
R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 248–258, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Dynamic SLA Negotiation in Autonomic Federated
Environments

Pawel Rubach1,2 and Michael Sobolewski1

1 Computer Science, Texas Tech University, SORCER Research Group,
Box 43104 Boston & 8th, Lubbock, TX 79409, USA
{pawel.rubach, sobol}@sorcersoft.org
2 Business Informatics, Warsaw School of Economics,

Al. Niepodleglosci 162, 02-554 Warszawa, Poland

Abstract. Federated computing environments offer requestors the ability to
dynamically invoke services offered by collaborating providers in the virtual service
network. Without an efficient resource management that includes Dynamic SLA
Negotiation, however, the assignment of providers to customer’s requests cannot be
optimized and cannot offer high reliability without relevant SLA guarantees. We
propose a new SLA-based SERViceable Metacomputing Environment (SERVME)
capable of matching providers based on QoS requirements and performing
autonomic provisioning and deprovisioning of services according to dynamic
requestor needs. This paper presents the SLA negotiation process that includes on-
demand provisioning and uses an object-oriented SLA model for large-scale service-
oriented systems supported by SERVME. An initial reference implementation in the
SORCER environment is also described.

Keywords: SLA Negotiation, QoS, SLA, Metacomputing, Service-Oriented
Architecture, SORCER.

1 Introduction

Many research activities worldwide are focused on developing smart, self-
manageable systems that will allow applications to run smoothly and reliably in a
distributed environment. IBM calls this Autonomic Computing [1]. The realization of
this concept would enable the move towards Utility Computing – the long awaited
vision where computing power would be available as a utility just like water or
electricity is delivered to our homes today. One of the challenges in addressing this
concept lies in the problem of guaranteeing a certain level of Quality of Service (QoS)
to the customer for which he/she would be willing to pay.

In this paper we address related issues by proposing the Dynamic SLA Negotiation
process for the SERViceable Metacomputing Environment (SERVME)[2] which is
based on the SORCER (Service-Oriented Computing EnviRonment) [3] environment
extended by adding a QoS Management Framework. This paper presents the SLA
negotiation process including the on-demand provisioning of services and briefly
describes the architecture of the federated P2P environment.

SORCER provides a way of creating service-oriented programs and executing
them in a metacomputing environment. The service-oriented paradigm is a distributed

 Dynamic SLA Negotiation in Autonomic Federated Environments 249

computing concept wherein objects across the network play their predefined roles as
service providers. Service requestors can access these providers by passing messages
called service exertions. An exertion defines how the service providers federate
among themselves to supply the requestor with a required service collaboration. All
these services form an instruction-set of a virtual metacomputer that looks to the end-
user as a single computer.

The proposed SLA negotiation process has been implemented and validated as part
of the SERVME framework in the SORCER environment. However, due to its
generic nature we believe that both the Service Level Agreements (SLA) object model
as well as the underlying communication model defined in terms of communication
interfaces could be adopted for other service-oriented architectures.

This paper is a follow-up to [2] – the first one to describe the SERVME
framework. Here the focus is the SLA life-cycle and negotiation whereas [2]
concentrated on the SERVME architecture and the SLA object model.

The rest of the paper is divided into the following sections: Section 2 describes the
related work, Section 3 gives introduction to SORCER, Section 4 presents the
overview of SERVME, Section 5 elaborates on the SLA negotiation, Section 6
presents the deployment of the framework, and Section 7 concludes the paper.

2 Related Work

SLA negotiation has been researched extensively at first in the area of networking. Its
application to services was propagated with the emergence of Grid Computing. At
first the Globus Resource Allocation Manager (GRAM) [4] lacked a general
negotiation protocol that was added later (as described in [5]) in form of the Service
Negotiation and Acquisition Protocol (SNAP) [6] that addresses complex, multi-level
SLA management. SNAP defines three types of SLAs: Task SLAs, Resource SLAs
and Binding SLAs and provides a generic framework, however as Quan et al. [7]
underline the protocol needs further extensions for its implementation to address
specific problems.

As grid technology started to move from traditional network batch queuing
towards the application of Web Services (WS) the work of the grid community as well
as others focused on incorporating SLA negotiation into the stack of WS
technologies. The Web Service Level Agreement framework (WSLA) [8] and the
WS-Agreement specification [9] have been proposed to standardize the SLA
specification. WS-Agreement specifies also basic negotiation semantics, however,
allows only a simple one-phase - offer-accept/reject negotiation. More complex two-
and three-phase commit protocols applied in conjunction with WS-Agreement are
described in [10]. A different approach to enable automatic SLA negotiation was
taken by [11] and [12] who propose to use agents for the negotiation of SLAs in grids.
In [13] authors propose to introduce a meta-negotiation protocol that will allow the
parties to select via negotiation the protocol used for the actual SLA negotiation.

The above solutions concentrate on traditional grids or WS architectures, however,
new challenges that reach beyond the multi-phase commit protocols arise when
introducing P2P resource management. Significant work has also been pursued in this
area, for example by [15], however, this research does not include SLA negotiation.

250 P. Rubach and M. Sobolewski

A novel approach to SLA management and negotiation for P2P distributed
environments where federations of services are formed on-the-fly is presented. To
fully address the problems with network/resource unreliability and contract SLAs for
multi-level, multiple party scenarios this paper introduces a leasing mechanism that is
used in conjunction with the 2-phase commit transactional semantics.

3 SORCER

SORCER [3] is a federated service-to-service (S2S) metacomputing environment that
treats service providers as network objects with well-defined semantics of a federated
service object-oriented architecture. It is based on Jini [16] semantics of services in
the network and Jini programming model with explicit leases, distributed events,
transactions, and discovery/join protocols. While Jini focuses on service management
in a networked environment, SORCER focuses on exertion-oriented programming
and the execution environment for exertions [3]. SORCER uses Jini discovery/join
protocols to implement its exertion-oriented architecture (EOA) [18], but hides all the
low-level programming details of the Jini programming model.

In EOA, a service provider is an object that accepts remote messages from service
requestors to execute collaboration. These messages are called service exertions and
describe collaboration data, operations and collaboration's control strategy. An
exertion task (or simply a task) is an elementary service request, a kind of elementary
instruction executed by a single service provider or a small-scale federation for the
same service data. A composite exertion called an exertion job (or simply a job) is
defined hierarchically in terms of tasks and other jobs, a kind of federated procedure
executed by a large-scale federation. The executing exertion is dynamically bound to
all required and currently available service providers on the network. This collection
of providers identified in runtime is called an exertion federation. The federation
provides the virtual processor (metaprocessor) for the collaboration as specified by its
exertion. When the federation is formed, each exertion’s operation has its
corresponding method (code) available on the network. Thus, the network exerts the
collaboration with the help of the dynamically formed service federation. In other
words, we send the request onto the network implicitly, not to a particular service
provider explicitly.

The overlay network of service providers is called the service grid and an exertion
federation is in fact a virtual metaprocessor. The metainstruction set of the
metaprocessor consists of all operations offered by all providers in the service grid. Thus,
an exertion-oriented (EO) program is composed of metainstructions with its own control
strategy and a service context representing the metaprogram data. These operations can
be specified in the requestor’s exertion only, and the exertion is passed by itself on to the
initializing service provider (found dynamically) via the top-level Servicer interface
implemented by all service providers called servicers—service peers. Thus all service
providers in EOA implement the service(Exertion, Transaction) : Exertion
operation of the Servicer interface.

Domain specific servicers within the federation, or task peers (taskers), execute task
exertions. Rendezvous peers (jobbers and spacers) coordinate execution of job
exertions. Providers of the Tasker, Jobber, and Spacer type are three of SORCER
main infrastructure servicers.

 Dynamic SLA Negotiation in Autonomic Federated Environments 251

To further clarify what an exertion is, an exertion consists mainly of three parts: a
set of service signatures, which is a description of operations in collaboration, the
associated service context upon which to execute the exertion, and control strategy
(default provided) that defines how signatures are applied in the collaboration. A
service signature specifies at least the provider’s service type (interface) that the
service requestor would like to use and a selected operation to run within that
interface. A service context consists of several data nodes used for either: input,
output, or both. A task works with only a single service context, while a job may work
with multiple service contexts since it can contain multiple tasks [18].

In SERVME a signature includes a QoS Context (described in Section 4.2) that
encapsulates all QoS/SLA data.

4 SERVME Overview

To perform SLA negotiation one has to define: 1) a SLA negotiation protocol and
interactions between components, 2) a QoS/SLA specification and 3) a negotiation
strategy or a decision-making model. SERVME defines the negotiation protocol in
the form of a generic communication model, its components tailored to the
requirements of federated environments as well as the SLA specification in form of an
object model and its data structures. A default negotiation strategy and a decision-
making model is presented below, however, SERVME is designed to allow an easy
customization of the negotiation business logic for each provider and requestor since
in a real-world scenario of a free-market service economy these rules may decide
which provider receives more requests and thus may become part of its competitive
advantage and be considered confidential.

4.1 SERVME Components

SERVME builds on the SORCER environment by extending its interfaces and adding
new service providers. The details of the architecture have been described in [2]. The
components used in the SLA negotiation process are shortly presented below.

• ServiceProvider provides the requested service and has a built-in component
called SlaDispatcher that retrieves the QoS parameters from the operating
system and is responsible for the SLA management on the provider side.

• QosCatalog is an independent service that acts as an extended Lookup Service
(QoS LUS) as well as the SLA negotiation broker between the provider and the
requestor.

• SlaPrioritizer is a component that allows controlling the prioritization of the
execution of exertions according to organizational requirements (see section 4.2)

• SlaMonitor is an independent service that acts as a registry for negotiated SLA
contracts and exposes the user interface (UI) for administrators to allow them to
monitor and cancel active SLAs.

• OnDemandProvisioner is a SERVME provider that enables on-demand
provisioning of services in cooperation with the Rio Provisioner [14] [16]. The
QosCatalog uses it when no matching service provider can be found that meets
requestor QoS requirements.

252 P. Rubach and M. Sobolewski

4.2 SLA Object Model

The key feature of the framework is the proposed SLA object model designed to meet
the requirements of federated metacomputing environments. For a detailed
description including a UML class diagram please refer to [2].

The two main artifacts are: QosContext and SlaContext. The first one groups
the requirements submitted by the requestor. It contains: 1) Functional
Requirements—a service type (interface) identifying a requested provider, operation
to be executed, and related provider's attributes, 2) System Requirements—fixed
properties that describe the requested provider’s hardware and software environment
(i.e. CPU architecture, OS name and version etc.), 3) Organizational Requirements—
properties of the submitting entity (department, team, project, requested timeframe for
the execution, priority etc.), 4) Metrics—dynamic, user defined, compound
parameters which are calculated on the basis of System- or Organizational
Requirements, 5) Service Cost—requirements (i.e. Maximum cost of the execution)
and 6) SLA Parameter Requests—the demanded ranges of values or fixed values of
QoS parameters.

The second critical interface—SlaContext defines the actual SLA. It contains the
related requirements in form of the QosContext as well as: 1) SLA Parameters offered or
guaranteed by the provider 2) the offered price 3) data used to identify the provider (its ID,
proxy etc.) and 4) the state of the negotiation that can have one of the enumerated values:
SLA_REQUESTED, SLA_UPDATED, SLA_OFFERED, SLA_ACCEPTED, SLA_GRANTED,
SLA_ARCHIVED.

5 SLA Negotiation

This section describes the SLA negotiation process. Fig. 1 shows how the negotiation
process is integrated into the life-cycle of executing exertions. The diagram refers also
to other two activity diagrams presented below: SLA Negotiation and SLA
Monitoring.

5.1 Recursive Acquisition of SLAs

The negotiation sequence for a single exertion of Task type is presented below in
detail, however for completeness in this subsection more complex exertions that
require recursive SLA acquisition are shortly described.

Fig. 1. Activity Diagram showing how SERVME SLA Negotiation is integrated into EOP

 Dynamic SLA Negotiation in Autonomic Federated Environments 253

The execution of an exertion begins when the requestor calls
Exertion.exert(). In case the exertion is of Task type the request is passed on
to the QosCalatog that acts as a broker in the negotiation process described below.
However, if the exertion is of Job type, then QosCalatog finds in runtime a
matching rendezvous provider (Jobber or Spacer) with a guaranteed SLA.

Before the guaranteed SLA is returned, the rendezvous provider recursively
acquires SLAs for all component exertions as described below depending on the type
(Task or Job) of component exertion. To ensure transactional semantics of the SLA
acquisition the rendezvous peer uses a leasing mechanism (described below) that is
similar to the two-phase commit protocol defined by the Jini Transaction model.

Exertions of Task type may also contain multiple signatures (as explained in
Section 3), so the same recursive mechanism is used to acquire the final SLA.
However, in this case the requestor only receives the final SLA for the dynamically
binding – signature of the PROCESS type.
 For intelligibility in the following subsections the assumption is that the outcome
of the negotiation should be a single SLA contract for a Task with only one signature.

5.2 Preliminary Selection of Providers

As depicted in Fig. 2 at first QosCatalog analyzes the QoS requirements passed in
the QosContext and extracts the functional requirements (provider's interface,
method, and other attributes) as well as system requirements. Based on the functional

Fig. 2. Activity Diagram showing the actual SLA Negotiation

254 P. Rubach and M. Sobolewski

Fig. 3. Activity Diagram showing the SLA Monitoring

requirements QosCatalog performs a dynamic lookup and retrieves a list of
all providers offering the requested interface and method. If none are found
QosCatalog tries to provision them using the OnDemandProvisioner (ODP) (see
subsection 5.5). Next, QosCatalog queries the ServiceProvider to retrieve the
basic QoS parameters that it can offer. The supplied data allows it to select providers
that match the system requirements. Those are then called via their SlaManagement
interface to start the SLA negotiation process.

5.3 Negotiation

The negotiation is initiated by the QosCatalog that invokes the negotiateSla
operation of the SlaManagement interface of the provider. In the first step the
provider extracts the organizational requirements from the QosContext and passes
them to the SlaPrioritizer where the exertion's organizational properties are
evaluated against strategic rules defined by the management in the SlaPrioritizer
service. The provider then receives a permission or denial to execute the exertion and
optionally a cost parameter that it may use to calculate the final service cost of the
offer. In case no permission is given the provider returns a no-go exception and the
QosCatalog has to select an alternate provider or autonomically provision one if no
others are available. After locating another provider the negotiation sequence is
repeated for that provider.

In case the permission is given the provider checks the QoS requirements against
its current resource utilization and allocations for other concurrently guaranteed
SLAs. If a parameter can be guaranteed the provider copies the corresponding
SlaParameter object including the requested threshold values from the
QosContext's SLA parameter requests to SlaContext's SLA parameters and sets its
state to PARAM_OFFERED. However, if the requirement cannot be fulfilled the
corresponding SLA parameter request is also copied to SlaContext but its state is
set to PARAM_UPDATE and its threshold range is updated to the maximum/minimum
offered value. After processing individual parameters the provider sets the state of the
whole SlaContext to SLA_OFFERED if all SLA parameters can be guaranteed or
SLA_UPDATED otherwise.

In case the QoS requirements can be met the provider calculates the estimated
service cost, allocates the offered resources and creates a Lease that is attached to the
SLA offer. This Lease has a short expiration time and thus guarantees that the
resources are not blocked unnecessarily. Before the exertion is finally executed the

 Dynamic SLA Negotiation in Autonomic Federated Environments 255

Lease must be renewed by the requestor to extend the life of the SLA. The estimated
cost in the validation case, for example, is calculated on the basis of historical
executions with similar input data on the same host. Cost is inversely proportional to
time of execution extended with some parameters that altogether causes that running
computations on faster hardware is much more expensive than on lower-end hosts.

To guarantee the non-repudiation of contracts or offers the provider uses the
SORCER security framework based on PKI infrastructure to sign the SLA offer
before passing it on to the QosCatalog.

The described negotiation sequence is repeated by the QosCatalog for all
providers that initially matched the system requirements. Out of all offers the
QosCatalog chooses the best one depending on the specified parameters and passes
it to the requestor for acceptance and signing (see Fig. 1). Currently time only or cost
only optimizations are supported but the inclusion of non-linear optimization methods
that will allow to select a set of offers matching both parameters (i.e., fastest
execution but costing no more than X) are a work in progress.

5.4 SLA Acceptance and Signing

The requestor may now decide to accept or deny the received offer. However, in case
it is denied the SLA negotiation process has to be reinitiated from the very beginning.
In case of acceptance the requestor updates the SLA's state to SLA_ACCEPTED and
performs digital signing using the PKI infrastructure.

From now on the requester is responsible for renewing the Lease of the SLA.
The requester calls the signSla method of the provider and passes the

SlaContext. If the Lease has not expired the provider grants the SLA by setting
its state to SLA_GRANTED. The SlaContext is then returned to the requestor and the
execution of the exertion may finally begin.

At the same time the provider sends a copy of the SlaContext asynchronously to
the SlaMonitor where it is registered and persisted.

5.5 On-Demand Provisioning

SERVME reduces the overall resource utilization by allowing service providers to be
provisioned on-demand and deprovisioned when they are not used anymore.

In the above negotiation process there are three scenarios that may lead to on-
demand provisioning: 1) when no providers are available that meet functional
requirements 2) when none of the available providers receive a permission to execute
the exertion from the SlaPrioritizer and 3) when none of the SLA offers returned
by providers to the QosCatalog fully fulfills the requirements (all have a state of
negotiation set to SLA_UPDATED).

In any of these cases the QosCatalog tries to deploy a new provider with the
required QoS parameters by calling the OnDemandProvisioner object.
OnDemandProvisioner constructs on-the-fly an OperationalString required by
Rio and calls the ProvisionMonitor component of Rio [14] to deploy the required
providers. If the provisioning succeeds QosCatalog invokes the same negotiation
sequence on the newly provisioned provider. Otherwise QosCatalog returns to the

256 P. Rubach and M. Sobolewski

requestor the full list of SLAs that it negotiated, none of which however, fully fulfills
the requestors requirements. The requestor may now choose to accept one of these
offers or try to start another round of negotiation with lowered QoS requirements.

5.6 SLA Monitoring and Management

As depicted in Fig. 3 the SlaMonitor can be used to monitor the execution and
delete an active SLA. It communicates with providers and asynchronously receives
messages with updated states of the SLA's lifecycle.

5.7 Deprovisioning Services

The leasing mechanism described in subsection 5.3 ensures that the provider is aware
when any of the granted SLAs expires or the exertion simply finishes execution. This
information is passed on to the SlaMonitor that also receives events regarding the
provisioning actions taken by the OnDemandProvisioner. SlaMonitor is thus able
to detect situations when the provisioned provider is not used anymore. In that case it
notifies the OnDemandProvisioner and this service undeploys the unused provider
by calling the Rio's ProvisionMonitor. The provider cannot just simply destroy
itself upon finishing the execution of the exertion since in that case Rio's failover
mechanism would immediately deploy another instance of that provider.

6 Deployment

SERVME has been deployed in the SORCER environment. The framework was
validated in a real-world example taken from neuroscience. SERVME was used to
invoke and control multiple parallel and sequential computations that dealt with the
processing of MRIs of human brains. Six heterogeneous hosts where used to perform
several simultaneous computations. The simulations were run several times and have
shown that with SERVME it is possible to optimize the execution of complex
computations for lowest price or best performance. The overhead time resulting from
the communication needed to select the appropriate provider, performing SLA
negotiation, and signing the SLA contract has been measured in this environment at
around 1-1.5 seconds and as such is negligible in comparison to the computations run,
that took minimally 3-4 minutes each. Detailed validation results along with a
complete statistical analysis will be published in a forthcoming paper.

7 Conclusions

The new SLA Negotiation process for Autonomic Federated Metacomputing
Environments is presented in this paper. The described process includes the on-
demand provisioning of services and refers to components defined in the SERVME
framework: QosCatalog, SlaDispatcher, SlaMonitor, SlaPrioritizer,
and OnDemandProvisioner. The negotiation uses the SLA object model
introduced in SERVME and defined by the two generic interfaces: QosContext and
related SlaContext. To the best of our knowledge this is the first attempt to
describe the SLA negotiation process for exertion-oriented programming.

 Dynamic SLA Negotiation in Autonomic Federated Environments 257

The presented framework addresses the challenges of spontaneous federations in
SORCER and allows for better resource allocation. Also, SERVME provides for
better hardware utilization due to Rio monitored provisioning and SORCER on-
demand provisioning. The presented architecture scales very well with on-demand
provisioning that reduces the number of compute resources to those presently required
for collaborations defined by corresponding exertions. When diverse and specialized
hardware is used, SERVME provides means to manage the prioritization of tasks
according to the organization’s strategy that defines "who is computing what and
where".

Two zero-install and friendly graphical user interfaces attached to SLA Monitor
and SORCER Servicer are available for administration purposes.

The SERVME providers are SORCER Servicers so additional SERVME providers
can be dynamically provisioned if needed autonomically. Finally, the framework
allows for accounting of resource utilization based on dynamic cost metrics, thus it
contributes towards the realization of the utility computing concept.

Acknowledgments. This work was partially supported by Air Force Research Lab,
Air Vehicles Directorate, Multidisciplinary Technology Center, the contract number
F33615-03-D-3307, Service-Oriented Optimization Toolkit for Distributed High
Fidelity Engineering Design Optimization. We would like also to thank Dennis Reedy
the architect of project Rio for his invaluable assistance that helped us to integrate the
Rio provisioning framework with the SERVME framework.

References

[1] Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36, 41–50
(2003)

[2] Rubach, P., Sobolewski, M.: Autonomic SLA Management in Federated Computing
Environments. In: Proceedings of the 2009 International Conference on Parallel
Processing Workshops (ICPPW 2009). IEEE Computer Society, Los Alamitos (in press,
2009)

[3] Sobolewski, M.: SORCER: Computing and Metacomputing Intergrid. In: 10th
International Conference on Enterprise Information Systems, Barcelona, Spain (2008)

[4] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke, S.:
A resource management architecture for metacomputing systems. In: Feitelson, D.G.,
Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459,
pp. 62–82. Springer, Heidelberg (1998)

[5] Czajkowski, K., Foster, I., Kesselman, C., Tuecke, S.: Grid service level agreements:
Grid resource management with intermediaries. In: Grid resource management: state of
the art and future trends, pp. 119–134. Kluwer Academic Publishers, Dordrecht (2004)

[6] Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A Protocol for
Negotiating Service Level Agreements and Coordinating Resource Management in
Distributed Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2002. LNCS, vol. 2537, pp. 153–183. Springer, Heidelberg (2002)

[7] Quan, D.M., Kao, O.: SLA Negotiation Protocol for Grid-Based Workflows. In: High
Performance Computing and Communcations, pp. 505–510 (2005)

258 P. Rubach and M. Sobolewski

[8] Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web service level agreement
(WSLA) language specification. IBM Corporation (2003)

[9] Andrieux, A., Czajkowski, K., Ibm, A.D., Keahey, K., Ibm, H.L., Nec, T.N., Hp, J.P.,
Ibm, J.R., Tuecke, S., Xu, M.: Web Services Agreement Specification, WS-Agreement
(2007)

[10] Pichot, A., Wieder, P., Waeldrich, O., Ziegler, W.: Dynamic SLA-negotiation based on
WS-Agreement, CoreGRID Technical Report TR-0082, Institute on Resource
Management and Scheduling (2007)

[11] Shen, W., Li, Y.: Adaptive negotiation for agent-based grid computing. In: Proceedings
of the Agentcities/Aamas 2002, vol. 5, pp. 32–36 (2002)

[12] Ouelhadj, D., Garibaldi, J., MacLaren, J., Sakellariou, R., Krishnakumar, K.: A Multi-
agent Infrastructure and a Service Level Agreement Negotiation Protocol for Robust
Scheduling in Grid Computing. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld,
A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 651–660. Springer, Heidelberg
(2005)

[13] Brandic, I., Venugopal, S., Mattess, M., Buyya, R.: Towards a Meta-Negotiation
Architecture for SLA-Aware Grid Services, Technical Report, GRIDS-TR-2008-9, Grid
Computing and Distributed Systems Laboratory, The University of Melbourne, Australia
(2008)

[14] Project Rio, http://rio.dev.java.net/ (accessed on March 13, 2009)
[15] Cao, J., Kwong, O.M.K., Wang, X., Cai, W.: A peer-to-peer approach to task scheduling

in computation grid. Int. J. Grid Util. Comput. 1, 13–21 (2005)
[16] Jini architecture specification, Version 2.1 (accessed on March 2009)
[17] Sobolewski, M.: Federated Method Invocation with Exertions. In: Proceedings of the

2007 IMCSIT Conference, pp. 765–778. PTI Press (2007)
[18] Sobolewski, M.: Exertion Oriented Programming. In: IADIS, vol. 3, pp. 86–109 (2008)

	Dynamic SLA Negotiation in Autonomic Federated Environments
	Introduction
	Related Work
	SORCER
	SERVME Overview
	SERVME Components
	SLA Object Model

	SLA Negotiation
	Recursive Acquisition of SLAs
	Preliminary Selection of Providers
	Negotiation
	SLA Acceptance and Signing
	On-Demand Provisioning
	SLA Monitoring and Management
	Deprovisioning Services

	Deployment
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

