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Abstract–Exertion-oriented space computing is a valuable 

advance in distributed and parallel computing seeing as it 
abstracts out several major problems in distributed computing, 
such as load balancing and mutual exclusion. The main 
problem with space computing is that of security due to the fact 
that exertion spaces are inherently public and ad hoc, thus 
making it difficult to implement secure groups. The location 
independent group key interactive management framework 
presents a federated methodology and protocol for group 
management that is secure, scalable, and modifiable for the 
metacomputing exertion-oriented space computing 
environment. The framework does so through the use of a 
group establishment protocol, authorization and authentication 
services, high level cryptography, and persistent group 
information storage. The SORCER computing grid is used as a 
validation case for the framework and is presented in this 
paper. 

 
I. INTRODUCTION 

Security in networking has been a serious issue since the 
dawn of networked systems. With the increasing trust in 
computers for the use of storing sensitive data (account 
numbers, social security numbers, criminal records, health 
history, etc) security has drastically increased in order to 
coordinate with the importance of the information being 
exchanged. Along with the growth in computer networking 
is the growth in distributed computing. 

A rather new concept in distributed computing is the 
concept of space computing. Space computing helps to solve 
several of the significant problems with distributed 
computing, but still leaves room for improvement. The 
space computing environment starts by being completely 
public so that all services can access objects in the publicly 
shared space.  The space broker is also oblivious to who is a 
member of the space environment. 

Space computing, being based on the idea of the tuple 
space from Linda programming language, utilizes three 
major functions to manipulate tuples (or objects) from the 
tuple space (or object space). In Linda they are in – the 
removal of a tuple from the tuple space for reading, out – 
the writing of a tuple to the tuple space, and rd – the 
copying of a tuple from the tuple space for reading [[11]]. 
These three functions are mimicked in other 
implementations such as JavaSpaces [[3]] where the in 
function is called take, the out function called write, 
and the rd function called read. 

The question at hand is whether or not a secure 
encrypted exertion oriented programming model that 

implements group creation and maintenance services can be 
implemented in a space computing environment. 

The paper is organized as follows. Section II provides a 
brief description of the SORCER environment; Section III 
and IV describes basics of exertion-oriented programming; 
Section V describes three types of collaborations including 
space-based collaborations; Section VI presents the required 
cryptography and key agreement; Section VII describes a 
framework for the creation and management of groups 
within the exertion-oriented space computing environment, 
and Section 8 provides concluding remarks. 

 
II. SORCER 

SORCER (Service Oriented Computing EnviRonment) 
[[9]] is a federated service-to-service (S2S) metacomputing 
environment that treats service providers as network objects 
with well-defined semantics of a federated service object-
oriented architecture. It is based on Jini semantics of 
services in the network and Jini programming model with 
explicit leases, distributed events, transactions, and 
discovery/join protocols [[6]]. While Jini focuses on service 
management in a networked environment, SORCER focuses 
on exertion-oriented programming and the execution 
environment for exertions. SORCER uses Jini 
discovery/join protocols to implement its exertion-oriented 
architecture (EOA) using federated method invocation [[8]], 
but hides all the low-level programming details of the Jini 
programming model. 

In EOA, a service provider is an object that accepts 
remote messages from service requestors to execute 
collaboration. These messages are called service exertions 
and describe service data, operations and provider’s control 
strategy. An exertion task (or simply a task) is an 
elementary service request, a kind of elementary remote 
instruction executed by a single service provider or a small-
scale federation for the same service data. A composite 
exertion called an exertion job (or simply a job) is defined 
hierarchically in terms of tasks and other jobs, a kind of 
network procedure executed by a large-scale federation. The 
executing exertion is dynamically bound to all required and 
currently available service providers on the network. This 
collection of providers identified in runtime is called an 
exertion federation. The federation provides the 
implementation for the collaboration as specified by its 
exertion. When the federation is formed, each exertion’s 
operation has its corresponding method (code) available on 
the network. Thus, the network exerts the collaboration with 
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the help of the dynamically formed service federation. In 
other words, we send the request onto the network 
implicitly, not to a particular service provider explicitly.  

The overlay network of service providers is called the 
service grid and an exertion federation is in fact a virtual 
metacomputer. The metainstruction set of the metacomputer 
consists of all operations offered by all service providers in 
the grid. Thus, an exertion-oriented (EO) program is 
composed of metainstructions with its own control strategy 
and a service context representing the metaprogram data. 
The service context describes the data that tasks and jobs 
work on. Each service provider offers services to other 
service peers on the object-oriented overlay network. These 
services are exposed indirectly by operations in well-known 
public remote interfaces and considered to be elementary 
(tasks) or compound (jobs) activities in EOA. Indirectly 
means here, that you cannot invoke any operation defined in 
provider’s interface directly. These operations can be 
specified in a requestor’s exertion only, and the exertion can 
be passed on to any service provider via the top-level 
Servicer interface implemented by all service providers 
called servicers—service peers. Thus all service providers in 
EOA implement the service(Exertion, 
Transaction):Exertion operation of the Servicer 
interface. When the servicer accepts its received exertion, 
then the exertion’s operations can be invoked by the servicer 
itself, if the requestor is authorized to do so. Servicers do 
not have mutual associations prior to the execution of an 
exertion; they come together dynamically (federate) for a 
collaboration as defined by its exertion. In EOA requestors 
do not have to lookup for any network provider at all, they 
can submit an exertion, onto the network by calling 
Exertion.exert(Transaction) :Exertion on the 
exertion. The exert operation will create a required 
federation that will run the collaboration as specified in the 
EO program and return the resulting exertion back to the 
exerting requestor. Since an exertion encapsulates 
everything needed (data, operations, and control strategy) 
for the collaboration, all results of the execution can be 
found in the returned exertion’s service contexts. 

Domain specific servicers within the federation, or task 
peers (taskers), execute task exertions. Rendezvous peers 
(jobbers and spacers) coordinate execution of job exertions. 
Providers of the Tasker, Jobber, and Spacer type are 
three of SORCER main infrastructure servicers, see  

Fig. 1. 

 
Fig. 1. The SORCER layered functional architecture. 

In view of the P2P architecture defined by the 
Servicer interface, a job can be sent to any servicer. A 
peer that is not a Jobber type is responsible for forwarding 
the job to one of available rendezvous peers in the SORCER 
environment and returning results to the requestor. 

Thus implicitly, any peer can handle any job or task. 
Once the exertion execution is complete, the federation 
dissolves and the providers disperse to seek other 
collaborations to join. Also, SORCER supports a traditional 
approach to grid computing similar to those found, for 
example in Condor [[10]]. Here, instead of exertions being 
executed by services providing business logic for invoked 
exertions, the business logic comes from the service 
requestor's executable codes that seek compute resources on 
the network. 

Grid-based services in the SORCER environment 
include Grider services collaborating with Jobber and 
Spacer services for traditional grid job submission. Caller 
and Methoder services are used for task execution. 
Callers execute conventional programs via a system call as 
described in the service context of submitted task. 
Methoders can download required Java code (task method) 
from requestors to process any submitted context 
accordingly with the code downloaded. In either case, the 
business logic comes from requestors; it is a conventional 
executable code invoked by Callers with the standard 
Caller’s service context, or mobile Java code executed by 
Methoders with a matching service context provided by the 
requestor.  

 
III. EXERTION-ORIENTED PROGRAMMING 

Each programming language provides a specific 
computing abstraction. Procedural languages are 
abstractions of assembly languages. Object-oriented 
languages abstract entities in the problem domain that refer 
to “objects”, communicating via message passing, as their 
representation in the corresponding solution domain. 
However, we cannot just take an object-oriented program 
developed without distribution in mind, and make it a 
distributed system, ignoring the unpredictable network 
behavior. The EO programming is a form of object-oriented 
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distributed programming that allows us to describe the 
distributed problem in terms of the intrinsic unpredictable 
network domain instead of in terms of distributed objects 
hiding the notion of the network domain that in reality 
cannot be hidden. 

What intrinsic distributed abstractions are defined in 
SORCER? Well, service providers are “objects”, but they 
are specific objects—they are network objects with a 
network state, network behavior, and network type(s). 
Service providers act also as network peers (servicers); they 
are replicated and dynamically provisioned for reliability to 
compensate for network failures. Servicers can be found 
transparently in runtime by type(s) they implement. They 
can federate for an exertion submitted onto the network and 
participate in the collaboration outlined by the exertion. The 
exertion encapsulates service data, operations, and control 
strategy used by the collaboration. The component exertions 
may need to share context data of ancestor exertions, and the 
top-level exertion is complete only if all nested exertions are 
successful. Thus, a collaboration is a process, an exertion is 
the specification of collaboration, and a dynamic federation 
of peers is the implementation of a collaboration. 

Let's first look at the EO approach to see how it works. 
Exertion-oriented programs consist of exertion objects 
called tasks and jobs. An exertion task corresponds to an 
individual network request to be executed on a service 
provider. An exertion job consists of a structured collection 
of tasks and other jobs. The data upon which to execute a 
task or job is called a service context. Tasks are analogous to 
executing a single program or command on a computer, and 
the service context would be the input and output streams 
that the program or command uses. A job is analogous to a 
batch script that can contain various commands and calls to 
other scripts. Pipelining Unix commands allows us to 
perform complex activities without writing complex 
programs. As an example, consider a script sort.sh 
connecting simple processes in a pipeline as follows: 

 
cat hello.txt | sort | uniq > bye.txt 
 
The script is similar to an exertion job in that it consists 

of individual tasks that are organized in a particular fashion. 
Also, other scripts can call the script sort.sh. An exertion 
job can consist of tasks and other jobs, much like a script 
can contain calls to commands and other scripts. 

Each of the individual commands, such as cat, sort, 
and uniq, would be analogous to a task. Each task works 
with a particular service context. The input context for the 
cat “task” would be the file hello.txt, and the “task” 
would return an output context consisting of the contents of 
hello.txt. This output context can then be used as the 
input context for another task, namely the sort command. 
Again the output context for sort could be used as the 

input context for the uniq task, which would in turn give an 
output service context in the form of bye.txt.  

To further clarify what an exertion is, an exertion 
consists mainly of three parts: a set of service signatures, 
which is a description of operations in collaboration, the 
associated service context upon which to execute the 
exertion, and control strategy (default provided) that defines 
how signatures are applied in the collaboration. A service 
signature specifies at least the provider’s interface that the 
service requestor would like to use and a selected operation 
to run within that interface. There are four types of 
signatures that can be used for an exertion: PREPROCESS, 
PROCESS, POSTPROCESS, and APPEND. An exertion must 
have one and only one PROCESS signature that specifies 
what the exertion should do and who works on it. An 
exertion can optionally have multiple PREPROCESS, 
POSTPROCESS, and APPEND signatures that are primarily 
used for formatting the data within the associated service 
context. A service context consists of several data nodes 
used for input, output, or both. A task may work with only a 
single service context, while a job may work with multiple 
service contexts since it can contain multiple tasks. The 
programmer can define a control strategy as needed for the 
underlying exertion by choosing relevant exertion types and 
configuring attributes of service signatures [[7]]. A reader 
interested in EO programming detail can review two simple 
EO programs for the sort.sh in [[7]]. 

If we use the Tenex C shell (tcsh), invoking the UNIX 
script is equivalent to: “tcsh sort.sh”, i.e., passing the 
script sort.sh on to tcsh. Similarly, to invoke the 
exertion sortJob, we call “sortJob.exert()”. Thus, the 
exertion is the program and the network shell at the same 
time, which might first come as a surprise, but close 
evaluation of this fact shows it to be consistent with the 
meaning of object-oriented distributed programming. Here, 
the virtual metacomputer is an ad hoc federation that does 
not exist when the exertion is created. Thus, the notion of 
the virtual metacomputer is encapsulated in the exertion 
(specification) that creates the required federation on-the-fly 
(implementation) to execute the collaboration (process). 

 
IV. SERVICE MESSAGING AND EXERTIONS 

In object-oriented terminology, a message is the single 
means of passing control to an object. If the object responds 
to the message, it has an operation and its implementation 
(method) for that message. Because object data is 
encapsulated and not directly accessible, a message is the 
only way to send data from one object to another. Each 
message specifies the name (identifier) of the receiving 
object, the name of operation to be invoked, and its 
parameters. In the unreliable network of objects; the 
receiving object might not be present or can go away at any 
time. Thus, we should postpone receiving object 
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identification as late as possible. Grouping related messages 
per one request for the same data set makes a lot of sense 
due to network invocation latency and common errors in 
handling. These observations lead us to service-oriented 
messages called exertions. An exertion encapsulates 
multiple service signatures that define operations, a service 
context that defines data, and a control strategy that defines 
how signature operations flow in collaboration. Different 
types of control exertions (IfExertion, ForExertion, 
and WhileExertion) [[7]] can be used to define flow of 
control that can also be configured additionally with 
adequate signature attributes (flow type and access type—
see Section V).  

An exertion can be invoked by calling exertion’s 
exert operation: Exertion.exert(Transaction) 
:Exertion, where a parameter of the Transaction type is 
required when the transactional semantics is needed for all 
participating nested exertions within the parent one, 
otherwise can be null. Thus, EO programming allows us to 
submit an exertion onto the network and to perform 
executions of exertion’s signatures on various service 
providers indirectly, but where does the service-to-service 
communication come into play? How do these services 
communicate with one another if they are all different? Top-
level communication between services, or the sending of 
service requests (exertions), is done through the use of the 
generic Servicer interface and the operation service that 
all SORCER services are required to provide—
Servicer.service(Exertion, Transaction). This 
top-level service operation takes an exertion as an argument 
and gives back an exertion as the return value. How this 
operation is used in the federated method invocation 
framework is described in detail in [8]. 

So why are exertions used rather than directly calling on 
a provider's method and passing service contexts? There are 
two basic answers to this. First, passing exertions helps to 
aid with the network-centric messaging. A service requestor 
can send an exertion out onto the network—
Exertion.exert()—and any servicer can pick it up. The 
servicer can then look at the interface and PROCESS 
operation requested within the exertion, and if it doesn't 
implement the desired interface or provide the desired 
operation, it can continue forwarding it to another provider 
who can service it. Second, passing exertions helps with 
fault detection and recovery. Each exertion has its own 
completion state associated with it to specify if it has yet to 
run, has already completed, or has failed. Since full 
exertions are both passed and returned, the requestor can 
view the failed exertion composition to see what method 
was being called as well as what was used in the service 
context input nodes that may have caused the problem. 
Since exertions provide all the information needed to 
execute a task including its control strategy, a requestor 
would be able to pause a job between tasks, analyze it and 

make needed updates. To figure out where to resume a job, a 
rendezvous service would simply have to look at the task’s 
completion states and resume the first one that wasn't 
completed yet. 

 
V. PUSH AND PULL COLLABORATIONS 

SORCER also extends exertion execution abilities 
through the use of a rendezvous service implementing the 
Spacer interface. The Spacer service can drop exertions 
into a shared object space, implemented using JavaSpaces 
[2], in which collaborating servicers can retrieve matching 
exertions, execute them, and return the resulting exertions 
back to the object space. When the attribute access type of a 
PROCESS signature is set to PULL then the associated 
exertion is passed onto a Spacer, otherwise (access type is 
PUSH) the exertion is passed directly on to the servicer 
specified by the signature.  Another signature attribute—
flow type, manages the flow of control (SEQUENTIAL, 
PARALLEL, or CONCURRENT) for all component exertions at 
the same level. 

In Fig. 2, four use cases are presented to illustrate push 
vs. pull exertion processing with either PUSH or PULL access 
types. We assume here that an exertion is a job with two 
component exertions executed in parallel (sequence 
numbers with a and b), i.e., the job’s signature flow type is 
PARALLEL. The job can be submitted directly to either 
Jobber (use cases: 1—access is PUSH, and 2—access is 
PULL) or Spacer (use cases: 3 —access is PUSH, and 4—
access is PULL) depending on the interface defined in its 
PROCES signature. Thus, in cases 1 and 2 the signature’s 
interface is Jobber and in cases 3 and 4 the signature’s 
interface is Spacer as shown in Fig. 2. The exertion’s 
ServicerAccessor delivers the right service proxy 
dynamically, either for a Jobber or Spacer. If the access 
type of the parent exertion is PUSH, then all the component 
exertions are directly passed on to servicers matching their 
PROCESS signatures (case 1 and 3), otherwise they are 
written into the exertion space by a Spacer (case 2 and 4). 
In the both cases 2 and 4, the component exertions are 
pulled from the exertion space by servicers matching their 
signatures as soon as they are available. Thus, Spacers 
provide efficient load balancing for processing the exertion 
space. The fastest available servicer gets an exertion from 
the space before other overloaded or slower servicers can do 
so. When an exertion consists of component jobs with 
different access and flow types, then we have a hybrid case 
when the collaboration potentially executes concurrently 
with multiple pull and push sub collaborations at the same 
time. 
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Fig. 2. Push vs. pull exertion processing 

 
VI. CRYPTOGRAPHY AND KEY AGREEMENT 

The major topic in cryptography necessary to understand 
the location independent group key interactive management 
(LOKI) framework is that of key exchange protocols. Key 
exchange protocol (also known as key agreement) is an 
agreement for how parties agree upon on a key. They 
require that each member must impact the key, that no 
previously exchanged information can be assumed, that it 
must prevent eavesdropping, and external parties should not 
be able calculate the key based on any publicly shared 
information. 

When talking about SORCER PULL collaborations it is 
obvious that a flexible key exchange protocol is necessary in 
order to accommodate the creation of groups of unknown 
size. It is this requirement that prompted the creation of the 
Multi Diffie Hellman Key Exchange Protocol, which scales 
the standard two party Diffie Hellman Key Exchange 
Protocol into an N-ary key exchange protocol. It does so by 
linking the standard Java KeyAgreement object of each 
party member with all other party member’s 
KeyAgreement in order to create a Complementary 
Compound Key (CCK) for each party member, which acts as 
a new public key for each specific member [[4]]. When a 
member’s specific CCK is combined (doPhase) with its 
local Java standard PrivateKey, it will generate the 
group wide Shared Secret Key (SSK), which can then be 
used for both encryption and decryption, of shared objects. 
An example of this is shown in Fig. 3, and demonstrates a 
five party group. 

 
Fig. 3. Multi Diffie-Hellman Key Exchange Protocol 

As you can see in Fig. 3, each party member’s CCK 
consists of a chain of all other party members in the group. 
The main restriction on the Multi Diffie Hellman process is 
that it is more time consuming for groups of large size 
(greater than 1000). This is shown in Fig. 4. 

 

 
Fig. 4. Multi Diffie-Hellman Running Time Curve 

 
Fig. 4, shows both the test data, in red, and the estimated 

line of best fit, in grey. The line of best fit shows that the 
Multi Diffie Hellman process is exponentially complex. 
Even though this is not ideal, this complexity is acceptable 
for the for the test case of LOKI implemented in the 
SORCER compute Grid (cGrid) application [[9]], due to the 
fact that groups are typically smaller than twenty five party 
members. 

 
VII. LOKI FRAMEWORK 

The LOKI framework establishes a protocol for group 
creation and management within PULL collaborations (see 
Section 5). There are several assumptions that are made 
about groups within the framework, the first being that there 
is a requestor, or a service desiring a group to be created. It 
is this requestor who will, by default be the administrator to 
the group that results from the creation request. The second 
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assumption is that the requestor knows what type of services 
or who it would like to invite to the group. From these two 
assumptions the LOKI framework handles the management 
of all subsequent services previously described in the 
exertion-oriented model. 

To start we will look at what characteristics and 
attributes each service in LOKI has within the framework 
(see Fig. 5). Upon creation, each service will create a Java 
KeyPair, KeyAgreement, encryption Cipher, 
decryption Cipher, unique identifier, and status bits. This 
member information is utilized in order to perform LOKI 
secured read, write, and take operations to the exertion 
space. When a member performs a LOKI secured read, 
write, or take operation, it will first utilize discovery lookup 
to locate a LokiGroupManagement provider. The 
LokiGroupManagement provider is a service running within 
the space environment that is responsible for storing all 
group activity in a persisten data storage. 

 

 
Fig. 5. LOKI package model 

 
The use of persistent data storage allows for the 

framework to do continuity checking, ensuring that all data 
and group information is valid throughout group activity. If 
at anytime the group information is conflicting or faulty, the 
group is dissolved; all exertions are taken from the space 
and stored in the persistent data storage only to be accessed 
by the group administrator. 

To understand the protocol of group creation in the 
simplest form it is best to start looking at the cGrid 
application without group implementation, then compare it 
to the implementation of LOKI groups in the LOKI cGrid 
(lcGrid) application. 

 
A. SORCER Grid Collaborations 

The Grider provider publishes a user interface which 
is used to enter the specifications for the job to execute. This 
information is stored into individual tasks, one for every 
block of data to be executed. These tasks are stored in a job 
and passed to the Spacer provider. The Spacer then 
breaks them down and dispatches them to the exertion space 
(“in” exertions in Fig. 6).  

 

 
Fig. 6. cGrid Activity 

 
The Caller service, upon startup, launches several 

SpaceWorkers that constantly listen to the exertion space 
for exertions with the Caller service type. At this point 
the SpaceWorkers start the collaboration between the 
Spacer and the Caller. The SpaceWorkers find the 
dropped exertion from the Spacer provider, take it from 
the space and call their own exert method for the retrieved 
matching exertion. Once execution is complete, the Caller 
service drops the results back to the space (“out” exertions 
in Fig. 6).  The Spacer’s results collection thread, waits 
for these results and takes them from the exertion space. It is 
at this point that the Spacer-Caller collaboration is 
complete and the resulting information is processed. The 
results are then passed back to the Grider via the 
previously established proxy, where they are either 
presented to the user or persisted in the SORCER federated 
file system [[1]]. 

 
B. LOKI Enabled Collaborations 

Execution of the cGrid application with LOKI starts in 
much the same way as it does without LOKI. The Grider 
provider publishes a user agent, which is used to enter the 
specifications for the job to execute. This information is 
stored into individual tasks, one for every block of data to be 
executed. These tasks are stored in a job and passed to the 
Spacer provider via ServicerAccesor. It is here where 
the first of two collaborations start between the Spacer 
and the Caller (see Fig. 7). The Spacer takes the 
PULL collaboration attributes and sends out invitations or 
Creator KeyPair (CKP) exertions to the services required to 
execute the PULL collaboration, via the exertion space.  
Each invitation contains the Spacer’s public key, so that 
responses can be encrypted specifically for the Spacer to 
decrypt.  The Caller’s SpaceWorker picks up this 
object, sees that it is an invitation, extracts the Spacer’s 
public key, encrypts its key pair with the Spacer’s public 
key, adds its own public key object, and drops this response 
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back to the exertion space (KP). The Spacer waits to 
receive a response for each invitation, then utilizes the 
Authorizer service [[2]] to validate that the responses 
are legitimate. It is here that the first collaboration is 
complete. 

The Spacer service initiates the second collaboration in 
the LOKI protocol by combining the decrypted key pairs in 
order to calculate a CCK for each member of the newly 
created group. These CCKs are packaged into a CCK 
exertion, which is then dropped to the space. After this is 
complete, the Spacer begins to encrypt the initial job with 
the shared secret key, calculated by the Spacer’s private 
key and respective CCK, and drops the encrypted job 
exertion to the exertion space.  The Caller’s 
SpaceWorker retrieves its respective CCK from the 
retrieved CCK exertion. The Caller’s SpaceWorker 
then retrieves the encrypted exertion from the exertion space 
and decrypts it with the generated shared key. The 
SpaceWorker passes it up to the Caller, where it’s 
exert method is called, and results are generated. These 
results are then encrypted with the shared secret key, and 
dropped to the exertion space.  The Spacer picks up the 
component results from the exertion space, decrypts them 
with the group shared key, and then encrypts the resulting 
top level exertion with the Grider’s public key. Once this 
is complete they are passed to the Grider, via the 
established proxy, where they are decrypted and either 
displayed to the user or persisted in the federated file 
system. 

As described in the LOKI protocol there are two major 
collaborations between the Spacer and the Caller (see 
Fig. 7). The first is for the actual establishment of the group 
and exchange of member information. The second is for the 
processing of the initial job created by the Grider. The 
only difference between the LOKI execution collaboration 
and the standard execution collaboration (Section A) is the 
encrypting and decrypting of the component exertions in the 
job itself. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7, shows this execution in order from top to bottom. 

It is a rather complex execution process so the following 

will walk through Fig. 7, step by step in order to visualize 
the execution process: 

 
Fig. 7. LOKI cGrid collaboration 

 
Step 1: Grider creates job and passes it to Spacer 
Step 2: Spacer analyzes job, and writes CKP for every 

prospective group member  
Step 3: Prospective member’s SpaceWorker writes its 

KeyPair encrypted by group creator’s PublicKey 
Step 4: Spacer takes all KP exertions, computes CCKs, 

packs CCKs in CCK exertion and writes CCK exertion 
Step 5: Spacer drops group wide encrypted job 
Step 6: Member’s SpaceWorker reads CCK exertion 
Step 7: Member’s SpaceWorker takes encrypted job and 

decrypts with group wide shared key 
Step 8: Member’s Space Worker computes results, 

encrypts results and write to space. 
Step 9: Spacer takes results and decrypt them with the 

group wide shared key 
Step 10: Spacer passes the results to the Grider 
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C. Security Flow Control 
Vital to the credibility of the LOKI framework, security 

needs to be maintained from start to finish. In order to verify 
that all links of the communication are secured in the LOKI 
implementation we must refer to Fig. 7. 

The lcGrid job execution starts with Grider service, 
which then communicates with the Spacer service with the 
help of ServicerAccesor. The Grider to Spacer 
communication is secured with a two party Diffie Hellman 
key agreement. The Diffie Hellman agreement utilizes the 
Grider’s KeyPair and the Spacer’s KeyPair to 
individually calculate a common shared secret key. The 
shared secret key is then used to encrypt exertions 
exchanged between the two services. 

The next link in the communication of job execution is 
that of the Spacer to Caller link, which passes over the 
exertion space. The Spacer to Caller communication is 
secured using the LOKI group key protocol (Fig. 8), and 
scalable key agreement. The LOKI protocol outlines the 
procedure for group creation, as well as the modified space 
interaction methods. These methods utilize the group’s 
shared secret key to encrypt exertions passed between 
services over the exertion space. 

The last possible gap in the job execution 
communication is in the concept of the invitation sent out by 
the group requestor. In order to ensure security, the validity 
of the response to the invitation needs to be authenticated. In 
order to do this within SORCER, the Authenticator 
service is utilized [[2]]. The Authenticator service 
guarantees that the service that has responded is the service 
that was invited.  
 

VIII. CONCLUSION 

The first objective was to secure the inherently public 
space computing environment. Through the implementation 
it has been shown that the LOKI framework successfully 
secures the lcGrid execution environment. The encryption 
and decryption of exertions with a securely created group 
wide shared secret key, before any exertion reaches the 
public space, ensures that exertions stay secure. 

The second objective is to maintain security in the ad hoc 
space computing environment. The creation of the group 
key, accounts for the ad hoc nature of the system. The key is 
created and members who belong to the group can come and 
go, but will not be given access to the group if they establish 
new group characteristics (i.e. unique identifier, KeyPair, 
and KeyAgreement). The key agreement that is created 
in the framework is scalable to any number of party 
members, which satisfies the third objective—to abstract the 
complexity of the N-ary key policy. 

As well the LOKI framework provides persistent data 
storage, management of group services, and is inherently 
easy to use. The solution also maintains several important 
architectural characteristics such as availability through 

extensive fault maintenance, modifiability through the use of 
interfaces, performance through the use of Java, security 
which has been described previously, testability through the 
modular nature of the framework, and usability through 
complexity abstraction. 

Although this is the case, the solution grows 
incrementally more complex with increasingly large groups. 
The framework still holds but the time complexity for 
groups over 1000 members will grow faster than the benefits 
of the framework provide. It is for this reason that we must 
conclude that the framework is complete and practical, but 
for groups of large numbers of members (greater than 1000), 
alternate formations should be explored. Such alternatives 
may be the concept of sub groups, where sub group’s shared 
key is the member key in a parent group. This would 
dissolve the issue of increasing time complexity and allow 
for groups of sizes much larger than 1000 party members. 
Other alternatives may include the CCK component 
calculation through the creation of specialized fast CCK 
calculation service within the LOKI framework. 

In conclusion the Loki framework successfully secures 
the ad hoc space computing environments, with 
management of group services with little to no restrictions. 
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