastructure so that, to the
individual requestor submitting the exertion, it looks and
acts like a single computer.

The SORCER environment [14] provides the means to
create interactive SOO programs and execute them
without writing a line of source code [13]. Exertions can
be created using interactive user interfaces downloaded
directly from service providers. Using these

interfaces the user can execute and monitor the execution
of exertions in the SOO metacomputer. The exertions can
be persisted for later reuse. This feature allows the user
quickly to create new applications or programs on the fly
in terms of existing tasks and jobs.

In this paper a security policy management system is
described to allow the exertion federation for a secure
collaboration with presented policy services that enforce
security permissions on all the federating providers.

2. Background review

The default implementation for security policy
management in a Java runtime system relies on policy
configuration files. These files have a simple hierarchical
syntax composed of grant statements, each of which can
be associated with a code base, a set of principals
(optionally) and a set of permissions. A grant statement as
a whole specifies the security permissions allowed to code
downloaded from the code base, on the local Java runtime
system. When a set of principals is included, the
permissions are granted only to the entities corresponding
to those principals. Since policy files have such a simple
syntax and are saved in plaintext, they can be created
manually using a text editor. Another option is to use the
graphical utility called Policy Tool [16]. By default there
is only one system policy file (java.policy saved in
the lib/security directory in the Java runtime
installation directory) and one (optional) user policy file
(saved in the user’s home directory) [15]. In order to
enforce checking of the permissions stored in policy files,
the security manager must be enabled at runtime. It
ensures that a static Policy object is instantiated and
populated based on the information coming from the
system and user’s policy files.

Such an approach is sufficient in the vast majority of
cases, but being a default implementation, it may not be
adequate for special types of applications. Policy files
have a well-known syntax, are saved in plaintext and the
location where they are stored is commonly known [7].
This means that even unauthenticated and unauthorized
personnel can make harmful changes to their content
when the policy file write access is not set correctly.
Thus, policy files can create a breach in the security of a
system and do not represent an adequately secure solution
for applications that require high level security. As well,
policy objects created from policy files are static objects
and changes made to the policy files are not reflected by
the Java runtime system unless it is restarted. In this case,

the default implementation with policy files shows a lack
of flexibility that might be essential for some distributed
applications.

Jini services [8], which employ the SOO paradigm,
also use policy files to handle security permissions. In this
case though, the policy object is dynamically created
when the service is discovered [8]. The policy object
created at bootstrapping is an instance of the
AggregatePolicyProvider class, which supports the
association of sub-policies with context class loaders. The
sub-policy associated with the current context class loader
or any of its parents is the active policy. If no such policy
is found, then the fallback sub-policy (main policy)
becomes the active one. An object instantiating a class
implementing the DynamicPolicy interface is always
defined as the main policy. A sub-policy instance of the
LoaderSplitPolicyProvider class is associated with the
current class loader. The LoaderSplitPolicyProvider sub-
policy delegates permission queries and grants to either a
sub-policy instance of the PolicyFileProvider class (if the
current class loader, its children or the null class loader
are involved in the query) or a sub-policy implementing
the DynamicPolicy interface. All permission checks are
handled by the currently active policy. In order to
populate the sub-policy implementing the
PolicyFileProvider class, the policy file specified in the
service’s configuration file is consulted.

Relying on policy files to enforce authorization on Jini
services can cause a scalability problem. For example, if
the same service is deployed on hundreds of hosts and
later on some modification to the policy file is required,
this change will need to be manually replicated on all
related hosts. This can be not only time consuming and
error-prone but as well difficult to perform in a quick and
correct manner.

In federated computing environments in general, the
scalability and security problems raised by enforcing
authorization with policy files still exist. On top of that,
there is another issue regarding the rigid syntax of policy
files [7]. A security policy management based on roles
may be needed for metacomputing systems, but it cannot
currently be represented in a policy file. A more flexible
syntax is required for such environments.

3. Security policy management framework

 In the federated computing environments that use
policy files to handle authorization, a large number of
policy files reside on hosts. For each service provider
there is one policy file (see Figure 1). If there are multiple
service providers started on the same host, the host will
contain one policy file for each type of started service
provider. This means that on the whole federated
environment there can be hundreds of policy files to
manage. Modifying all these files and especially keeping
the policy files synchronized is definitely cumbersome.

Although policy files have a simple syntax, understanding
which permissions should be allowed and to what
downloaded code can be very difficult, especially in the
case of metacomputing environments. This increases the
possibility of untrained (and of course not authenticated
or not authorized) personnel making changes that can
affect the security of the system, even unintentionally.

Figure 1. Federated computing environments using policy

files

 The solution to these security and scalability problems
in the federated computing environment is to centrally
manage the security policies. In order to do that we
propose to store all the security permission information in
a central base managed by a special service provider
(Policer). Having all the permissions stored in the central
base eases the management and updating operations, since
they are performed in one place only, not on all the hosts.
On the other hand, having all the security policy
information stored in a single place can generate the one-
point failure.
 Having a centrally managed policy base and avoiding
the one-point failure problem can be combined by
replicating the Policer and its policy base in the federated
computing environment. At all times it must be ensured
that at least one Policer is active and able to enforce
authorization in the environment. The policy bases of all
the active policers must be synchronized. Thus, when a
policer bootstraps, it contacts any other active policer and
synchronizes its policy base to that of the active policer.
 An authenticated and authorized administrator is able
to modify the security information stored in policers’
bases through the administrative user agent. This is a
graphical interface that allows the administrator to
modify, insert and delete security policies in the policy
base. If all policers would provide the administrative user
agent, this could create problems in the case of concurrent
modifications in multiple policers. The same security
policy should be present in all policy bases at all times for
the same service provider. But, for example, if at the same
time two different authorized administrators make
conflicting changes on the same security policy, then the
policers would not know which one of the two

modifications is the correct one, the one to persist in the
policy base.
 This concurrency problem is solved currently by
allowing only one of the active replicated policers in the
environment to provide the user agent at all times. If the
active policer enabling policy administration
(AdminPolicer) suddenly becomes inactive, a new
AdminPolicer is elected from the group of already active
policers. This master-slave approach (where the master is
the AdminPolicer and the slaves are all the other policers)
simplifies the synchronization of the policy bases.
Whenever the AdminPolicer receives a modification from
an authorized administrator through the user agent, it
notifies all other active policers about the current update.
Through this mechanism all active slave policers
continually maintain their policy bases synchronized with
that of the AdminPolicer. This also implies that two
policers must be active in the environment all the time:
the master policer and a slave policer that can take over
the role of the master whenever the current master
becomes inactive.

Any policer (master or slave) is able to provide the
security policy object to a requesting service provider. At
service bootstrapping, every service provider contacts
dynamically an active policer and asks for its policy
object. After mutual authentication between the
bootstrapping service provider and the contacted policer,
the policer retrieves the security policy information for
the bootstrapping service provider from the policy base. It
then creates a policy object, populates it with the security
information retrieved from the policy base and passes this
policy object to the service provider. On its side, the
bootstrapping service provider reinforces all permissions
contained in the received policy object.

Any change made by an authorized administrator to
the security policy of a service provider is immediately
enforced on all active service providers of that policy
type. The AdminPolicer receiving the change through its
user agent is responsible for notifying all the
corresponding active service providers of the policy
modification and for passing the new policy object on to
them. The service providers receiving the modified policy
object dynamically reinforce the new security policy on
their side. Figure 2 briefly illustrates the main
components of the proposed framework.

In the case of disconnected operations a strict policy
object containing the minimal set of permissions that
would allow normal functioning should be available to
any service provider. Therefore, when the bootstrapping
service provider fails to contact any of the policers due to
intermittent lack of connectivity, the provider gets the
default minimal policy object and reinforces it on itself.
The provider will try to get its proper policy from any
available policer later.

Figure 2. Proposed solution for federated computing

environments

The federated policy management system is protected

against outside intrusions by its own security solution.
Administrators are authenticated and authorized before
being allowed to access the administrative user agent and
make any modifications to the existing policy base.
Confidentiality and integrity is enforced on all remote
communication channels. The actual schema of the policy
base is hidden to the administrators and all other users.

4. Design of a policy management system

 The architecture of the federated policy management
system is described in Section 3 and design details of the
security policy management system are presented in this
Section. Different possible approaches and design
decisions regarding the major components (see Figure 3)
and their interaction are discussed as well.

4.1. Policy base
 The policy base is represented by a relational database,
which for now mimics the structure of a policy file (see
Figure 4). Later on, the database schema can be easily
modified to reflect any additional needs of a federated
computing environment, for example role management.

The main table of the schema is Policy. This contains
all the information needed to identify a service provider’s
security policy and to distinguish between different
security policies stored in the database: service ID,
service provider name, main published interface, location,
host where the service is running and user directory where
the service was started. A combination of these attributes
is passed by the bootstrapping service provider to an
active policer and is used by the contacted policer to
retrieve the right security policy from the database (step 1
in the interaction diagram in Figure 3).

Figure 3. Interaction diagram of the policy management

system

The information that would otherwise appear in a
grant statement in a policy file is stored in the Grant
table: code base and an optional keystore for the signer of
that code base. The User table stores information about
the (optional) principals. The Permission table contains
records similar to the permission statements of a policy
file: permission class, target name, and optionally action
and signer.

Figure 4. Policy database schema

All the strings that would appear repeatedly in

different tables or records (such as class names, target
names, etc.) are stored in the Map table. In the record
where they should actually appear, the strings are
replaced by a reference to the corresponding record in the
Map table. The association tables Grants, Permissions
and Principals allow for a flexible grouping of grants into
policies, permissions into grants, and principals to grants
respectively. Thus, the records in the Grant, Permission
and User tables become highly reusable across different
security policies.

There are two main choices regarding the relational
database to be used: either an embedded or an enterprise

database. Since our database is fairly small (only eight
tables) and it requires secure and fast access to data and
limited human administration or interruption, the best
solution seems to be an embedded database [5]. An
enterprise database would be more adequate for a large
enterprise system, which is not the case here. An
embedded relational database has yet another advantage
over the enterprise solution: there is no need to secure the
communication between the application and the database,
as it would be required if a stand alone database were
used.

On the other hand, in order to confer more flexibility to
the framework both solutions might be implemented.
Different embedded and enterprise databases could be
used for storage and the requestor allowed choosing
between these implementations. In case multiple storage
solutions are provided, Hibernate might be considered as
a portable middle object-oriented layer between the
application and the various relational databases [10].

4.2. Administrative user agents
 Only authenticated and authorized administrators are
allowed to get the administrative user agent (steps 2, 2.1,
and 2.1.1, Figure 3). There are different solutions for
personnel authentication and authorization. The simplest
one is based on login and password verification against
security information stored on a policer. A more secure
and advanced solution would require the use of smart
cards, case in which keys are stored on the actual smart
card only. A third solution worth considering would be
the Kerberos protocol, which provides strong
authentication by using secret-key cryptography [4, 6] and
never passing the actual password through the network. In
order to confer more flexibility to the environment, the
best solution is to have all these approaches implemented
and let the client select the suitable one for him.
 The graphical interface of the Policy Tool utility [16]
is used as a Service UI [17] model for the administrative
user agent. Since the policy database follows a structure
similar to that of a policy file and Policy Tool is designed
to work with the same structure, many of the windows of
this utility (such as the windows where grants,
permissions, and principals are edited) are reused exactly
as they are by the administrative user agent.
 In order to comply with the specific needs of the
database schema focused on federated metacomputing,
some major changes have been made to the GUI inspired
by Policy Tool. Fields identifying the service provider to
which the edited policy belongs are added on the policy
editing window: service ID, service provider name,
implemented interface, etc. The first window to appear is
a window listing all policies in the database. The policies
displayed in a scroll box should be identifiable by all the
components: service ID, service provider name, etc. The
changes to the policy information are persisted in the
policy base by the AdminPolicer instead into a file.

4.3. Policer replication and synchronization
 The RIO framework [9] is used for policer
provisioning in order to ensure that at least two active
policers exist in the environment at all times. In case the
master policer fails, a protocol for the election of the new
master is applied: the remaining active slave policers send
a message to the other active policers requiring to be
elected as the new master. The first slave policer sending
this message becomes the new master.
 The databases of all active policers must contain the
latest security policy information at all times. The
synchronization of the databases of active policers is
managed by the master policer. It remembers all the
active slave policers in a continuously updated structure
(hash table) and notifies all the policers in this structure of
any policy modification coming from an administrator
(step 2.1.1.1, Figure 3). The synchronization of
bootstrapping policers (step 3, Figure 3) relies on the
order of database events rather than on an unreliable real
time clock. A vector clock timestamp is associated with
every record in the database. The bootstrapping policer
compares its latest vector clock timestamp with that of an
active policer’s to know how much behind it is. Then,
either the modified records are updated or, if too many
changes have occurred in the meantime, the whole
database is copied from the active policer to the
bootstrapping policer.

4.4. Policy reinforcement on service providers
 The policy object coming from a contacted policer can
be either statically or dynamically reinforced on the
bootstrapping service provider (steps 1.1 and 2.1.1.1.2.1,
Figure 3). A static enforcement would imply the
replacement of whatever policy object was initially
applied to the service provider by the new policy object
coming from the policer. A dynamic enforcement on the
other hand would imply adding the new policy object
under the umbrella of the existing
AggregatePolicyProvider object. In this case, the new
policy object passed by the policer would add a new layer
of restrictions on top of those already existing. Again, for
flexibility reasons, both solutions should be implemented,
with the dynamic approach considered the default
behavior. The provider could choose otherwise by setting
a required option in its startup configuration.

4.5. Security of the policy management
framework
 Authentication and authorization are enforced on the
user agents of the AdminPolicer (step 2.1, Figure 3),
which represent the only point of contact between the
policy management framework and the exterior world in a
design based on an embedded policy database.
Confidentiality and integrity of the transferred data is

ensured on all the communication channels between
different policers, policers and service providers, and the
AdminPolicer and the user agent by the use of Secure
Socket Layer (SSL) [3]. Availability of security policy
information is guaranteed through the automated
replication and provisioning of policers. Modifications to
policy information are not very frequent, thus only one
AdminPolicer in the environment can handle all the
workload.

5. Implementation

Parts of the proposed security policy management
system have already been implemented. Static
reinforcement of received policy object on the
bootstrapping service provider’s side is already available.
The policer provider uses the Mckoi embedded database
for policy persistence [1].

The SORCER [11-14] Grid (SGrid) was used as a
validation case. An existing arithmetic service provider in
the SGrid was modified to allow for static reinforcement
of policy objects coming from a policer and its database.
The goal of the arithmetic provider is to remotely execute
various calculations requested by clients using the
arithmetic user agent.

The testing scenarios relied on two different
configuration files for the arithmetic service provider. In
the first case, the service provider was Policer Tester,
while in the second one the provider was Restricted
Policer Tester. The policy stored in the database for the
Policer Tester provider allowed for all permissions to
code coming from any source. For the Restricted Policer
Tester provider though, only the minimal set of
permissions required by the service to start up was
allowed. In the latter, it didn’t include read permission for
an “input.txt” file which was optionally used by the user
agent to retrieve input numbers for the calculations.

The testing worked as follows: the policer, and then
the two arithmetic testers named Policer Tester and
Restricted Policer Tester were started. The two arithmetic
providers dynamically contacted the policer, asked for
their policy objects, which the policer identified using the
service provider names, and both providers statically
reinforced the policies received from the policer. The
option to read the input numbers from a provided input
file was required for both providers. In the first case the
calculation succeeded as expected since all permissions
were granted to Policer Tester. In the case of Restricted
Policer Tester the input file was not read because an
access control exception was thrown. This was expected
since reading the input file was not granted by the policy
stored in the database for this provider. The required
calculation did not succeed in this case due to enforced
security permissions.

6. Conclusions

Using policy files for authorization in Java-based
metacomputing environments doesn’t scale well. A
scalable solution for security policy management in
federated metacomputing environments is proposed here.
It has the advantage of flexible database management of
all security policies that say what system resources can be
accessed, in what fashion, and under what circumstances.
Thus, it provides for uniform authentication,
authorization, and access control for all federating service
providers. Confidentiality and integrity of policy
information is guaranteed by securing all network
communication channels. Consistency of policy data is
ensured by policy base synchronization mechanisms. A
friendly user agent is provided for the administrators to
create and update policy information persisted in the
database and then synchronized with other policer
databases. Replication and autonomic provisioning of
policers prevents service unavailability from occurring.

The presented framework’s validity has been tested on
the parts already implemented: static policy enforcement
on the bootstrapping service provider; the policy object
retrieval by policer from its policy base. The dynamic
policy reinforcement remains to be implemented in the
next project phase. The framework can be extended by
adding multiple implementations to choose from for
administrator authentication and policer’s database
solution (embedded or enterprise). In the future, the
policy database can be restructured so that it reflects
special needs of a particular metacomputing environment,
such as role management.

This scalable methodology can be similarly applied to
other aspects of security in metacomputing environments,
for example federated authentication. A KeyStorer service
provider persisting keys in a database can be designed
following the same approach.

7. References

[1] Diehl and Associates, Inc., “Mckoi SQL Database”, 2005.
Retrieved December 27, 2006, from http://mckoi.com/database/

[2] L. Gong, Inside Java 2 Platform Security: Architecture, API
Design, and Implementation, Prentice Hall PTR, 2nd edition,
2003.

[3] J. Grams, and D. Somerfield, Professional Java Security,
Wrox Press, Birmingham, UK, 2001.

[4] Ch. Kaufman, R. Perlman, and M. Speciner, Network
Security: Private Communication in a Public World, Second
Edition, Prentice Hall PTR, 2 edition, 2002

[5] J.F. Koopmann, “Embedded Database Primer”, 2005.
Retrieved December 27, 2006, from: http://www.dbazine.com/
ofinterest /oi-articles/ koopmann5

[6] Massachusetts Institute of Technology, “Kerberos: The
Network Authentication Protocol”, 2003. Retrieved December
27, 2006, from http://web.mit.edu/Kerberos/

[7] T. Neward, “When “java.policy” Just Isn’t Good Enough”,
2001. Retrieved December 28, 2006 from: www.javageeks.com
/Papers/JavaPolicy/ JavaPolicy.pdf

[8] J. Newmarch, A Programmer’s Guide to Jini Technology,
Apress, Berkley, CA, 2000.

[9] Project Rio, A Dynamic Service Architecture for Distributed
Applications. Retrieved December 27, 2006, from
https://rio.dev.java.net/

[10] Red Hat Middleware, “Hibernate: Relational Persistence for
Java and .NET”, 2006. Retrieved December 27, 2006, from
http://www.hibernate .org

[11] M. Sobolewski, Federated P2P services in CE
Environments, Advances in Concurrent Engineering, A.A.
Balkema Publishers, 2002, pp. 13–22.

[12] M. Sobolewski, FIPER: The Federated S2S Environment,
JavaOne, Sun’s 2002 Worldwide Java Developer Conference,
2002. Retrieved December 27, 2006, from http://sorcer.cs.ttu.
edu/publications/papers/2420.pdf

[13] M. Sobolewski, R. Kolonay, Federated Grid Computing
with Interactive Service-oriented Programming, International
Journal of Concurrent Engineering: Research & Applications,
Vol. 14, No 1., pp. 55-66, 2006

[14] SORCER, Laboratory for Service-Oriented
Computing Environment, Retrieved December 27, 2006,
from http://sorcer.cs.ttu.edu.

[15] Sun Microsystems, Inc., “Default Policy Implementation
and Policy File Syntax”, 2002. Retrieved
December 27, 2006, from http://java.sun.com/j2se/1.4.2/docs/gu
ide/security/PolicyFiles.html

[16] Sun Microsystems, Inc., “Policy Tool – Policy File
Creation and Management Tool”, 2001. Retrieved
December 27, 2006, from http://java.sun.com/j2se/1.3/docs/tool
docs/win32/policytool.html

[17] The ServiceUI Project, Retrieved December 27,
2006, from http://www.artima.com/jini/serviceui/index.html

