
FICUS - A Federated Service-Oriented File Transfer
Framework

Adam Turner1 and Michael Sobolewski1

SORCER Research Group, Texas Tech University, Lubbock, Texas, USA.

Abstract. The engineering data of a large enterprise is typically distributed over a wide area
and archived in a variety of file systems and databases. Access to such information is crucial
to team members and relevant processing services (applications, tools and utilities) in a
concurrent engineering setting. However, this is not easy because there is no simple way to
efficiently access the information without being knowledgeable about various file systems,
file servers, and networks, especially when complex domain related data files get bigger. In
a concurrent engineering environment, there is every need to be aware of the transparent and
dynamic data perspectives of the other members of the team.

We have developed a Federated Service-Oriented File Transfer Framework called FICUS
(Files In Chunks Utilizing Storage) with the objective to form dynamic federations of
network services that provide engineering data, applications and tools on a grid. This
framework fits the SORCER philosophy of grid interactive service-oriented programming,
where users create distributed metaprograms using federated providers along with FICUS
repository providers.

Our paper describes the methodology of how FICUS works along with the details of the
implementation and extensions planned for the future. We believe the performance and
reliability offered by FICUS will make it a very useful distributed file transfer protocol for a
large design team and will make it very convenient to integrate heterogeneous legacy file
systems.

Keywords. Data sharing, distributed file systems, federated systems, collaborative work.

1 Introduction

Managing engineering data is becoming an increasingly complex task.
Heterogeneity of hardware and software platforms is one of the barriers to be
overcome in achieving this end. With increasing use of computers, we have islands
of automation that have resulted in information archival in legacy file systems.

1 SORCER Research Group, Computer Science Dept., Texas Tech University, Box 43104,
Boston & 8th, Lubbock, TX 79409, USA; Tel: +1-806-742-5851; Email: sorcer@cs.ttu.edu;
http://sorcer.cs.ttu.edu

2 A. Turner and M. Sobolewski

This makes the access to information easy for someone who uses a single
repository as their primary or native environment. However, the information access
problem increases manyfold when one wishes to access enterprise-wide
information. Access to enterprise-wide information is very important in a
collaborative setting when a number of people access a corpus of information,
albeit with different perspectives. Major problems to be addressed include how to
integrate all the information, how to deal with legacy systems and how to provide a
wide view to the user abstracting all the hardware and software specifics of the
individual systems. The federated service-oriented file transfer framework
(FICUS) we describe in this paper enables access to distributed and replicated
information over a wide area with special emphasis on efficient access to data
repositories. This includes CAD drawings and other kinds of raster and vector data,
in addition to voice and video clips that will be archived in the future. The need for
accessing distributed information by people viewing from different perspectives
arises in a concurrent engineering setting. Also, the efficient file download by
many services sharing the same data becomes essential when requestors share the
same copy of a master file at the same time.

Building on the OO paradigm is the service-object-oriented (SOO) paradigm, in
which the objects are distributed, or more precisely they are remote (network)
objects that play some predefined roles. A service provider is an object that accepts
remote messages, called service exertions, from service requestors to execute an
item of work. A task exertion is an elementary service request – a kind of
elementary remote instruction (statement) executed by a service provider. A
composite exertion, called a job exertion, is defined in terms of tasks and other jobs
- a kind of procedure executed by a service provider. The executing exertion is a
SOO program that is dynamically bound to all relevant and currently available
service providers on the network. This collection of providers identified in runtime
is called an exertion federation, or an exertion space. While this sounds similar to
the OO paradigm, it really isn’t. In the OO paradigm, the object space is a program
itself; here the exertion space is the execution environment for the exertion, which
is a network OO program. This changes the game completely. In the former case,
the object space is hosted by a single computer, but in the latter case the service
providers are hosted by the network of computers. The overlay network of service
providers is called the service provider grid [5-7, 9] and an exertion federation is
called a virtual metacomputer. The metainstruction set of the metacomputer
consists of the method set defined by all service providers in the grid. Do you
remember the eight fallacies of network computing? Creating and executing a SO
program in terms of metainstructions requires a completely different approach than
creating a regular OO program. In other words, we apply in FICUS the OO
concepts directly to the service provider grid.

The SORCER environment [1, 10, 14-16, 20, 22-28] provides the means to
create interactive SOO programs and execute them without writing a line of source
code via zero-install, interactive service interfaces. Exertions can be created using
interactive user interfaces downloaded directly from service providers, allowing
the user to execute and monitor the execution of exertions in the SOO
metacomputer. The exertions can also be persisted for later reuse. This feature
allows the user to quickly create new applications or programs on the fly in terms

FICUS - A Federated Service-Oriented File Transfer Framework 3

of existing tasks and jobs. SORCER introduces federated method invocation based
on peer-to-peer (P2P) [17, 18] and dynamic service-oriented Jini technology [4, 8,
12, 13, 18, 19, 21].

To integrate applications and tools on a B2B grid with shared engineering data,
the File Store Service (FSS) [5] was developed as a core service in
FIPER/SORCER. The value of FSS is enhanced when both web-based user agents
and service providers can readily share the content in a seamless fashion. The FSS
framework fits the SORCER philosophy of grid interactive SOO programming,
where users create distributed programs using exclusively interactive user agents.
However FFS does not provide the S2S flexibility with separate specialized and
collaborating service providers for file storage, replication, and meta information
that have been added in the SILENUS federated file system [1].

In this paper, the FICUS federated service-oriented file transfer framework is
described that allows an exertion federation for collaborative, efficient data sharing
across federating service providers in terms of files split into smaller chunks that
are replicated and stored at multiple locations.

2 FICUS Architecture

FICUS has been designed to explore the file sharing concepts used in modern peer-
to-peer technologies such as BitTorrent [2, 3], and investigates how they can be
applied to a file system. FICUS is an extension to SILENUS, a federated file
system developed at Texas Tech University [1]. The SILENUS file system is
comprised of several network services that run within the SORCER environment,
each of which provides a functional aspect of the file system. These services
include a byte store service for holding file data, a metadata service for holding
metadata information about the files (such as file names), several optional
optimizer services, and façade services to assist in using these services. SILENUS
is designed so that many instances of these services can run on a network, and the
required services will federate together to perform the necessary functions of a file
system. FICUS adds support for storing very large files within the SILENUS file
system by providing two more services: a splitter service and a tracker service.
When a file is uploaded to the file system, the splitter service determines how that
file should be stored. If a file size is above a predetermined threshold, the file will
be split into multiple parts, or chunks, and stored across many byte store services.
Once the upload is complete, a tracker service keeps a record of where each chunk
was stored. When a user requests to download the full file later on, the tracker
service can be queried to determine the location of each chunk and the file can be
reassembled.

4 A. Turner and M. Sobolewski

Figure 1. FICUS component diagram

2.1 Splitter Service

BitTorrent [2, 3] doesn't really have any set rules for determining file splitting
parameters other than that all pieces must be of the same size (except for possibly
the last piece) and the piece size in bytes must be a power of 2. It is normally left
up to the hosting user to determine what the piece size should be used. In a file
system, this decision should be handled automatically and transparently and should
not bother end users with the specifics. Thus, a splitter service is responsible for
determining whether or not a file should be split, and if so, what parameters should
be used for splitting. Administrators can affect many of the parameters used in
making this decision in order to optimize network, storage, and file usage. For
example, an administrator can specify the minimum file size required for a file to
be considered for splitting. A minimum and maximum chunk size can be specified
along with a minimum and maximum number of file splits to use for any file. The
splitter can use this information to calculate the optimum chunk size to use for a
file based on the file's size and possibly other parameters as well, such as available
storage space on each of the byte store services.

The splitter also provides services for splitting and reassembling large files on
the requestor side through the use of proxies. A splitter proxy object can
concurrently manage multiple byte store proxy objects for communicating directly
with various byte store services. When a user or other agent uploads a large file,
the splitter proxy can send parts of the file simultaneously to individual byte store

FICUS - A Federated Service-Oriented File Transfer Framework 5

services to store as chunk files. A splitter proxy could then download these chunk
files from the multiple byte stores simultaneously and save them as file segments
to recreate a copy of the original file.

2.2 Tracker Service

BitTorrent uses a tracker to help peers discover each other and to help peers
determine the location of desired file pieces. A tracker service for FICUS provides
similar functionality. When a large file is uploaded in chunks to the file system, the
location of each chunk is recorded and this information is given to the tracker for
storage in a database. During replication, a replicator service can also notify the
tracker of any new chunk files that have been made. In addition to chunk locations,
the tracker also records the size of the original file, the chunk size used, how many
chunks a file has been split into, and an optional checksum for each chunk to see if
the chunk file has been corrupted. When a split file needs to be retrieved, the
tracker can be queried to find the locations of each chunk needed to completely
reassemble the file.

Since a tracker service handles location information for files, it acts as a logical
extension to a metadata store service. When a file is stored on a byte store service,
the byte store names the file with a UUID to provide unique and persistent
identification for the file content. The metadata store normally keeps track of
where a file is located using the service ID of the byte store upon which a file is
stored along with the file's UUID. In the case of split files, a tracker service records
this information for each chunk file while the metadata store records the service ID
of any tracker services that are tracking the file along with a similar UUID with a
numeric extension to refer to the record number of the file within the tracker.

2.3 Façade Service

With the inclusion of these new services, an updated façade service is needed to
assist with the coordination of the various file system services. Specifically, the
façade service is responsible for discovering the metadata store services needed for
browsing through the file system, and splitter services to initiate file storage and
retrieval. When uploading files or performing other operations that require data
alterations on more than one file system service, the façade is also responsible for
keeping these actions under transactional semantics to verify that all required
operations either complete successfully or abort. Due to the nature of the façade
service, it can act as an entry point for other services into the file system. Through
the use of a service browser such as Inca X [11], a user could obtain a GUI
(ServiceUI [21]) for a façade service and interact with the file system directly
without the need to install any additional software. The façade could also be used
to manage and distribute remote event notifications. For example, once an upload
has completed, a façade service could notify a replication service with the
appropriate information to begin replicating the new file to additional storage
services.

6 A. Turner and M. Sobolewski

3 Uploading and Downloading

Many of the concepts found within FICUS can be compared to those found in
other Internet based peer-to-peer programs such as BitTorrent. For example, in the
case of BitTorrent, users can typically use their favorite web browser to find and
download relevant torrent files located on public web servers. Similarly, a FICUS
façade service can help users locate files they want from the file system using file
records found on metadata store services. BitTorrent uses torrent files that contain
meta-information about a file or set of files along with a URL for an Internet based
tracker service used for connecting to peers. In FICUS, the metadata entry for a
requested file contains a reference to a FICUS tracker service to use, which holds
additional metadata information about the file along with file chunk locations. A
BitTorrent client application can be used to acquire and share pieces of a file with
peers. Similar functionality is handled by a proxy object provided by a FICUS
splitter service. The following sections provide more information about how files
are uploaded and downloaded using BitTorrent and FICUS to provide a better
understanding of how the two compare.

3.1 BitTorrent

BitTorrent is a peer-to-peer technology that has become quite popular over the
past few years. It allows a person to share a large file (or set of files) with many
users while transferring relatively little data. It accomplishes this task by breaking
the file into smaller pieces that can be quickly shared between other users. Once a
user has downloaded a file piece, it can send the completed piece to other users
who still require it. In essence, the upload bandwidth required to share the file is
now distributed amongst the peers rather than making a single server solely
responsible for doing all the uploading. User systems within the peer “swarm” are
able to find each other and figure out which systems have desired pieces through
the use of a tracker service running on the Internet.

In order to begin serving a file, a user would go through the following steps.
1. Find a tracker to manage the peers involved in transferring file pieces.
2. Generate a metainfo (torrent) file using the complete file to be served and

the URL of the tracker.
3. Upload the torrent file to a website.
4. Start a BitTorrent client using the torrent file to begin seeding the full file.
Downloading the full file involves the following steps.
1. The user finds and downloads the torrent file from the web server.
2. The user loads the torrent file into their BitTorrent client.
3. The BitTorrent client connects to the tracker to find other peers.
4. The BitTorrent client downloads pieces of the file from others and shares

the pieces it has with others.
Once all pieces are distributed into the peer swarm, clients can share with each

other until they all have the full file.

FICUS - A Federated Service-Oriented File Transfer Framework 7

3.2 FICUS

FICUS uses a methodology similar to BitTorrent for uploading and downloading
files. However, since FICUS is a file system rather than simply an Internet file
sharing service, there are some differences between these methods.

In order to upload a file to a FICUS file system, the following occurs.
1. A user requests to upload a file.
2. A façade service forwards file parameters to a splitter service to determine

how to handle the file.
3. If the file is large, the splitter will get a reference to a tracker service and

send back a splitter transfer proxy.
4. This proxy is sent back to the user end and is given a reference to the file.
5. The proxy sends pieces of the file to byte store services to store as chunks.
6. The location of each uploaded chunk is recorded by the tracker.
7. The tracker's service ID along with the file's record number are given to a

metadata store service to indicate where the file locations can be found for
future retrieval.

In order to download a file from a FICUS file system, the following occurs.
1. A user requests to download a file.
2. A façade service queries the location of the file from a metadata store.
3. If the file is split, it is forwarded to a tracker.
4. The tracker provides the locations of each chunk.
5. The chunks are downloaded from various byte store services and

assembled into the full file.

4 Conclusions

FICUS is able to provide several benefits over traditional client-server file system
in which file's are stored in their entirety. Many of these benefits stem from the
service-to-service oriented nature of SORCER along with the file splitting
capabilities of FICUS. In a traditional client-server based network file system, a
large amount of storage space must either be found or created in order to store
large amounts of data, especially if the data is contained in only a single file. The
speed at which this data can be provided to others is usually limited by the
maximum bandwidth available to the server, which can cause severe bottlenecks if
many clients request the same data at once. If an error occurs during a file transfer,
the client often has to restart the transfer from the beginning, which wastes time
and magnifies the bottleneck issue. If the file server goes down, then these files are
typically unavailable until the server can be restored. Basically, the major
disadvantage of storing whole files within a client-server type file systems is that
the server can easily become a single point of failure. To help alleviate this
problem, many file servers run on expensive, high end, redundant server
equipment. High speed RAID arrays are often employed to not only help recover
from a hard drive failure, but also to provide increased throughput for client
requests. Additionally, servers are often placed on high speed network segments to
handle the necessary bandwidth requirements.

8 A. Turner and M. Sobolewski

Many of these problems can be avoided by splitting large files into chunks and
by using a service-to-service type architecture as provided by SORCER. By storing
files in chunks across multiple storage locations, storage and network requirements
become much more distributed. For example, when storing a large file, it is usually
much easier to find several storage locations with lesser amounts of free space than
it is to find a single location with a massive amount of free space. When
downloading files, there may be several different storage locations that have the
requested data rather than just a single server, thus it is far less likely for any single
storage location to become a bottleneck due to a high number of file requests. If
files are spread across multiple locations in chunks, a client could download
multiple chunks simultaneously, thereby using the aggregate bandwidth of all
storage nodes rather than the available bandwidth of just a single server. If an error
occurs during a file transfer, then only the erroneous chunk would have to be
transferred again rather than the full file, which can save a lot of time and waste
less bandwidth.

The concepts and methodologies proposed by FICUS provide other
opportunities for enhancing a file system as well. For example, after making a
modification to a large file, it may be possible to save only the relevant chunk files
that have changed rather than the entire file. This technique has the potential to
save drastic amounts of bandwidth and storage space, especially when storing
multiple versions of the same file. Special optimizer services could be designed for
replicating chunk files that are used most often to more stable and higher powered
machines, thus providing greater availability for frequently accessed data. Overall,
the concepts proposed by FICUS provide many different avenues for exploration to
enhance the scalability, reliability, and performance of distributed network file
systems.

References

[1] Berger M, Sobolewski M. SILENUS – A Federated Service-oriented Approach to
Distributed File Systems. In: Next Generation Concurrent Engineering. New York:
ISPE, Inc., 2005; 89-96.

[2] BitTorrent.org – BitTorrent Protocol Specification. Available at:
<http://www.bittorrent.org/protocol.html>. Accessed on: Mar. 8th 2007.

[3] Brian's BitTorrent FAQ and Guide. Available at: <http://www.dessent.net/btfaq/>.
Accessed on: Mar. 8th 2007.

[4] Edwards WK. Core JINI Second Edition. (2000). Prentice Hall, 2000.
[5] Foster I. The Grid: A New Infrastructure for 21st Century Science. In: Physics Today.

American Institute of Physics, 2002; 55(2): 42-47.
[6] Foster I, Kesselman C, Nick J. Tuecke S. The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG. Global Grid Forum, June 22nd 2002.

[7] Foster I, Kesselman C, Tuecke S. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications, 2001; 15(3).

[8] Freeman E, Hopfer S, Arnold K. JavaSpaces™ Principles, Patterns, and Practice.
Addison-Wesley, 1999.

[9] The Globus Project. Available at: <http://www.globus.org>. Accessed on: Mar. 8th

2007.

FICUS - A Federated Service-Oriented File Transfer Framework 9

[10] Goel S, Talya S, Sobolewski M. Preliminary Design Using Distributed Service-based
Computing. In: Next Generation Concurrent Engineering. New York: ISPE, Inc., 2005;
113-120.

[11] Inca X™ Service Browser for Jini Technology. Available at:
<http://www.incax.com/service-browser.htm>. Accessed on: Mar. 8th 2007.

[12] Jini Architecture Specification. Available at:
<http://www.sun.com/jini/specs/jini1_1.pdf>. Accessed on: Mar. 8th 2007.

[13] Jini.org. Available at: <http://www.jini.org/>. Accessed on: Mar. 8th 2007.
[14] Khurana V, Berger M, Sobolewski M. A Federated Grid Environment with Replication

Services, In: Next Generation Concurrent Engineering. New York: ISPE, Inc., 2005;
97-103.

[15] Kolonay RM, Sobolewski M, Tappeta R, Paradis M, Burton S. Network-Centric MAO
Environment. The Society for Modeling and Simulation International, 2002 Western
Multiconference, San Antonio, Texas.

[16] Lapinski M, Sobolewski M. Managing Notifications in a Federated S2S Environment.
In: International Journal of Concurrent Engineering: Research & Applications, 2003;
11:17-25.

[17] Li Sing. JXTA Peer-to-Peer Computing with Java. Wrox Press Ltd., 2001.
[18] Oram A (ed). Peer-to-Peer: Harnessing the Benefits of Disruptive Technology.

O’Reilly, 2001.
[19] Project Rio: A Dynamic Service Architecture for Distributed Applications. Available

at: <https://rio.dev.java.net/>. Accessed on: Mar. 8th 2007.
[20] Röhl PJ, Kolonay RM, Irani RK, Sobolewski M, Kao K. A Federated Intelligent

Product Environment. AIAA-2000-4902, 8th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization. Long Beach, CA, Sept. 6-8th 2000.

[21] The ServiceUI Project. Available at:
<http://www.artima.com/jini/serviceui/index.html>. Accessed on: March 8th 2007.

[22] Sobolewski M. Federated P2P Services in CE Environments. In: Advances in
Concurrent Engineering. A.A. Balkema Publishers, 2002; 13-22.

[23] Sobolewski M. FIPER: The Federated S2S Environment. JavaOne, Sun’s 2002
Worldwide Java Developer Conference. San Francisco, California, 2002. Available at:
<http://sorcer.cs.ttu.edu/publications/papers/2420.pdf>.

[24] Sobolewski M, Kolonay R. Federated Grid Computing with Interactive Service-
oriented Programming. International Journal of Concurrent Engineering: Research &
Applications, 2006; 14(1):55-66.

[25] Sobolewski M, Soorianarayanan S, Malladi-Venkata RK. Service-Oriented File
Sharing. Proceedings of the IASTED Intl. Conference on Communications, Internet,
and Information Technology, Nov. 17-19th 2003. Scottsdale, AZ. ACTA Press, 2003;
633-639.

[26] Soorianarayanan S, Sobolewski M. Monitoring Federated Services in CE. Concurrent
Engineering: The Worldwide Engineering Grid. Tsinghua Press and Springer Verlag,
2004; 89-95.

[27] SORCER Research Group. Available at: <http://www.sorcer.cs.ttu.edu>. Accessed on:
Mar. 8th 2007.

[28] Zhao S, Sobolewski M. Context Model Sharing in the FIPER Environment. Proc. of the
8th Int. Conference on Concurrent Engineering: Research and Applications, Anaheim,
CA, 2001.

