
Secure Space Computing with Exertions

Daniel Kerr and Michael Sobolewski
Texas Tech University, SORCER Research Group

sobol@cs.ttu.edu

Abstract–Exertion-oriented space computing is a valuable

advance in distributed and parallel computing seeing as it
abstracts out several major problems in distributed computing,
such as load balancing and mutual exclusion. The main
problem with space computing is that of security due to the fact
that exertion spaces are inherently public and ad hoc, thus
making it difficult to implement secure groups. The location
independent group key interactive management framework
presents a federated methodology and protocol for group
management that is secure, scalable, and modifiable for the
metacomputing exertion-oriented space computing
environment. The framework does so through the use of a
group establishment protocol, authorization and authentication
services, high level cryptography, and persistent group
information storage. The SORCER computing grid is used as a
validation case for the framework and is presented in this
paper.

I. INTRODUCTION

Security in networking has been a serious issue since the
dawn of networked systems. With the increasing trust in
computers for the use of storing sensitive data (account
numbers, social security numbers, criminal records, health
history, etc) security has drastically increased in order to
coordinate with the importance of the information being
exchanged. Along with the growth in computer networking
is the growth in distributed computing.

A rather new concept in distributed computing is the
concept of space computing. Space computing helps to solve
several of the significant problems with distributed
computing, but still leaves room for improvement. The
space computing environment starts by being completely
public so that all services can access objects in the publicly
shared space. The space broker is also oblivious to who is a
member of the space environment.

Space computing, being based on the idea of the tuple
space from Linda programming language, utilizes three
major functions to manipulate tuples (or objects) from the
tuple space (or object space). In Linda they are in – the
removal of a tuple from the tuple space for reading, out –
the writing of a tuple to the tuple space, and rd – the
copying of a tuple from the tuple space for reading [[11]].
These three functions are mimicked in other
implementations such as JavaSpaces [[3]] where the in
function is called take, the out function called write,
and the rd function called read.

The question at hand is whether or not a secure
encrypted exertion oriented programming model that

implements group creation and maintenance services can be
implemented in a space computing environment.

The paper is organized as follows. Section II provides a
brief description of the SORCER environment; Section III
and IV describes basics of exertion-oriented programming;
Section V describes three types of collaborations including
space-based collaborations; Section VI presents the required
cryptography and key agreement; Section VII describes a
framework for the creation and management of groups
within the exertion-oriented space computing environment,
and Section 8 provides concluding remarks.

II. SORCER

SORCER (Service Oriented Computing EnviRonment)
[[9]] is a federated service-to-service (S2S) metacomputing
environment that treats service providers as network objects
with well-defined semantics of a federated service object-
oriented architecture. It is based on Jini semantics of
services in the network and Jini programming model with
explicit leases, distributed events, transactions, and
discovery/join protocols [[6]]. While Jini focuses on service
management in a networked environment, SORCER focuses
on exertion-oriented programming and the execution
environment for exertions. SORCER uses Jini
discovery/join protocols to implement its exertion-oriented
architecture (EOA) using federated method invocation [[8]],
but hides all the low-level programming details of the Jini
programming model.

In EOA, a service provider is an object that accepts
remote messages from service requestors to execute
collaboration. These messages are called service exertions
and describe service data, operations and provider’s control
strategy. An exertion task (or simply a task) is an
elementary service request, a kind of elementary remote
instruction executed by a single service provider or a small-
scale federation for the same service data. A composite
exertion called an exertion job (or simply a job) is defined
hierarchically in terms of tasks and other jobs, a kind of
network procedure executed by a large-scale federation. The
executing exertion is dynamically bound to all required and
currently available service providers on the network. This
collection of providers identified in runtime is called an
exertion federation. The federation provides the
implementation for the collaboration as specified by its
exertion. When the federation is formed, each exertion’s
operation has its corresponding method (code) available on
the network. Thus, the network exerts the collaboration with

ASIA '08 -18

the help of the dynamically formed service federation. In
other words, we send the request onto the network
implicitly, not to a particular service provider explicitly.

The overlay network of service providers is called the
service grid and an exertion federation is in fact a virtual
metacomputer. The metainstruction set of the metacomputer
consists of all operations offered by all service providers in
the grid. Thus, an exertion-oriented (EO) program is
composed of metainstructions with its own control strategy
and a service context representing the metaprogram data.
The service context describes the data that tasks and jobs
work on. Each service provider offers services to other
service peers on the object-oriented overlay network. These
services are exposed indirectly by operations in well-known
public remote interfaces and considered to be elementary
(tasks) or compound (jobs) activities in EOA. Indirectly
means here, that you cannot invoke any operation defined in
provider’s interface directly. These operations can be
specified in a requestor’s exertion only, and the exertion can
be passed on to any service provider via the top-level
Servicer interface implemented by all service providers
called servicers—service peers. Thus all service providers in
EOA implement the service(Exertion,
Transaction):Exertion operation of the Servicer
interface. When the servicer accepts its received exertion,
then the exertion’s operations can be invoked by the servicer
itself, if the requestor is authorized to do so. Servicers do
not have mutual associations prior to the execution of an
exertion; they come together dynamically (federate) for a
collaboration as defined by its exertion. In EOA requestors
do not have to lookup for any network provider at all, they
can submit an exertion, onto the network by calling
Exertion.exert(Transaction) :Exertion on the
exertion. The exert operation will create a required
federation that will run the collaboration as specified in the
EO program and return the resulting exertion back to the
exerting requestor. Since an exertion encapsulates
everything needed (data, operations, and control strategy)
for the collaboration, all results of the execution can be
found in the returned exertion’s service contexts.

Domain specific servicers within the federation, or task
peers (taskers), execute task exertions. Rendezvous peers
(jobbers and spacers) coordinate execution of job exertions.
Providers of the Tasker, Jobber, and Spacer type are
three of SORCER main infrastructure servicers, see

Fig. 1.

Fig. 1. The SORCER layered functional architecture.

In view of the P2P architecture defined by the
Servicer interface, a job can be sent to any servicer. A
peer that is not a Jobber type is responsible for forwarding
the job to one of available rendezvous peers in the SORCER
environment and returning results to the requestor.

Thus implicitly, any peer can handle any job or task.
Once the exertion execution is complete, the federation
dissolves and the providers disperse to seek other
collaborations to join. Also, SORCER supports a traditional
approach to grid computing similar to those found, for
example in Condor [[10]]. Here, instead of exertions being
executed by services providing business logic for invoked
exertions, the business logic comes from the service
requestor's executable codes that seek compute resources on
the network.

Grid-based services in the SORCER environment
include Grider services collaborating with Jobber and
Spacer services for traditional grid job submission. Caller
and Methoder services are used for task execution.
Callers execute conventional programs via a system call as
described in the service context of submitted task.
Methoders can download required Java code (task method)
from requestors to process any submitted context
accordingly with the code downloaded. In either case, the
business logic comes from requestors; it is a conventional
executable code invoked by Callers with the standard
Caller’s service context, or mobile Java code executed by
Methoders with a matching service context provided by the
requestor.

III. EXERTION-ORIENTED PROGRAMMING

Each programming language provides a specific
computing abstraction. Procedural languages are
abstractions of assembly languages. Object-oriented
languages abstract entities in the problem domain that refer
to “objects”, communicating via message passing, as their
representation in the corresponding solution domain.
However, we cannot just take an object-oriented program
developed without distribution in mind, and make it a
distributed system, ignoring the unpredictable network
behavior. The EO programming is a form of object-oriented

ASIA '08 -19

distributed programming that allows us to describe the
distributed problem in terms of the intrinsic unpredictable
network domain instead of in terms of distributed objects
hiding the notion of the network domain that in reality
cannot be hidden.

What intrinsic distributed abstractions are defined in
SORCER? Well, service providers are “objects”, but they
are specific objects—they are network objects with a
network state, network behavior, and network type(s).
Service providers act also as network peers (servicers); they
are replicated and dynamically provisioned for reliability to
compensate for network failures. Servicers can be found
transparently in runtime by type(s) they implement. They
can federate for an exertion submitted onto the network and
participate in the collaboration outlined by the exertion. The
exertion encapsulates service data, operations, and control
strategy used by the collaboration. The component exertions
may need to share context data of ancestor exertions, and the
top-level exertion is complete only if all nested exertions are
successful. Thus, a collaboration is a process, an exertion is
the specification of collaboration, and a dynamic federation
of peers is the implementation of a collaboration.

Let's first look at the EO approach to see how it works.
Exertion-oriented programs consist of exertion objects
called tasks and jobs. An exertion task corresponds to an
individual network request to be executed on a service
provider. An exertion job consists of a structured collection
of tasks and other jobs. The data upon which to execute a
task or job is called a service context. Tasks are analogous to
executing a single program or command on a computer, and
the service context would be the input and output streams
that the program or command uses. A job is analogous to a
batch script that can contain various commands and calls to
other scripts. Pipelining Unix commands allows us to
perform complex activities without writing complex
programs. As an example, consider a script sort.sh
connecting simple processes in a pipeline as follows:

cat hello.txt | sort | uniq > bye.txt

The script is similar to an exertion job in that it consists

of individual tasks that are organized in a particular fashion.
Also, other scripts can call the script sort.sh. An exertion
job can consist of tasks and other jobs, much like a script
can contain calls to commands and other scripts.

Each of the individual commands, such as cat, sort,
and uniq, would be analogous to a task. Each task works
with a particular service context. The input context for the
cat “task” would be the file hello.txt, and the “task”
would return an output context consisting of the contents of
hello.txt. This output context can then be used as the
input context for another task, namely the sort command.
Again the output context for sort could be used as the

input context for the uniq task, which would in turn give an
output service context in the form of bye.txt.

To further clarify what an exertion is, an exertion
consists mainly of three parts: a set of service signatures,
which is a description of operations in collaboration, the
associated service context upon which to execute the
exertion, and control strategy (default provided) that defines
how signatures are applied in the collaboration. A service
signature specifies at least the provider’s interface that the
service requestor would like to use and a selected operation
to run within that interface. There are four types of
signatures that can be used for an exertion: PREPROCESS,
PROCESS, POSTPROCESS, and APPEND. An exertion must
have one and only one PROCESS signature that specifies
what the exertion should do and who works on it. An
exertion can optionally have multiple PREPROCESS,
POSTPROCESS, and APPEND signatures that are primarily
used for formatting the data within the associated service
context. A service context consists of several data nodes
used for input, output, or both. A task may work with only a
single service context, while a job may work with multiple
service contexts since it can contain multiple tasks. The
programmer can define a control strategy as needed for the
underlying exertion by choosing relevant exertion types and
configuring attributes of service signatures [[7]]. A reader
interested in EO programming detail can review two simple
EO programs for the sort.sh in [[7]].

If we use the Tenex C shell (tcsh), invoking the UNIX
script is equivalent to: “tcsh sort.sh”, i.e., passing the
script sort.sh on to tcsh. Similarly, to invoke the
exertion sortJob, we call “sortJob.exert()”. Thus, the
exertion is the program and the network shell at the same
time, which might first come as a surprise, but close
evaluation of this fact shows it to be consistent with the
meaning of object-oriented distributed programming. Here,
the virtual metacomputer is an ad hoc federation that does
not exist when the exertion is created. Thus, the notion of
the virtual metacomputer is encapsulated in the exertion
(specification) that creates the required federation on-the-fly
(implementation) to execute the collaboration (process).

IV. SERVICE MESSAGING AND EXERTIONS

In object-oriented terminology, a message is the single
means of passing control to an object. If the object responds
to the message, it has an operation and its implementation
(method) for that message. Because object data is
encapsulated and not directly accessible, a message is the
only way to send data from one object to another. Each
message specifies the name (identifier) of the receiving
object, the name of operation to be invoked, and its
parameters. In the unreliable network of objects; the
receiving object might not be present or can go away at any
time. Thus, we should postpone receiving object

ASIA '08 -20

identification as late as possible. Grouping related messages
per one request for the same data set makes a lot of sense
due to network invocation latency and common errors in
handling. These observations lead us to service-oriented
messages called exertions. An exertion encapsulates
multiple service signatures that define operations, a service
context that defines data, and a control strategy that defines
how signature operations flow in collaboration. Different
types of control exertions (IfExertion, ForExertion,
and WhileExertion) [[7]] can be used to define flow of
control that can also be configured additionally with
adequate signature attributes (flow type and access type—
see Section V).

An exertion can be invoked by calling exertion’s
exert operation: Exertion.exert(Transaction)
:Exertion, where a parameter of the Transaction type is
required when the transactional semantics is needed for all
participating nested exertions within the parent one,
otherwise can be null. Thus, EO programming allows us to
submit an exertion onto the network and to perform
executions of exertion’s signatures on various service
providers indirectly, but where does the service-to-service
communication come into play? How do these services
communicate with one another if they are all different? Top-
level communication between services, or the sending of
service requests (exertions), is done through the use of the
generic Servicer interface and the operation service that
all SORCER services are required to provide—
Servicer.service(Exertion, Transaction). This
top-level service operation takes an exertion as an argument
and gives back an exertion as the return value. How this
operation is used in the federated method invocation
framework is described in detail in [8].

So why are exertions used rather than directly calling on
a provider's method and passing service contexts? There are
two basic answers to this. First, passing exertions helps to
aid with the network-centric messaging. A service requestor
can send an exertion out onto the network—
Exertion.exert()—and any servicer can pick it up. The
servicer can then look at the interface and PROCESS
operation requested within the exertion, and if it doesn't
implement the desired interface or provide the desired
operation, it can continue forwarding it to another provider
who can service it. Second, passing exertions helps with
fault detection and recovery. Each exertion has its own
completion state associated with it to specify if it has yet to
run, has already completed, or has failed. Since full
exertions are both passed and returned, the requestor can
view the failed exertion composition to see what method
was being called as well as what was used in the service
context input nodes that may have caused the problem.
Since exertions provide all the information needed to
execute a task including its control strategy, a requestor
would be able to pause a job between tasks, analyze it and

make needed updates. To figure out where to resume a job, a
rendezvous service would simply have to look at the task’s
completion states and resume the first one that wasn't
completed yet.

V. PUSH AND PULL COLLABORATIONS

SORCER also extends exertion execution abilities
through the use of a rendezvous service implementing the
Spacer interface. The Spacer service can drop exertions
into a shared object space, implemented using JavaSpaces
[2], in which collaborating servicers can retrieve matching
exertions, execute them, and return the resulting exertions
back to the object space. When the attribute access type of a
PROCESS signature is set to PULL then the associated
exertion is passed onto a Spacer, otherwise (access type is
PUSH) the exertion is passed directly on to the servicer
specified by the signature. Another signature attribute—
flow type, manages the flow of control (SEQUENTIAL,
PARALLEL, or CONCURRENT) for all component exertions at
the same level.

In Fig. 2, four use cases are presented to illustrate push
vs. pull exertion processing with either PUSH or PULL access
types. We assume here that an exertion is a job with two
component exertions executed in parallel (sequence
numbers with a and b), i.e., the job’s signature flow type is
PARALLEL. The job can be submitted directly to either
Jobber (use cases: 1—access is PUSH, and 2—access is
PULL) or Spacer (use cases: 3 —access is PUSH, and 4—
access is PULL) depending on the interface defined in its
PROCES signature. Thus, in cases 1 and 2 the signature’s
interface is Jobber and in cases 3 and 4 the signature’s
interface is Spacer as shown in Fig. 2. The exertion’s
ServicerAccessor delivers the right service proxy
dynamically, either for a Jobber or Spacer. If the access
type of the parent exertion is PUSH, then all the component
exertions are directly passed on to servicers matching their
PROCESS signatures (case 1 and 3), otherwise they are
written into the exertion space by a Spacer (case 2 and 4).
In the both cases 2 and 4, the component exertions are
pulled from the exertion space by servicers matching their
signatures as soon as they are available. Thus, Spacers
provide efficient load balancing for processing the exertion
space. The fastest available servicer gets an exertion from
the space before other overloaded or slower servicers can do
so. When an exertion consists of component jobs with
different access and flow types, then we have a hybrid case
when the collaboration potentially executes concurrently
with multiple pull and push sub collaborations at the same
time.

ASIA '08 -21

Fig. 2. Push vs. pull exertion processing

VI. CRYPTOGRAPHY AND KEY AGREEMENT

The major topic in cryptography necessary to understand
the location independent group key interactive management
(LOKI) framework is that of key exchange protocols. Key
exchange protocol (also known as key agreement) is an
agreement for how parties agree upon on a key. They
require that each member must impact the key, that no
previously exchanged information can be assumed, that it
must prevent eavesdropping, and external parties should not
be able calculate the key based on any publicly shared
information.

When talking about SORCER PULL collaborations it is
obvious that a flexible key exchange protocol is necessary in
order to accommodate the creation of groups of unknown
size. It is this requirement that prompted the creation of the
Multi Diffie Hellman Key Exchange Protocol, which scales
the standard two party Diffie Hellman Key Exchange
Protocol into an N-ary key exchange protocol. It does so by
linking the standard Java KeyAgreement object of each
party member with all other party member’s
KeyAgreement in order to create a Complementary
Compound Key (CCK) for each party member, which acts as
a new public key for each specific member [[4]]. When a
member’s specific CCK is combined (doPhase) with its
local Java standard PrivateKey, it will generate the
group wide Shared Secret Key (SSK), which can then be
used for both encryption and decryption, of shared objects.
An example of this is shown in Fig. 3, and demonstrates a
five party group.

Fig. 3. Multi Diffie-Hellman Key Exchange Protocol

As you can see in Fig. 3, each party member’s CCK
consists of a chain of all other party members in the group.
The main restriction on the Multi Diffie Hellman process is
that it is more time consuming for groups of large size
(greater than 1000). This is shown in Fig. 4.

Fig. 4. Multi Diffie-Hellman Running Time Curve

Fig. 4, shows both the test data, in red, and the estimated

line of best fit, in grey. The line of best fit shows that the
Multi Diffie Hellman process is exponentially complex.
Even though this is not ideal, this complexity is acceptable
for the for the test case of LOKI implemented in the
SORCER compute Grid (cGrid) application [[9]], due to the
fact that groups are typically smaller than twenty five party
members.

VII. LOKI FRAMEWORK

The LOKI framework establishes a protocol for group
creation and management within PULL collaborations (see
Section 5). There are several assumptions that are made
about groups within the framework, the first being that there
is a requestor, or a service desiring a group to be created. It
is this requestor who will, by default be the administrator to
the group that results from the creation request. The second

ASIA '08 -22

assumption is that the requestor knows what type of services
or who it would like to invite to the group. From these two
assumptions the LOKI framework handles the management
of all subsequent services previously described in the
exertion-oriented model.

To start we will look at what characteristics and
attributes each service in LOKI has within the framework
(see Fig. 5). Upon creation, each service will create a Java
KeyPair, KeyAgreement, encryption Cipher,
decryption Cipher, unique identifier, and status bits. This
member information is utilized in order to perform LOKI
secured read, write, and take operations to the exertion
space. When a member performs a LOKI secured read,
write, or take operation, it will first utilize discovery lookup
to locate a LokiGroupManagement provider. The
LokiGroupManagement provider is a service running within
the space environment that is responsible for storing all
group activity in a persisten data storage.

Fig. 5. LOKI package model

The use of persistent data storage allows for the

framework to do continuity checking, ensuring that all data
and group information is valid throughout group activity. If
at anytime the group information is conflicting or faulty, the
group is dissolved; all exertions are taken from the space
and stored in the persistent data storage only to be accessed
by the group administrator.

To understand the protocol of group creation in the
simplest form it is best to start looking at the cGrid
application without group implementation, then compare it
to the implementation of LOKI groups in the LOKI cGrid
(lcGrid) application.

A. SORCER Grid Collaborations

The Grider provider publishes a user interface which
is used to enter the specifications for the job to execute. This
information is stored into individual tasks, one for every
block of data to be executed. These tasks are stored in a job
and passed to the Spacer provider. The Spacer then
breaks them down and dispatches them to the exertion space
(“in” exertions in Fig. 6).

Fig. 6. cGrid Activity

The Caller service, upon startup, launches several

SpaceWorkers that constantly listen to the exertion space
for exertions with the Caller service type. At this point
the SpaceWorkers start the collaboration between the
Spacer and the Caller. The SpaceWorkers find the
dropped exertion from the Spacer provider, take it from
the space and call their own exert method for the retrieved
matching exertion. Once execution is complete, the Caller
service drops the results back to the space (“out” exertions
in Fig. 6). The Spacer’s results collection thread, waits
for these results and takes them from the exertion space. It is
at this point that the Spacer-Caller collaboration is
complete and the resulting information is processed. The
results are then passed back to the Grider via the
previously established proxy, where they are either
presented to the user or persisted in the SORCER federated
file system [[1]].

B. LOKI Enabled Collaborations

Execution of the cGrid application with LOKI starts in
much the same way as it does without LOKI. The Grider
provider publishes a user agent, which is used to enter the
specifications for the job to execute. This information is
stored into individual tasks, one for every block of data to be
executed. These tasks are stored in a job and passed to the
Spacer provider via ServicerAccesor. It is here where
the first of two collaborations start between the Spacer
and the Caller (see Fig. 7). The Spacer takes the
PULL collaboration attributes and sends out invitations or
Creator KeyPair (CKP) exertions to the services required to
execute the PULL collaboration, via the exertion space.
Each invitation contains the Spacer’s public key, so that
responses can be encrypted specifically for the Spacer to
decrypt. The Caller’s SpaceWorker picks up this
object, sees that it is an invitation, extracts the Spacer’s
public key, encrypts its key pair with the Spacer’s public
key, adds its own public key object, and drops this response

ASIA '08 -23

back to the exertion space (KP). The Spacer waits to
receive a response for each invitation, then utilizes the
Authorizer service [[2]] to validate that the responses
are legitimate. It is here that the first collaboration is
complete.

The Spacer service initiates the second collaboration in
the LOKI protocol by combining the decrypted key pairs in
order to calculate a CCK for each member of the newly
created group. These CCKs are packaged into a CCK
exertion, which is then dropped to the space. After this is
complete, the Spacer begins to encrypt the initial job with
the shared secret key, calculated by the Spacer’s private
key and respective CCK, and drops the encrypted job
exertion to the exertion space. The Caller’s
SpaceWorker retrieves its respective CCK from the
retrieved CCK exertion. The Caller’s SpaceWorker
then retrieves the encrypted exertion from the exertion space
and decrypts it with the generated shared key. The
SpaceWorker passes it up to the Caller, where it’s
exert method is called, and results are generated. These
results are then encrypted with the shared secret key, and
dropped to the exertion space. The Spacer picks up the
component results from the exertion space, decrypts them
with the group shared key, and then encrypts the resulting
top level exertion with the Grider’s public key. Once this
is complete they are passed to the Grider, via the
established proxy, where they are decrypted and either
displayed to the user or persisted in the federated file
system.

As described in the LOKI protocol there are two major
collaborations between the Spacer and the Caller (see
Fig. 7). The first is for the actual establishment of the group
and exchange of member information. The second is for the
processing of the initial job created by the Grider. The
only difference between the LOKI execution collaboration
and the standard execution collaboration (Section A) is the
encrypting and decrypting of the component exertions in the
job itself.

Fig. 7, shows this execution in order from top to bottom.

It is a rather complex execution process so the following

will walk through Fig. 7, step by step in order to visualize
the execution process:

Fig. 7. LOKI cGrid collaboration

Step 1: Grider creates job and passes it to Spacer
Step 2: Spacer analyzes job, and writes CKP for every

prospective group member
Step 3: Prospective member’s SpaceWorker writes its

KeyPair encrypted by group creator’s PublicKey
Step 4: Spacer takes all KP exertions, computes CCKs,

packs CCKs in CCK exertion and writes CCK exertion
Step 5: Spacer drops group wide encrypted job
Step 6: Member’s SpaceWorker reads CCK exertion
Step 7: Member’s SpaceWorker takes encrypted job and

decrypts with group wide shared key
Step 8: Member’s Space Worker computes results,

encrypts results and write to space.
Step 9: Spacer takes results and decrypt them with the

group wide shared key
Step 10: Spacer passes the results to the Grider

ASIA '08 -24

C. Security Flow Control
Vital to the credibility of the LOKI framework, security

needs to be maintained from start to finish. In order to verify
that all links of the communication are secured in the LOKI
implementation we must refer to Fig. 7.

The lcGrid job execution starts with Grider service,
which then communicates with the Spacer service with the
help of ServicerAccesor. The Grider to Spacer
communication is secured with a two party Diffie Hellman
key agreement. The Diffie Hellman agreement utilizes the
Grider’s KeyPair and the Spacer’s KeyPair to
individually calculate a common shared secret key. The
shared secret key is then used to encrypt exertions
exchanged between the two services.

The next link in the communication of job execution is
that of the Spacer to Caller link, which passes over the
exertion space. The Spacer to Caller communication is
secured using the LOKI group key protocol (Fig. 8), and
scalable key agreement. The LOKI protocol outlines the
procedure for group creation, as well as the modified space
interaction methods. These methods utilize the group’s
shared secret key to encrypt exertions passed between
services over the exertion space.

The last possible gap in the job execution
communication is in the concept of the invitation sent out by
the group requestor. In order to ensure security, the validity
of the response to the invitation needs to be authenticated. In
order to do this within SORCER, the Authenticator
service is utilized [[2]]. The Authenticator service
guarantees that the service that has responded is the service
that was invited.

VIII. CONCLUSION

The first objective was to secure the inherently public
space computing environment. Through the implementation
it has been shown that the LOKI framework successfully
secures the lcGrid execution environment. The encryption
and decryption of exertions with a securely created group
wide shared secret key, before any exertion reaches the
public space, ensures that exertions stay secure.

The second objective is to maintain security in the ad hoc
space computing environment. The creation of the group
key, accounts for the ad hoc nature of the system. The key is
created and members who belong to the group can come and
go, but will not be given access to the group if they establish
new group characteristics (i.e. unique identifier, KeyPair,
and KeyAgreement). The key agreement that is created
in the framework is scalable to any number of party
members, which satisfies the third objective—to abstract the
complexity of the N-ary key policy.

As well the LOKI framework provides persistent data
storage, management of group services, and is inherently
easy to use. The solution also maintains several important
architectural characteristics such as availability through

extensive fault maintenance, modifiability through the use of
interfaces, performance through the use of Java, security
which has been described previously, testability through the
modular nature of the framework, and usability through
complexity abstraction.

Although this is the case, the solution grows
incrementally more complex with increasingly large groups.
The framework still holds but the time complexity for
groups over 1000 members will grow faster than the benefits
of the framework provide. It is for this reason that we must
conclude that the framework is complete and practical, but
for groups of large numbers of members (greater than 1000),
alternate formations should be explored. Such alternatives
may be the concept of sub groups, where sub group’s shared
key is the member key in a parent group. This would
dissolve the issue of increasing time complexity and allow
for groups of sizes much larger than 1000 party members.
Other alternatives may include the CCK component
calculation through the creation of specialized fast CCK
calculation service within the LOKI framework.

In conclusion the Loki framework successfully secures
the ad hoc space computing environments, with
management of group services with little to no restrictions.

REFERENCES

[1] M. Berger, and M. Sobolewski, “Lessons Learned from the SILENUS

Federated File System,” Complex Systems Concurrent Engineering,
Loureiro, G. and Curran, R. (Eds.), Springer Verlag, ISBN: 978-1-
84628-975-0, pp. 431-440, 2007.

[2] M. Berger, and M. Sobolewski, "Group-based Security in a Federated
File System," 2nd Annual Symposium on Information Assurance,
Albany NY, June 6-7, 2007, pp. 56-63, 2007.

[3] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces™ Principles,
Patterns, and Practice, Addison-Wesley, ISBN: 0-201-30955-6, 1999.

[4] J. Garms, D. Somerfield, Java Security, Wrox, 2001
[5] M.E. Hellman, “An Overview of Public Key Cryptography,” IEEE

Communications Magazine , pp. 42-49, 2002.
[6] “Jini architecture specification,” Version 2.1. http://www.sun.com/soft

ware/jini/specs/jini1.2html/jini-title.html.
[7] M. Sobolewski, “Service-oriented Programming, SORCER Technical

Report SL-TR-13,” 2008.
Available at: http://sorcer.cs.ttu.edu/publications/papers/2008/SL-TR-
13.pdf.

[8] M. Sobolewski, “Federated Method Invocation with Exertions,”
Proceedings of the 2007 IMCSIT Conference, PTI Press, ISSN 1896-
7094, pp. 765-778,
2007. http://sorcer.cs.ttu.edu/publications/papers/96.pdf

[9] M. Sobolewski, “SORCER: Computing and Metacomputing
Intergrid,” 10th International Conference on Enterprise Information
Systems, Barcelona, Spain, 2008.
http://sorcer.cs.ttu.edu/publications/papers/2008/iceis-intergrid-08.pdf

[10] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid,” In
Fran Berman, Anthony J.G. Hey, and Geoffrey Fox, editors, Grid
Computing: Making The Global Infrastructure a Reality. John Wiley,
2003.

[11] G. Wells, Coordination Languages: Back to the Future with Linda,
Rhodes University.

[12] D.R. Kerr, “Space Computing with Group Key Agreement - Location
Independent Group Key Interactive Management (LOKI),” Master’s
Thesis. http://etd.lib.ttu.edu/theses/available/etd-03132008-163802

ASIA '08 -25

	Beginning2008
	0-symposiumcover
	1-BackPage2008
	Symposium Chairs
	CONFERENCE KILOBYTE SPONSORS
	CONFERENCE MEGABYTE SPONSOR
	SYMPOSIUM SPONSORS

	1b-insidecover2008
	1c-blank
	2-Message2008e
	2-Nblank
	3-Agenda2008c
	Terri Oda, Anil Somayaji, and Tony White, Carleton University, Canada
	VISIT THE EXHIBITORS – Convention Hall (2:00pm – 2:45pm)
	Peer-to-Peer Simulation for Network Security
	Daniel O. Rice and George Wright, Loyola College in Maryland
	John Crain, Chief Technical Officer, ICANN, Marina Del Rey, CA
	Panelists: Fabio Auffant, NYS Police Computer Crime Laboratory, Christian Balan, Champlain College in Burlington, and Sean Smith, New York Prosecutors Training Institute

	On Information Assurance in Nanoscale NetworksStephen F. Bush, General Electric Global Research
	Content-sensitive, Temporally Adaptive Metadata
	Brendan J. Gilbert, Raj Sharman, Manish Gupta, H.R. Rao, Shambhu Upadhyaya, and Kenneth P. Mortensen, Esq., University at Buffalo, SUNY
	

	VISIT THE EXHIBITORS – Convention Hall (1:45pm – 2:30pm)
	Enhancing the Non-Repudiation Properties of EMV Payment Cards

	4-TOC2008
	When Elephants Dance, Mice Must be Careful: Content Provider Conflict on the Modern Web …………………………………………………………………………………
	Peer-to-Peer Simulation for Network Security ……………………………………………
	26
	On Information Assurance in Nanoscale Networks ……………………………………….
	Content-sensitive Temporally Adaptive Metadata ………………………………….…….
	Recursive Data Mining for Author and Role Identification ……………………………...

	End2008_N
	5-Rios
	6-Oda
	7-ChandrasekaranEdit
	8-KerrEdit
	9-RiceEdit
	10-Crain
	11-ForensicsPanel
	12-BushEdit
	13-UdehEdit
	14-GilbertEdit
	15-ChaojiEdit
	I. INTRODUCTION
	II. Related Work
	III. Preliminaries
	IV. Recursive Data Mining
	A. Pattern Generation
	B. Pattern Significance
	C. Dominant Patterns
	D. Training Phase
	E. Testing Phase

	V. Experiment and Results
	A. Author Identification Task
	1) Data Preparation and Experimental Setup
	2) Parameter Estimation
	3) Results

	B. Role Identification Task
	1) Data Preparation and Experimental Setup
	2) Results

	C. Effect of Parameter Changes

	VI. Conclusion And Future Work

	16-BoydEdit
	i. The mechanism
	ii. CDA cards

	17-GencEdit
	18-BIOS2008
	19-authorindex2008
	15-ChaojiEdit.pdf
	I. INTRODUCTION
	II. Related Work
	III. Preliminaries
	IV. Recursive Data Mining
	A. Pattern Generation
	B. Pattern Significance
	C. Dominant Patterns
	D. Training Phase
	E. Testing Phase

	V. Experiment and Results
	A. Author Identification Task
	1) Data Preparation and Experimental Setup
	2) Parameter Estimation
	3) Results

	B. Role Identification Task
	1) Data Preparation and Experimental Setup
	2) Results

	C. Effect of Parameter Changes

	VI. Conclusion And Future Work

