
SHORT PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

512

File Location Management in Federated
Computing Environments

Chris Hard1 and Michael Sobolewski2
1 Texas Tech University. Lubbock, TX

Email: chris.hard@ttu.edu
2Texas Tech University, Lubbock, TX

Email: sobol@cs.ttu.edu

Abstract—The major objective of the Service Oriented
Computing Environment (SORCER) is to form dynamic
federations of network services that provide shared data,
applications, and tools on a service grid along with exer-
tion-oriented programming. To meet the requirements of
these services in terms of data sharing and managing in the
form of data files, a corresponding federated file system
was developed. The file system fits the SORCER philoso-
phy of interactive exertion-oriented programming, where
users create service-oriented programs and can access data
files in the same way they use their local file system. The
federated file system provides data redundancy in the form
of file replication. However, there is no efficient manage-
ment of these file replicas after creation and the location to
which they are replicated to is not taken into account.
Thus, a separate File Location Management Framework
was developed to fit with the SORCER metacomputing
philosophy and to manage autonomically file replication.

Index Terms—Federated file system, autonomic file loca-
tion, exertion-oriented programming, metacomputing, ser-
vice-oriented systems

I. INTRODUCTION

Building on the OO paradigm is the service-object-
oriented (SOO) paradigm, in which the objects are dis-
tributed, or more precisely they are remote (network)
objects that play some predefined roles. A service pro-
vider is an object that accepts remote messages, called
service exertions, from service requestors to execute an
item of work. A task exertion is an elementary service
request – a kind of elementary remote instruction (state-
ment) executed by a service provider. A composite exer-
tion, called a job exertion, is defined in terms of tasks
and other jobs - a kind of procedure executed by a ser-
vice provider. The executing exertion is a SOO program
that is dynamically bound to all relevant and currently
available service providers on the network. This collec-
tion of providers identified in runtime is called an exer-
tion federation, or a service space. While this sounds
similar to the OO paradigm, it really isn’t. In the OO
paradigm, the object space is a program itself; here the
service space is the execution environment for the exer-
tion, which is a network OO program. This changes the
game completely. In the former case, the object space is
hosted by a single computer, but in the latter case the
service providers are hosted by the network of comput-
ers. The overlay network of service providers is called

the service grid [13] and an exertion federation is called
a virtual metacomputer. The metainstruction set of the
metacomputer consists of the method set defined by all
service providers in the grid. Do you remember the eight
fallacies of network computing [4]? Creating and ex-
ecuting a SO program in terms of metainstructions re-
quires a completely different approach than creating a
regular OO program [12].

The SORCER environment [13] provides the means
to create interactive SOO programs and execute them
without writing a line of source code via zero-install,
interactive service interfaces. Exertions can be created
using interactive user interfaces downloaded directly
from service providers, allowing the user to execute and
monitor the execution of exertions in the SOO meta-
computer. The exertions can also be persisted for later
reuse. This feature allows the user to quickly create new
applications or programs on the fly in terms of existing
tasks and jobs. SORCER introduces federated method
invocation based on peer-to-peer (P2P) [7], [9] and dy-
namic service-oriented Jini architecture [1].

SILENUS is a federated file system which builds on
top of the SORCER philosophy. Federating services
work together to provide the functionality of the file
system. These services can be broadly categorized into
gateway services, management services, and data servic-
es [1], [2].

SILENUS provides data reliability and availability in
the form of file replication. However, once a file is
created and replicated there is no management of these
replicas. Also by taking into account the user access
behavior, performance may be increased by strategically
choosing a location to replicate a file to. Thus, to dy-
namically manage the locations of replicas and to pro-
vide quality of service to data store providers a separate
framework was developed called LOCO (Location Op-
timizer).

This paper is organized as follows: Section 2 briefly
describes the SORCER metacomputing system; Section
3 introduces service messaging and exertions; Section 4
presents federated file system methodology; Section 5
describes the LOCO architecture; and Section 6 provides
concluding remarks.

II. SORCER

© 2009 ACADEMY PUBLISHER

SHORT PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

513

Figure 1. The SORCER layered functional architecture.

SORCER (Service Oriented Computing EnviRon-
ment) [13] is a federated service-to-service (S2S) meta-
computing environment that treats service providers as
network objects with well-defined semantics of a fede-
rated service object-oriented architecture. It is based on
Jini semantics of services in the network and Jini pro-
gramming model with explicit leases, distributed events,
transactions, and discovery/join protocols [1]. While Jini
focuses on service management in a networked envi-
ronment, SORCER focuses on exertion-oriented pro-
gramming and the execution environment for exertions.
SORCER uses Jini discovery/join protocols to imple-
ment its exertion-oriented architecture (EOA) using
federated method invocation [12], but hides all the low-
level programming details of the Jini programming
model.

In EOA, a service provider is an object that accepts
remote messages from service requestors to execute col-
laboration. These messages are called service exertions
and describe service data, operations and provider’s
control strategy. An exertion task (or simply a task) is an
elementary service request, a kind of elementary remote
instruction executed by a single service provider or a
small-scale federation for the same service data. A com-
posite exertion called an exertion job (or simply a job) is
defined hierarchically in terms of tasks and other jobs, a
kind of network procedure executed by a large-scale
federation. The executing exertion is dynamically bound
to all required and currently available service providers
on the network. This collection of providers identified in
runtime is called an exertion federation. The federation
provides the implementation for the collaboration as
specified by its exertion. When the federation is formed,
each exertion’s operation has its corresponding method
(code) available on the network. Thus, the network ex-
erts the collaboration with the help of the dynamically
formed service federation. In other words, we send the
request onto the network implicitly, not to a particular
service provider explicitly.

The overlay network of service providers is called the

service grid and an exertion federation is in fact a virtual
metacomputer. The metainstruction set of the metacom-
puter consists of all operations offered by all service
providers in the grid. Thus, an exertion-oriented (EO)
program is composed of metainstructions with its own
control strategy and a service context representing the
metaprogram data. The service context describes the
data that tasks and jobs work on. Each service provider
offers services to other service peers on the object-
oriented overlay network. These services are exposed
indirectly by operations in well-known public remote
interfaces and considered to be elementary (tasks) or
compound (jobs) activities in EOA. Indirectly means
here, that you cannot invoke any operation defined in
provider’s interface directly. These operations can be
specified in a requestor’s exertion only, and the exertion
can be passed on to any service provider via the top-
level Servicer interface implemented by all service
providers called servicers—service peers. Thus all ser-
vice providers in EOA implement the ser-
vice(Exertion, Transaction):Exertion opera-
tion of the Servicer interface. When the servicer ac-
cepts its received exertion, then the exertion’s operations
can be invoked by the servicer itself, if the requestor is
authorized to do so. Servicers do not have mutual asso-
ciations prior to the execution of an exertion; they come
together dynamically (federate) for a collaboration as
defined by its exertion. In EOA requestors do not have
to lookup for any network provider at all, they can sub-
mit an exertion, onto the network by calling:
Exertion.exert(Transaction):Exertion
on the exertion. The exert operation will create a re-

quired federation that will run the collaboration as speci-
fied in the EO program and return the resulting exertion
back to the exerting requestor. Since an exertion encap-
sulates everything needed (data, operations, and control
strategy) for the collaboration, all results of the execu-
tion can be found in the returned exertion’s service con-
texts.

Domain specific servicers within the federation, or
task peers (taskers), execute task exertions. Rendezvous

© 2009 ACADEMY PUBLISHER

SHORT PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

514

peers (jobbers and spacers) coordinate execution of job
exertions. Providers of the Tasker, Jobber, and
Spacer type are three of SORCER main infrastructure
servicers, see Figure 1. In view of the P2P architecture
defined by the Servicer interface, a job can be sent to
any servicer. A peer that is not a Jobber type is respon-
sible for forwarding the job to one of available
rendezvous peers in the SORCER environment and re-
turning results to the requestor.

Thus implicitly, any peer can handle any job or task.
Once the exertion execution is complete, the federation
dissolves and the providers disperse to seek other colla-
borations to join. Also, SORCER supports a traditional
approach to grid computing similar to those found, for
example in Condor [16]. Here, instead of exertions being
executed by services providing business logic for in-
voked exertions, the business logic comes from the ser-
vice requestor's executable codes that seek compute re-
sources on the network.

Grid-based services in the SORCER environment in-
clude Grider services collaborating with Jobber and
Spacer services for traditional grid job submission.
Caller and Methoder services are used for task execu-
tion. Callers execute conventional programs via a sys-
tem call as described in the service context of submitted
task. Methoders can download required Java code (task
method) from requestors to process any submitted con-
text accordingly with the code downloaded. In either
case, the business logic comes from requestors; it is a
conventional executable code invoked by Callers with
the standard Caller’s service context, or mobile Java
code executed by Methoders with a matching service
context provided by the requestor.

III.SERVICE MESSAGING AND EXERTIONS

In object-oriented terminology, a message is the sin-
gle means of passing control to an object. If the object
responds to the message, it has an operation and its im-
plementation (method) for that message. Because object
data is encapsulated and not directly accessible, a mes-
sage is the only way to send data from one object to
another. Each message specifies the name (identifier) of
the receiving object, the name of the operation to be
invoked, and its parameters. In the unreliable network of
objects; the receiving object might not be present or can
go away at any time. Thus, we should postpone receiv-
ing object identification as late as possible. Grouping
related messages per one request for the same data set
makes a lot of sense due to network invocation latency
and common errors in handling. These observations lead
us to service-oriented messages called exertions. An
exertion encapsulates multiple service signatures that
define operations, a service context that defines data, and
a control strategy that defines how signature operations
flow in collaboration. Different types of control exer-
tions (IfExertion, ForExertion, and WhileEx-
ertion) [12] can be used to define flow of control that

can also be configured additionally with adequate signa-
ture attributes (flow type and access type).

An exertion can be invoked by calling exertion’s ex-
ert operation: Exertion.exert(Transaction)
:Exertion, where a parameter of the Transaction
type is required when the transactional semantics is
needed for all participating nested exertions within the
parent one, otherwise can be null. Thus, EO program-
ming allows us to submit an exertion onto the network
and to perform executions of exertion’s signatures on
various service providers indirectly, but where does the
service-to-service communication come into play? How
do these services communicate with one another if they
are all different? Top-level communication between ser-
vices, or the sending of service requests (exertions), is
done through the use of the generic Servicer interface
and the operation service that all SORCER services
are required to provide—
Servicer.service(Exertion, Transaction).
This top-level service operation takes an exertion as an
argument and gives back an exertion as the return value.
How this operation is used in the federated method in-
vocation framework is described in detail in [12].

So why are exertions used rather than directly calling
on a provider's method and passing service contexts?
There are two basic answers to this. First, passing exer-
tions helps to aid with the network-centric messaging. A
service requestor can send an exertion out onto the net-
work—Exertion.exert()—and any servicer can pick
it up. The servicer can then look at the interface and
PROCESS operation requested within the exertion, and if
it doesn't implement the desired interface or provide the
desired operation, it can continue forwarding it to anoth-
er provider who can service it. Second, passing exertions
helps with fault detection and recovery. Each exertion
has its own completion state associated with it to specify
if it has yet to run, has already completed, or has failed.
Since full exertions are both passed and returned, the
requestor can view the failed exertion composition to see
what method was being called as well as what was used
in the service context input nodes that may have caused
the problem. Since exertions provide all the information
needed to execute a task including its control strategy, a
requestor would be able to pause a job between tasks,
analyze it and make needed updates. To figure out where
to resume a job, a rendezvous service would simply have
to look at the task’s completion states and resume the
first one that wasn't completed yet.

IV.SILENUS FILE SYSTEM

SILENUS [1], [2] is a federated file system based on
service messaging introduced in Section 3. It provides
dynamic access to files referenced in service contexts of
exertions. It consists of several services that federate
together to provide the functionality of the file system.
Each service may be replicated on as many hosts as
needed. These services may be categorized into gateway
services, data services, and management services. The

© 2009 ACADEMY PUBLISHER

SHORT PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

515

service oriented nature of SILENUS makes it very easy
for someone to create new functionality for the file sys-
tem by implementing additional services.

The SILENUS file system makes a few assumptions
about the data being stored. First, file metadata is very
small. Second, file data is relatively large therefore it
should be replicated for reliability and availability but
not onto every data store [1], [2].

A.Data services
The data services consist of a metadata store service

and a byte store service. The metadata store service
stores attributes that can be derived from the files them-
selves. This includes name, creation date, size, file type,
location, etc. The metadata service provides functionali-
ty to create, list, and traverse directories [1], [2].

The byte store service is used for storing the actual
file data. It does not provide for storing attributes about
the file but does allow for retrieving attributes of a file
e.g., retrieving the file size and checksum to verify inte-
grity of the file. Stored files are usually encrypted but
may be stored unencrypted for performance reasons [1],
[2].

B.Management services
SILENUS includes several management services such

as the SILENUS Façade, Jini Transaction Manager, Byte
Replicator, and other optimizer services. The SILENUS
Façade manages the coordination and provides a dynam-
ic entry point between the metadata stores and byte
stores [1], [2]. The Façade also provides a zero install
user interface, through the use of a Service UI [10],
which allows the users to view the files in the system
similar to the way they would view files in a traditional
file system.

The Transaction Manager is a Jini [1] standard service
which the SILENUS Façade uses to ensure two-phase
commit semantics for file uploads and downloads. The
Byte Replicator and other optimizer services are used for
autonomic administration. The optimizer services may
make decisions on where to move files, which services
should be started or shutdown, and where to store repli-
cas. Each optimizer service is a separate component so it
makes it very easy for and administrator to create more
optimizer services. In traditional file systems an admin-
istrator has to provide some management of the data but
in SILENUS an administrator may select which kind of
optimizer services to deploy and where to deploy them
[1], [2]. This also makes SILENUS highly scalable.

C.Gateway services
The gateway services provided by SILENUS are

client modules that provide access to the SILENUS file
system. Some examples of gateway services are the NFS
Adapter, JXTA Adapter, WebDAV Adapter, and Mobile
Adapter. The NFS Adapter provides a mapping from the
NFS protocol to SILENUS for older UNIX systems that
do not have WebDAV support. A WebDAV Adapter
was developed to provide support for newer operating
systems that support WebDAV such as Windows, Mac

OS X, and newer versions of UNIX [1], [2]. These are
just a few of the gateway services that have been
created. The service oriented nature of SORCER makes
it very easy for someone to create new services for SI-
LENUS.

V. LOCO

To achieve availability and reliability of files, SILE-
NUS provides data redundancy in the form of file repli-
cation. It uses an active replication scheme which means
that all replicas are treated as if they are the original. The
drawback of this scheme is that it requires a lot of coor-
dination in that if an update occurs on one replica then
all of the replicas need to be updated. The coordination
is currently implemented in SILENUS; however there is
no management of these replicas after creation. This
section describes how SILENUS handles file replication
and describes the LOCO framework.

Currently when a file is created it is replicated to a de-
fault number of byte stores which is two. The user may
interactively change this number through the Service UI
[10] so as to add priority to files if needed.

SILENUS also does not take into account the file size
or available system resources, which is not efficient e.g.,
replicating a file that is extremely large may not be feas-
ible if there is not enough storage space. If a file is going
to be replicated then the available storage space of each
provider should be taken into account.

When a file is replicated in SILENUS, a random byte
store is chosen to replicate the file to. By choosing a
byte store based on some criteria, such as available size,
location, and user habits, it can increase performance by
lowering network traffic and decreasing down-
load/upload time.

A separate framework called LOCO has been devel-
oped to autonomically manage these issues and to pro-
vide quality of service for data store providers. It moni-
tors user’s access habits so that it can make logical deci-
sions on where to replicate the files to. It will also dy-
namically manage the number of times each file is repli-
cated depending on file size, available storage space at
each byte store provider, and the byte store host type
(e.g., server, desktop, laptop).

LOCO will replicate a file for several reasons, if a
byte store becomes unavailable then all of the files that
were located there will be replicated and if a file is up-
loaded into the system LOCO will decide on an appro-
priate number of times to replicate the file. LOCO may
also delete certain replicas, for example, if a byte store
becomes unavailable and all of the files stored there are
replicated, then when that byte store becomes available
again LOCO may choose to delete some of the replicas.

The LOCO framework is an extension to SILENUS
and is comprised of four services (see Figure 2), which
is discussed in the following sections, and runs in the
SORCER environment. It includes a Locator service,
Sweeper service, Replicator service, and a Resource
Usage Store service described in detail below.

© 2009 ACADEMY PUBLISHER

SHORT PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

516

LOCO also makes several qualities of service guaran-
tees to data store providers. First, a file will not be repli-
cated to a storage location that already contains the file
or replica of the file. Second, a minimum number of

replicas, which may be specified by the user or the loca-
tor service, will be maintained as long as there are
enough storage locations present in the network to satis-
fy the number.

D.Resource usage store service
The Resource Usage Store is a database service which

stores information about byte stores and tracks user’s
behaviors. The Resource Usage Store connects to a me-
tadata store and retrieves information about existing files
in the file system. It will then register a listener with the
metadata store so that it will receive FileStoreEvents
when a user uploads, downloads, or deletes a file. If an
upload or download occurs, timing data is collected and
stored in the Resource Usage Store. This information is
used when choosing which byte store to replicate a file
to.

The Resource Usage Store also provides a zero-install
user interface (ServiceUI [10]) that can be downloaded
by a service browser such as Inca X [5] and allows an
administrator to view all of the tables in the Resource
Usage Store. It also allows the administrator to delete
records that may be invalid or not useful anymore.

E.Locator service
The Locator service can examine the state of the file

system at a specified interval and choose to replicate or
delete files if necessary. An administrator may set this

time interval in a configuration file. When a user
changes the minimum number of replicas for a file, the
locator will receive this update and either delete or repli-
cate the file.

The Locator is also responsible for managing a cache
of byte stores and monitoring whether any appear or
disappear. If a byte store appears then the file table in
the Resource Usage Store needs to be updated and the
Locator needs to check if any of the files contained in
this byte store need to be replicated or deleted. If a byte
store disappears then the files that were stored there may
need to be replicated.

The Locator service also provides a zero-install user
interface (ServiceUI [10]) that can be obtained through
the use of a service browser such as Inca X [5]. The user
interface will allow an administrator to view information
about all of the available and unavailable byte stores in
the network such as host name, available space, and
used space. The interface will also allow an administra-
tor to view records on all of the users that have accessed
files within the system. It displays the user’s IP address
and user name along with which files they accessed,
action they took (upload, download or delete), and time

Figure 2 LOCO architecture (UML component diagram)

© 2009 ACADEMY PUBLISHER

SHORT PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

517

and date that they accessed them. The interface also al-
lows an administrator to remove a user from being
tracked.

F.Replicator service and sweeper service
The Replicator extends the SILENUS Replicator to

replicate files. It will log all replications to the Remote
Logger service in SORCER. The Locator also displays
these records in the service UI.

When the Locator service decides a file is to be repli-
cated it sends a message to the Replicator with the file
ID and the number of times to replicate the file. The
Replicator then needs to decide which byte stores to
replicate the file to. First, the byte store should not al-
ready contain the file. Second, the byte stores should
contain enough storage space to hold the file. Third, the
replicated files should be close to the users that use the
file the most to increase download times. The Replicator
will query a Resource Usage Store for the users that use
the file and then it will choose the users that use the file
the most to replicate near.

To compare the locations of the byte stores, the Rep-
licator looks up the Autonomous System number asso-
ciated with the byte store’s IP address by querying a
whois [17] database. It then uses a table to calculate how
many different Autonomous Systems are between the
user and the byte store. It chooses the one that has the
lowest amount of Autonomous Systems to travel
through.

The method of determining the proximity of the byte
stores to the user address currently is an open research
project at the SORCER Laboratory [14]. The project
was aimed at finding the closest peers to a BitTorrent
user to make downloading and uploading faster and to
cut down on network traffic.

The Sweeper service can delete a given file from a
given byte store. The locator service will determine that
there are too many replicas of a file in the system and
tell the sweeper to delete one or some of them. The
Sweeper will log all of the deletions to a Logging Ser-
vice where the administrator will be able to view the
deletions that have taken place.

VI. CONCLUSIONS

File replication in a distributed file system provides
availability, fault tolerance, and may enhance perfor-
mance. However, it comes at a price, as replication uses
up more storage space and also adds overhead for the
coordination of these replicated files. Replicated file
systems also require a substantial amount of administra-
tion.

LOCO adds scalability to SILENEUS by dynamically
managing file replicas in the system. As the number of
users and files grow in SILENUS, LOCO manages rep-
licating files and the location of these files autonomical-
ly so that an administrator will not manually have to.

LOCO provides SORCER with high availability and
reliability of data by replicating files and then autonomi-
cally managing these replicas. The LOCO framework
was deployed and tested successfully with the SILENUS
file system.

REFERENCES

[1] Berger, M., Sobolewski, M. “Lessons Learned From the
SILENUS Federated File System”, Springer Verlag, Sao
Jose Dos Campos, Brazil, July 16-20, 2007.

[2] Berger, M., Sobolewski, M. “SILENUS – A Federated
Service Oriented Approach to Distributed File Systems”,
Next Generation Concurrent Engineering, New York,
2005.

[3] Coulouris, G., Dollimore, J., Kindberg, T. Distributed
Systems Concepts and Designs, Addison-Wesley, London
and Palo Alto, June 2000.

[4] Deutsch, P. (1994). The Eight Fallacies of Distributed
Computing, Available at:
<http://blogs.sun.com/jag/resource/Fallacies.html>, Re-
trieved 29 February 2008.

[5] Inca X Service Browser. Available at:
<http://www.incax.com/>, Retrieved 30 March 2008.

[6] Jini Architecture Specification. Available at:
<http://www.sun.com/software/jini/specs/jini1.2html/jini-
title.html>, Retrieved 27 March 2008.

[7] Li, Sing. JXTA Peer-to-Peer Computing with Java, Wrox
Press Ltd., 2001.

[8] Newmarch, J. “Jan Newmarch’s Guide to Jini Technolo-
gies”, Available at:<http://www.sorcer.cs.ttu.edu/newmar
ch/docs/Jini.html>, Retrieved 29 March 2008.

[9] Oram A (ed). Peer-to-Peer: Harnessing the Benefits of
Disruptive Technology, O’Reilly, 2001.

[10] The ServiceUI Project. Available at:
<http://www.artima.com/jini/serviceui/>, Retrieved 28
March 2008.

[11] Silberschatz, A., Galvin, P.B., & Gagne, G. Operating
System Concepts (7th ed.). Hoboken, NJ: John Wiley &
Sons, Inc, 2005.

[12] Sobolewski, M., Exertion Oriented Programming, IADIS,
vol. 3 no. 1, pp. 86-109, ISBN: ISSN: 1646-3692 (2008).

[13] Sobolewski, M., SORCER: Computing and Metacomput-
ing Intergrid, 10th International Conference on Enterprise
Information Systems, Barcelona, Spain (2008). Availa-
ble at: http://sorcer.cs.ttu.edu/publications/papers/2008/ic
eis-intergrid-08.pdf.

[14] SORCER Lab. Retrieved April 20, 2008,
from: http://sorcer.cs.ttu.edu/.

[15] Sztajnberg, A., Loques, O. “Bringing QoS Specifications
to the Architectural Level”, Available at:
<http://citeseer.ist.psu.edu/cache/papers/cs/26895/http:zS
zzSzwww.gta.ufrj.brzSzftpzSzgtazSzTechReportszSzSzL
o00b.pdf/bringing-qos-specifications-to.pdf>, Retrieved:
29 March 2008.

[16] Thain D., Tannenbaum T., Livny M. Condor and the
Grid. In Fran Berman, Anthony J.G. Hey, and Geoffrey
Fox, editors, Grid Computing: Making The Global Infra-
structure a Reality. John Wiley (2003).

[17] Team Cymru, Available at: <http://www.team-
cymru.org/?sec=8&opt=26>, Retrieved: 19 April 2008.

[18] Turner, A., Sobolewski, M. “A Federated Service-
Oriented File Transfer Framework”, Springer Verlag, Sao
Jose Dos Campos, Brazil, July 16-20, 2007.

© 2009 ACADEMY PUBLISHER

