
Information Assurance 2009

Federated Role-based Access Control in Exertion-oriented Programming

Satish Vellanki and Michael Sobolewski
Computer Science, Texas Tech University

 SORCER Research Group
satish.vellanki@ttu.edu, sobol@cs.ttu.edu

Abstract
 Federated computing environments expose lots of
resources in order to serve their clients, which include
system services, domain-specific services, and
distributed file systems. A flexible and coordinated
mechanism to control access to these resources is
proposed which allows participants to form themselves
into collaborative groups and secure access is granted
to group members. Then, the participants can make
resources available to a named group and manage
locally the members in the group with required
permissions across multiple domains. We explain how
the proposed approach focused on user’s local
namespace is used in exertion-oriented programming
and in particular in a SORCER federated file system
where members of a group or delegated services can
securely fetch any file replica that is available to a
named group from any byte store service.

1. Introduction

The SORCER environment provides a way of creating
service-oriented programs and executes them in a
metacomputing environment. The service-oriented
paradigm is a distributed computing concept wherein
objects across the network play their predefined roles as
service providers. Service requestors can access these
providers by passing messages called service exertions.
An exertion defines how the service providers federate
among themselves to provide the requestor with
required service collaboration. These services form an
instruction-set of virtual metacomputer. The federated
environment requires an access control mechanism to
protect the resources of the metacomputer from
unauthorized activities. This calls for a scalable
authorization mechanism that scales along with the grid
of resources while allowing the users to collaborate with
each other.

In group-based security in a federated file system ,
possible ways of constructing a group manager service
are discussed with federated environments in view. In
this paper we try to investigate ways to improve upon
the concept by avoiding a global Certificate Authority
(CA) while at the same time enabling users to share
resources with people from any administration domain
without a global authority. The rest of the paper is

divided into the following sections: Section 2 describes
background and literature review, Section 3 gives
introduction to SORCER, Section 4 describes service
messaging with exertions, Section 5 talks about
authentication and authorization with exertions, Section
6 looks into a role-based framework for SORCER and
Section 7 presents a deployment of the framework in a
federated file system.

2. Background and literature review

Access control comprises of authentication,
authorization, and auditing. Authentication is the
process of verifying the identity of a user, service or
device. Authorization is the process of determining the
access level of the authenticated identity on any
requested resource. For example, allowing an
authenticated user to read a file. Auditing allows us to
review all authentication and authorization requests to
determine system accountability and any gaps in
security. For example, analysis of users logged sessions
on a computer and updated resources. In this paper we
concentrate on how to develop reliable authentication
and authorization in federated environments across
multiple administration domains.

2.1 Access control techniques

Access controls systems follow one of the following
three approaches:
1. A mandatory access control system where any user
who created an entity will not have all the rights on the
entity. He/she may share it with other users but they
cannot assume full control on this entity. The security
policy on the entity is determined by the properties
attached to it. This kind of access control is usually
required in defense environments where any resource is
dealt with utmost security.
2. In a discretionary access control system , the owner of
a resource specifies who will be allowed the access to it
and what kind of access is allowed. This is the most
popular technique. Many existing file systems follow
this access control technique. In a federated
environment many users can collaborate to get a
particular work done. Setting permissions for each user
and following them through time is practically not

1

Information Assurance 2009

possible. Rather users are grouped according to some
criteria and the access is managed per group. Most
existing systems do not allow a new group to be created
by normal users. The administrator has to be involved in
creating a new group, adding/removing users to/from it
and in managing it. File systems in UNIX and Windows
operating systems employ this approach.
3. In a role-based access control system the permissions
are defined for each group by a security authority on
each resource. These roles usually do no change through
the life of the system. The collection of roles is
predefined. Each role is associated with a set of
permissions. Any access to resource is granted if the
requesting user belongs to any of the roles that allow
access to this resource. Role-based access control is
easier to manage and permissions can be granted and
revoked any time.

Federated environments require the ability of a
discretionary access control system while keeping the
ease of use of a role-based access control system. Rather
than predefining the roles, a user should be allowed to
create roles according to his/her wish. The user can then
set the permissions a role defines on entities he/she
owns. In this case these roles become local to the current
user. A role or the permission of a role on any entity
created by one user cannot be modified by another user.

Such a complex access control system that works
with multiple domains and users usually makes the use
of public key cryptography. Public key cryptography or
asymmetric cryptography makes use a pair of
cryptographic keys – public and private keys, in such a
way that given the public key, the private key cannot be
usually determined. Any content encrypted using one of
these keys can only be decrypted using the other key.
This adds lot of security to previously insecure
communications and allows for unique authentication of
the owner of the private key. The public key can be
published in a common directory while the private key
must be stored in a secure place. Any content sent to the
owner of the key pair is encrypted with the owner’s
public key so that only the owner can decrypt it with the
private key and read it. The owner can use the private
key to sign messages that can be verified by any other
person or system using the matching public key. This
gives the possibility of having digital certificates that
can be verified. While public key cryptography provides
so many uses the greatest problem with it is determining
the public key of an entity with who you wish to have a
secure communication. The Public Key Infrastructure
(PKI) has solved this problem, which is an arrangement
to bind a public key to a user identity by a Certificate
issuing Authority (CA). The user identity or the
distinguished name should be globally unique in PKI.
The CA verifies that the identity really belongs to the
user in question before issuing a certificate. PKI enables

the secure communication between two parties that have
no prior knowledge of each other. Hence as per
definition PKI can provide authentication of the key pair
owner while it cannot represent any form authorization.
Another public-key certificate standard – Simple Public
Key Infrastructure/Simple Distributed Security
Infrastructure (SPKI/SDSI) makes it possible to
represent authorization grants using digital certificates
without a need for global CA.

2.2 Simple Public Key Infrastructure

SPKI is a merger of two separate designs – SPKI and
SDSI . SDSI allows defining groups and group
membership certificates. SPKI concentrates on
providing authorization certificates. Thus SPKI standard
defines two certificate formats – name certificates and
authorization certificates. The name certificates bind a
public key to a name in the local namespace of the
issuing authority. Any user who possesses a key-pair can
issue name certificates, which makes the user a
certificate authority as in PKI. This is not possible in
PKI where only few defined authorities can issue these
certificates . The authorization certificate defines an
authorization grant by the issuer of the certificate. It is
possible to allow delegation of authorization grant in
these certificates.

SPKI by reducing the dependence on a central
certificate authority allows the system to scale to any
number of users from multiple domains. In fact SPKI
designers believed that a central certificate authority
serves no real purpose . A user can share his resources
with any other user in the system provided he knows the
public key of that user. He can add any user to his list of
local users by importing their public keys. He can also
give a friendly local name that he intends to use for this
user. Authorization grants can be made using the local
names or the recommended way of directly using public
key in the certificates. SPKI/SDSI is defined in RFC
specifications 2692 and 2693.

SPKI allows the authorization grant to be delegated
by the grantee to others. The granter can decide whether
to delegate or not when issuing the certificate. SPKI also
defines threshold subjects where the authorization is
granted when a minimum of k out of n granters concur
to allow access to a resource.

3. SORCER

SORCER (Service Oriented Computing EnviRonment)
is a federated service-to-service (S2S) metacomputing
environment that treats service providers as network
objects with well-defined semantics of a federated
service object-oriented architecture. It is based on Jini
semantics of services in the network and Jini

2

Information Assurance 2009

programming model with explicit leases, distributed
events, transactions, and discovery/join protocols. While
Jini focuses on service management in a networked
environment, SORCER focuses on exertion-oriented
programming and the execution environment for
exertions . SORCER uses Jini discovery/join protocols
to implement its exertion-oriented architecture (EOA)
using federated method invocation , but hides all the
low-level programming details of the Jini programming
model.

In EOA, a service provider is an object that accepts
remote messages from service requestors to execute
collaboration. These messages are called service
exertions and describe service (collaboration) data,
operations and collaboration's control strategy. An
exertion task (or simply a task) is an elementary service
request, a kind of elementary federated instruction
executed by a single service provider or a small-scale
federation for the same service data. A composite
exertion called an exertion job (or simply a job) is
defined hierarchically in terms of tasks and other jobs, a
kind of federated procedure executed by a large-scale
federation. The executing exertion is dynamically bound
to all required and currently available service providers
on the network. This collection of providers identified in
runtime is called an exertion federation. The federation
provides the implementation for the collaboration as
specified by its exertion. When the federation is formed,
each exertion’s operation has its corresponding method
(code) available on the network. Thus, the network
exerts the collaboration with the help of the dynamically
formed service federation. In other words, we send the
request onto the network implicitly, not to a particular
service provider explicitly.

The overlay network of service providers is called
the service grid and an exertion federation is in fact a
virtual metacomputer. The metainstruction set of the
metacomputer consists of all operations offered by all
service providers in the grid. Thus, an exertion-oriented
(EO) program is composed of metainstructions with its
own control strategy and a service context representing
the metaprogram data. The service context describes the
collaboration data that tasks and jobs work on. Each
provider guards the resources specified in service
context with the help of two providers Authenticator
and Authorizer described in Section 6. Each service
provider offers services to other service peers on the
object-oriented overlay network. These services are
exposed indirectly by operations in well-known public
remote interfaces and considered to be elementary
(tasks) or compound (jobs) activities in EOA. Indirectly
means here, that you cannot invoke any operation
defined in provider’s interface directly. These operations
can be specified in the requestor’s exertion only, and the
exertion is passed by itself on to the relevant service

provider via the top-level Servicer interface
implemented by all service providers called servicers—
service peers. Thus all service providers in EOA
implement the
service(Exertion, Transaction):Exertion
operation of the Servicer interface. When the servicer
accepts its received exertion, then the exertion’s
operations can be invoked by the servicer itself, if the
requestor is authorized to do so. Servicers do not have
mutual associations prior to the execution of an
exertion; they come together dynamically (federate) for
a collaboration as defined by its exertion. In EOA
requestors do not have to lookup for any network
provider at all, they can submit an exertion, onto the
network by calling
Exertion.exert(Transaction):Exertion
on the exertion. The exert operation will create a
required federation that will run the collaboration as
specified in the EO program and return the resulting
exertion back to the exerting requestor. Since an
exertion encapsulates everything needed (data,
operations, and control strategy) for the collaboration,
all results of the execution can be found in the returned
exertion’s service contexts.

Domain specific servicers within the federation, or
task peers (taskers), execute task exertions. Rendezvous
peers (jobbers and spacers) coordinate execution of job
exertions. Providers of the Taker, Jobber, and
Spacer type are three of SORCER main infrastructure
servicers-see Figure 1. In view of the P2P architecture
defined by the Servicer interface, a job can be sent to
any servicer. A peer that is not a Jobber type is
responsible for forwarding the job to one of available
rendezvous peers in the SORCER environment and
returning results to the requestor.

Figure 1 The SORCER layered functional architecture.

Thus implicitly, any peer can handle any job or task.
Once the exertion execution is complete, the federation
dissolves and the providers disperse to seek other
collaborations to join. Also, SORCER supports a
traditional approach to grid computing similar to those
found, for example in Condor . Here, instead of
exertions being executed by services providing business
logic for invoked exertions, the business logic comes

3

Information Assurance 2009

from the service requestor's executable codes that seek
compute resources on the network.

Grid-based services in the SORCER environment
include Grider services collaborating with Jobber and
Spacer services for traditional grid job submission.
Caller and Methoder services are used for task
execution. Callers execute conventional programs via
a system call as described in the service context of
submitted task. Methoders can download required Java
code (task method) from requestors to process any
submitted context accordingly with the code
downloaded. In either case, the business logic comes
from requestors; it is a conventional executable code
invoked by Callers with the standard Caller’s service
context, or mobile Java code executed by Methoders
with a matching service context provided by the
requestor.

4. Service Messaging and Exertions

In object-oriented terminology, a message is the
single means of passing control to an object. If the
object responds to the message, it has an operation and
its implementation (method) for that message. Because
object data is encapsulated and not directly accessible, a
message is the only way to send data from one object to
another. Each message specifies the name (identifier) of
the receiving object, the name of operation to be
invoked, and its parameters. In the unreliable network of
objects; the receiving object might not be present or can
go away at any time. Thus, we should postpone
receiving object identification as late as possible.
Grouping related messages per one request for the same
data set makes a lot of sense due to network invocation
latency and common errors in handling. These
observations lead us to service-oriented messages called
exertions. An exertion encapsulates multiple service
signatures that define operations, a service context that
defines data, and a control strategy that defines how
signature operations flow in collaboration. Different
types of control exertions (IfExertion,
ForExertion, and WhileExertion) can be used to
define flow of control that can also be configured
additionally with adequate signature attributes .

An exertion can be invoked by calling exertion’s
exert operation:
Exertion.exert(Transaction) :Exertion,
where a parameter of the Transaction type is required
when the transactional semantics is needed for all
participating nested exertions within the parent one,
otherwise can be null. Thus, EO programming allows
us to submit an exertion onto the network and to
perform executions of exertion’s signatures on various
service providers indirectly, but where does the service-
to-service communication come into play? How do

these services communicate with one another if they are
all different? Top-level communication between
services, or the sending of service requests (exertions),
is done through the use of the generic Servicer
interface and the operation service that all SORCER
services are required to provide—
Servicer.service(Exertion, Transaction).
This top-level service operation takes an exertion as an
argument and gives back an exertion as the return value.
How this operation is used in the federated method
invocation framework is described in detail in .
So why are exertions used rather than directly calling on
a provider's method and passing service contexts? There
are two basic answers to this. First, passing exertions
helps to aid with the network-centric messaging. A
service requestor can send an exertion out onto the
network—Exertion.exert()—and any servicer can
pick it up. The servicer can then look at the interface and
PROCESS operation requested within the exertion, and if
it doesn't implement the desired interface or provide the
desired operation, it can continue forwarding it to
another provider who can service it. Second, passing
exertions helps with fault detection and recovery, and
security. Each exertion has its own completion state
associated with it to specify who is invoking it, if it has
yet to run, has already completed, or has failed. Since
full exertions are both passed and returned, the requestor
can view the failed exertion composition to see what
method was being called as well as what was used in the
service context input nodes that may have caused the
problem. Since exertions provide all the information
needed to execute a task including its control strategy, a
requestor would be able to pause a job between tasks,
analyze it and make needed updates. To figure out where
to resume a job, a rendezvous service would simply
have to look at the task’s completion states and resume
the first one that wasn't completed yet.

5. Authentication and Authorization with
Exertions

Polymorphism let us encapsulate a request then
establish the signature of operation to call and vary the
effect of calling the underlying operation by varying its
implementation. The Command design pattern
establishes an operation signature in a generic interface
and defines various implementations of the interface. In
Federated Method Invocation (FMI), the three interfaces
are defined with the following three commands:
Exertion.exert(Transaction):Exertion—join
the federation;
Servicer.service(Exertion,
Transaction):Exertion—request a service in the
federation from the top-level Servicer obtained for the
activated exertion;

4

Information Assurance 2009

Exerter.exert(Exertion, Transaction):Exer-
tion—execute the argument exertion by the target pro-
vider in the federation.
These three commands define the Triple Command
pattern that makes EO programming possible via
various implementations of the three interfaces:
Exertion, Servicer, and Exerter. The FMI approach
allows for:
• the P2P environment via the Servicer interface,
• extensive modularization of programming P2P

collaborations by the Exertion type,
• the execution of exertions by providers of the

Exerter type, and
• vast common synergistic extensibility from the

triple design pattern.
Thus, requestors can exert simple (tasks) and structured
metaprograms (jobs with control exertions) with or
without transactional semantics as defined in) above.
The Triple Command pattern in SORCER works as
follows:
An exertion is invoked by calling
Exertion.exert(Transaction). The Exer-
tion.exert operation implemented in ServiceExer-
tion uses ServicerAccessor to locate in runtime the
provider matching the exertion’s PROCESS signature. If
a Subject in the exertion is not set, the requestor has to
authenticate with the Authenticator service. After the
successful authentication the Subject instance is cre-
ated and the exertion can be passed onto the network.
If the matching provider is found, then on its access
proxy the Servicer.service(Exertion, Trans-
action) method is invoked. The matching provider
first verifies if the requestor is authenticated; otherwise
authenticate it with Authenticator. Then the provider
consults the Authorizer service if the exertion’s Sub-
ject is authorized to execute the operation defined by
the exertion’s PROCESS signature.
When the requestor is authenticated and authorized by
the provider to invoke the method defined by the exer-
tion’s PROCESS signature, then the provider calls its
own exert operation: Exerter.exert(Exertion,
Transaction).
Exerter.exert method calls exert either of Ser-
viceTasker, ServiceJobber, or ServiceSpacer
depending on the type of the exertion (Task or Job) and
its control strategy. Permissions to execute the remain-
ing signatures of APPEND, PREPROCESS, and POSTPRO-
CESS type are checked with the Authorizer service
for the executing Subject. If all of them are authorized,
then the provider calls all the APPEND, next PREPRO-
CESS methods, next the PROCESS method, and finally
all the POSTPROCESS methods.
Individual service providers either Taskers or
rendezvous peers, implement their own
service(Exertion, Transaction) method
according to their service semantics and control strategy,

however all of them federate with available
Authenticator and Authorizer providers in a
uniform way using Java Authentication and
Authorization Service (JAAS) as described later in
Section 6.

6. A Role-based Framework

In order to make the process of authentication and
authorization easier in the federated environment, the
framework is divided into two major modules to handle
cohesive functionality separately – one for
authentication and another for authorization. These two
modules are implemented as individual service
providers in the SORCER environment. Both these
services utilize the common infrastructure of SORCER
and operate on the key store module. Ideally the key
store has to be built as a separate service provider in the
near future. Multiple instances of both the services can
be run for scalability. These services can communicate
with other instance of the same service type in order to
synchronize the access control lists, name and
authorization SPKI certificates. Please note that digital
certificates do not require a secure storage space but
need to be verified when using them.

6.1 Architecture

The described Role-based Access Control Framework
(RACF) uses JAAS but in the federated environment
with distributed services. The authentication service acts
as a login backend while the requestor handles the JAAS
login callbacks. The authenticator utilizes any
configured legacy authentication service to authenticate
the users and assigns the JAAS subject with some public
credentials. The authorizer gets this subject through the
resource providing services. The authorizer maintains
the access control lists in form of SPKI authorization
certificates.

6.2 Authentication Service

The requestors should be authenticated with the
authentication service before they access any resource
providing service. Requestors can be authenticated
against any existing user databases. In our approach any
legacy authentication module supported by JAAS can be
used as backend.

How the authentication service works is described
below. The service requestor gets the user name and
hashed password from the user and sends it across to the
authenticator. The authenticator service authenticates the
user using the backend legacy authentication service.
Upon successful authentication it generates a name
certificate using the public key of the user. If the user is

5

Information Assurance 2009

authenticating with the RACF system for the first time
then a public/private key pair is generated for this user
upon successful authentication with the legacy
authentication service. This key-pair resides in any
available, secure keystore. The authentication service
then utilizes this key pair to generate a name certificate
for the user. This name certificate is used as an
authentication token since it is signed by the
authentication service.

If the user is a returning user, his public key is
simply fetched from the keystore and the name
certificate is signed with the private key of the
authentication service after he is authenticated with the
legacy authentication service. All instances of
authentication service use the same private key. The
authentication service has to keep this private key
secure, either by storing it in the key store provider or
managing it by itself. The name certificate is then sent to
the requestor. The requestor can use this name certificate
along with the requests it makes for any resource to
prove its identity. Any authorization service verifies the
signature of the authentication service before providing
any resource. A validity specification on the name
certificate can be used to specify a time frame only
within which the token is valid. After this timeout the
requestor has to renew this token for further usage.

If the requestor has multiple accounts with the
legacy authentication services then it is possible to have
a single identity for this requestor in SORCER. For
example, if a user has a UNIX account at the Computer
Science Department and also a Windows account at the
university then he/she can choose to have a single
identity in SORCER. This is possible since we use a
public-private key pair for the user, using which we
identify the user after authentication. This allows
him/her to access his/her resources using any legacy
authentication service. It will not hinder the user from
accessing his/her resources when one of the legacy
authentication services cannot be used due to network
problems or what so ever issues. Also users from any
domain can be authenticated and issued a key pair, there
by breaking the domain barrier.

All requestors to be identified by its name can use
the same name certificate created by the authentication
service. When they wish to include the requestor in any
role they can look for the requestor’s name certificate to
be included. Requestors can issue authorization grants
without using name certificates as well, if they wish to,
by using the public key as subject in their authorization
certificates instead of their local names.

6.3 Authorization Service
The authorization service keeps up the access control

lists and verifies any request to access resources. The
Authorizer itself does not guard the resources, but only
provides a way to verify if the subject in question has
the permission to access the resource. The resource
provider itself by any means should keep the actual
resource secure. The authorization service also requires
the keystore module. The keystore can be run as an
independent service in the federated environment and
multiple instances of it can be run for scalability. All
keystore modules will have to synchronize the keys
available in order for the authorization system to work.

When a request for a resource arrives at an actual
service provider, such as SILENUS, it calls for the
authorization service to verify the user identity and
determine if the user is allowed to access the requested
object. The authorization service verifies the user
identity by simply verifying the signature of the name
certificate sent across by the resource provider. This
name certificate is supposed to be signed by the
authentication service, whose public key the authorizer
is aware of. The request is denied if the verification
fails. Once this signature is verified, the authorization
service proceeds to determine the access control on the
requested object.

Access control objects are stored as authorization
certificates in the keystore. These authorization
certificates indicate the issuer, the subject, a tag, a bit
field indicating if the subject can delegate this
authorization grant and a validity specification. The tag
specifies the object on which the authorization is
granted and what type of access is allowed. The format
of tag is not defined precisely in the certificate format, it
could be any object suited for the application. As a case
in point, the SILENUS file system puts the file name
and access type (primarily read and/or write) in a way
that authorization service can understand. In order to
speed up the process of access checking, the
authorization certificates are stored as 5-tuples, if the
storage area is secure. When that is not possible they can
be stored as certificates and the individual fields can be
determined when they are read.

The authorization service requests for the related
authorization certificates from the keystore and runs a
resolution algorithm to determine if the access is
allowed. The algorithm checks if it can find a chain of
delegated authorizations from the resource owner to the
requestor under question on the requested object. If it
can resolve the chain the access is allowed, if the chain
resolution fails the access will be denied. The Java
implementation of SPKI/SDSI is utilized for this
purpose. This library defines ways to create name
certificates, authorization certificates, tags and a
keystore to store SPKI certificates along with many
necessary mechanisms.

6

Information Assurance 2009

6.4 Group formation
Any user, when they wish to share their resources with
other users, has to create a group and then allow this
group to access the resources owned by the owner. The
group is local to the current user and is not applicable to
the entire system; it is valid only in the user’s local
namespace. This group may include only one user in
which case it will be like a local name for the subject.
For example the user Alice can create a group named
“friends” and add Bob and Carol to it. This is done by
issuing name certificates with Bob's public key and
Carol's public key as subject respectively. Alice can then
issue an authorization certificate that specifies the
authorization in its tag field and the local name “friends”
in the subject. The tag contains the resource objects id
and the access control specification.

A name certificate is represented using the notation,
Issuer localname -> Subject

And authorization certificates are represented as
Issuer tag -> Subject

So our example will be
Alice friends -> Bob
Alice friends -> Carol
Alice (+read document.txt) -> friends

The tag indicates permission to read document.txt and
the ability to delegate this permission to others by
“friends”.

The subject need not be a public key always; it could
be a list of names too. Let's say Dave wants to let Alice's
friends read his files too. He may issue a certificate
Dave (read mydoc.txt) -> Alice friends

This allows Alice's friends to be able to read Dave's
mydoc.txt. The local name of Alice, “friends” has been
used by Dave here.

7. Deployment in SILENUS

The role-based access control framework has been
deployed in the SORCER federated environment and
validated successfully in the SILENUS file system with
a role-based file browser. The framework is built in Java
using the JSDSI library . SILENUS provides a federated
file system for SORCER. The system itself is made up
of multiple service providers that collaborate with each
other to provide a service-oriented file system. The most
important ones are the metadata store and byte store
providers . As the names indicate the metadata store
persists the metainformation of the files such as file
name, size, and mime type. It also saves a unique
identifier for each file. When a byte store is contacted
with this unique id, the file contents can be obtained. In
order to provide access control to the SILENUS file
system both metadata store and byte store have to be
secured and have to utilize the access control
framework. The SILENUS file system instead of
exposing the internal modules follows a façade design
pattern where a façade service acts as the SILENUS
entry service provider. The façade provides service UI,
accepts requests from requestors, and forwards them to
the appropriate service provider. The interaction of

7

Figure 2. SILENUS utilizing the role-based access control framework

Information Assurance 2009

SILENUS with RACF has been depicted in Figure 2.
For brevity some SORCER components are omitted.

The SILENUS façade manages all proxies for the
underlying services. It acts as an entry point service for
SILENUS service providers with multiple façade in the
system at any time. All login requests are sent to the
authentication service. The metadata store and the byte
store depend on the authorization service to control
access to their resources. When a requestor makes a
request to access a file’s content it sends the file
information and signed public key that are obtained
from authentication service to metadata store. The
metadata store then requests the authorization service to
determine if this access is allowed. Only when the
authorization service signals go ahead the metadata store
entertains the request. The byte store also works in a
similar way with the authorization service.

The SILENUS façade provides an interactive user
interface to access files without exposing the user to any
complex access control behavior. In fact user-
friendliness has been one of the major requirements for
SILENUS.

The role-based federated access control framework
has been utilized in a similar way for exertion-oriented
programming by other SORCER services to provide a
scalable and reliable authentication and authorization
services so that resource providers do not have to handle
it themselves in an ad-hock manner.

8. Conclusions

An access control mechanism is needed in federated
environments where conventional existing solutions do
not scale well. Most existing access control solutions are
tightly coupled with the service provider or a part of a
service provider and as such are not meant for the entire
federated environment. We propose a new federated
implementation of the JAAS framework. The proposed
solution scales well with increasing resources and
service providers. Along with providing a federated
access control framework we also have concentrated on
user collaboration where users can share resources with
other users irrespective of the administration domain
they come from. SPKI certificates are used to create
local namespace there by avoiding global naming
conventions and central certificate authorities. SPKI also
provides the facility to delegate authorization grants
across exertion-based federations. Users and requestors
can create roles that exist only in that user’s namespace
and can assign permissions to these roles thereby
avoiding the involvement of an administrator for day-to-
day operations of users, which is highly required in a
self-sustaining environment like SORCER. A successful
validation of the presented framework was deployed in
the SILENUS federated file system along with the same

federated JAAS-based approach for all SORCER
requestors and providers.

9. References
[1] Sobolewski M., Federated Method Invocation with

Exertions, Proceedings of the 2007 IMCSIT Conference,
PTI Press, ISSN 1896-7094, pp. 765-778, (2007).
Available at:
http://sorcer.cs.ttu.edu/publications/papers/96.pdf

[2] Sobolewski, M., SORCER: Computing and
Metacomputing Intergrid, 10th International Conference
on Enterprise Information Systems, Barcelona, Spain
(2008). Available at:
http://sorcer.cs.ttu.edu/publications/papers/2008/iceis-
intergrid-08.pdf

[3] Thain D., Tannenbaum T., Livny M. Condor and the Grid.
In Fran Berman, Anthony J.G. Hey, and Geoffrey Fox,
editors, Grid Computing: Making The Global
Infrastructure a Reality. John Wiley (2003).

[4] Berger, M., Sobolewski, M., Group-based Security in a
Federated File System, 2nd Annual Symposium on
Information Assurance, Albany NY, June 6-7, 2007, pp.
56-63 (2007).

[5] Berger, M., Sobolewski, M. 2007, Lessons Learned from
the SILENUS Federated File System, Complex Systems
Concurrent Engineering, Loureiro, G. and Curran, R.
(Eds.), Springer Verlag, ISBN: 978-1-84628-975-0, pp.
431-440 (2007)

[6] Java Cryptography Architecture, Key Management http://
java.sun.com/javase/6/docs/technotes/guides/security/cry
pto/CryptoSpec.html#KeyManagement

[7] Jini architecture specification, Version 2.1. Available at:
http://www.sun.com/software/jini/specs/jini1.2html/jini-
title.html Accessed on: March 1, 2008.

[8] Morrie Gasser, “Building A Secure Computer System”,
pages 45-58

[9] Ravi S. Sandhu, Edward J. Coynek, Hal L. Feinsteink and
Charles E. Youmank, Role-Based Access Control Models.
IEEE Computer 29(2): 38-47, IEEE Press, 1996

[10] Joel Weise, "Public Key Infrastructure Overview", Sun
BluePrints, SUN Microsystems,
http://www.sun.com/blueprints/0801/publickey.pdf

[11] Carl M. Ellison, Bill Franz, Butler Lampson, Ron Rivest,
Brian M. Thomas, Tatu Ylonen. SPKI Requirements,
SPKI Certificate Theory, Simple public key certificate,
SPKI Example. Internet draft. October 1998.
http://world.std.com/~cme/spki.txt

[12] Carl Ellison, "Establishing Identity Without Certification
Authorities"

[13] JSDSI: A Java Implementation of Tools for SDSI
Certificate Management. http://jsdsi.sf.net/

[14] Rivest and Lampson, SDSI A Simple Distributed
Security Infrastructure

[15] Garms J., and Somerfield D., Professional Java Security
Wrox Press, (2001)

8

http://jsdsi.sf.net/
http://world.std.com/~cme/spki.txt
http://www.sun.com/blueprints/0801/publickey.pdf
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#KeyManagement
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#KeyManagement
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#KeyManagement
http://sorcer.cs.ttu.edu/publications/papers/96.pdf

