
PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS
FOR EXERTION-ORIENTED PROGRAMMING

Michael Sobolewski
SORCERsoft.org

sobol@sorcersoft.org

Keywords: Process expression, Metacomputing, cloud computing, Service object-oriented architectures, Service
provisioning, var-modeling, var-oriented programming, Exertion-oriented programming.

Abstract: Each computing system requires a platform that allows software to run. The computing platform includes a
programming environment to create application software with a coherent operating system and processor.
Each platform’s programming environment reflects a relevant abstraction, and usually the type and quality
of the abstraction implies the complexity of problems we are able to solve. The Service ORiented
Computing EnviRonment (SORCER) targets service abstractions for metacomputing complexity in globally
distributed systems. SORCER metaprograms—var-models, var-oriented, and exertion-oriented programs—
with the abstraction of a cloud processor, are executed on the network by the SORCER operating system
(SOS). SOS manages the cloud processor using autonomic provisioning of service providers in the service
cloud (service virtualization) and allocates compute resources in the platform cloud (platform virtualization)
to satisfy QoS (quality of service) required by provisioned providers. Thus, the cloud processor and its both
clouds are maintained by SOS and can also be updated on-the-fly to run metaprograms as collaborating net
services. The QoS and SLA (service level agreement) required by service requestors is expressed directly in
the metaprogramming language. While the service cloud consists of service providers that are implemented
using conventional platforms and languages, for example the Java platform, the cloud requestors—
metaprograms—are written in the new metaprogramming languages. The SORCER service platform is
described in this paper as the coherent metacomputing architecture for a fusion of service requestors and a
virtualized cloud processor.

1 INTRODUCTION

As we look forward to metacomputing
(Metacomputing, n.d.), globally distributed physical
and virtual machines should play a major role in
architecting very large service-oriented systems.
While there is a significant interest in high
performance, grid (Foster, et al., 2001), and cloud
computing (Linthicum, 2009), much of this interest
is the artifact of the hype associated with them as
most of this computing is predominantly reduced to
executable files. Without understanding the behavior
of metacomputing architectures and related
applications, it is unclear how future service-
oriented systems will be designed based on these
architectures. Thus, it is greatly important to develop
a complete picture of metacomputing applications
and learn the architectures they require.

In computing science the common thread in all
computing disciplines are process expression and
actualization of process expression (Fant, 1993), for

example:
1. An architecture is an expression of a

continuously acting process to interpret
symbolically expressed processes.

2. A user interface is an expression of an
interactive human-machine process.

3. A mogram (Kleppe, 2009) (which can be
program or model) is an expression of a
computing process.

4. A mogramming (programming or modeling)
language is an environment within which to
create symbolic process expressions
(mograms).

5. A compiler is an expression of a process that
translates between symbolic process
expressions in different languages.

6. An operating system is an expression of a
process that manages the interpretation of other
process expressions.

7. A processor is an actualization of a process.

IS-11

8. An application is an expression of the
application process.

9. A computing platform is an expression of a
runtime process defined by the triplet:
domain—mogramming language,
management—operating system, and carrier—
processor.

10. A computer is an actualization of a computing
platform.

11. A metamogram (metaprogram or metamodel)
is an expression of a metaprocess, as the
process of processes.

12. A metamogramming language is an
environment within which to create symbolic
metaprocess expressions.

13. A metaoperating system is an expression of a
process that manages the interpretation of other
metaprocess expressions.

14. A metaprocessor is an actualization of the
metaprocess on the aggregation of distinct
computers working together so that to the user
it looks and operates like a single processor.

15. A metacomputing platform is an expression of
a runtime process defined by its
metamogramming language, metaoperating
system, and metaprocessor.

16. A metacomputer is an actualization of a
metacomputing platform.

17. Cloud computing is an expression of meta-
processes consolidated on a metaplatform with
virtualization of its services and required
computing platforms.

Obviously, there is an essential overlap between
the domains of computer science and information
technology (IT), but the core concerns with the
nature of process expression itself are usually
ignored in IT since the IT community is mainly
concerned with the efficiency of process
actualization independent of how that process is
expressed. Computer science is mainly concerned
with the nature of the expression of processes
independent of its platform actualization.

The way of instructing a platform to perform a
given task is referred to as entering a command for
the underlying operating system. On many UNIX
and derivative systems, a shell (command-line
interpreter) then receives, analyzes, and executes the
requested command.

A shell script is a list of commands which all
work as part of a larger process, a sequence
(program) that you would normally have issued
yourself on the command line. UNIX shells have the
capability of command flow logic (foreach, while,
if/then/else), retrieving the command line
parameters, defining and using (shell) variables etc.

"Scripts" are distinct from the executable code of the
application, as they are usually written in a different
language with distinctive semantics. Scripts are
often interpreted from source code, whereas
application (command) source code is typically first
compiled to a native machine code or to an
intermediate code (e.g. Java bytecode). Machine
code is the form of instructions that the native
processor executes as a command, while the object-
oriented method (intermediate code) is executed by
an object-oriented virtual platform (e.g., a Java
runtime environment) by sending a message from a
sender to the recipient object. The message may
create additional objects that can send and receive
messages as well.

Consequently, a shell script can be treated as a
compound command, while an executable file as an
elementary command on a command platform. In
contrast, object-oriented and service-oriented
programs run on virtual object-oriented and service-
oriented platforms respectively.

In Figure 1 each computing platform (P) is
depicted as three layers: domain (D), management
(M), and carrier (C) with the prefix V standing for
virtual, and m for meta. Each distributed metacarrier
mCk, k = 1, 2, ..., n, consists of various platforms.
For example, the mC1 metaprocessor consists of the
native command platform P1,1, virtual command
platform P2,1, and object-oriented virtual platform
Pm1,1. All distributed metacarriers mCi, i = 1, 2, ...,
n, constitute the metacarrier or simply the cloud
processor (mC)—the processor of a metaplatform
(mP). The metaplatform mP is treated as a cloud
platform for service-oriented computing.

SORCER service commands (services) at the
mD level are called exertions (Sobolewski, 2002).
The SORCER Operating System (SOS) with its
exertion shell (at mM) allows us to execute service-
oriented programs—exertion scripts, by analogy to
command scripts executed by a UNIX shell.
Exertions as commands of the cloud processor (mC)
invoke messages on service objects (at VD-Pm1,k) or
commands (at VD-P1,1 and D-P2,1). Each distributed
metaprocessor (mCk) runs multiple virtual platforms
(Pi,k, i = 1, 2, ..., n and k = 2, … , mi) on the same
native platform (P1,i), while each virtual platform
runs services implemented by service objects and
commands.

Before we delve into the SORCER
metacomputing and metaprogramming concepts, the
introduction of some terminology used throughout
the paper is required:
• A computation is a process following a well-

defined model that is understood and can be
symbolically expressed and physically
accomplished (actualized). A computation can be

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-12

seen as a purely physical phenomenon occurring
inside a system called a computer.

• Computing requires a computing platform
(runtime) to operate. Computing platforms that
allow mograms to run require a processor,
operating system, and mogramming
(programming or modeling) environment with
related tools to create symbolic process
expressions—mograms. A computation is
physically expressed by a processor and
symbolically expressed by a mogram.

• A distributed computation allows for sharing
computing resources usually located on several
remote computers to collaboratively run a single
complex computation in a transparent and
coherent way. In distributed computing,
computations are decomposed into mograms,
processes, and computers.

• A metacomputer is an interconnected and
balanced set of computers that operate as a single
unit, which is an actualization of its
metacomputing platform (metaprocessor,
metaoperating system, and metamogramming
environment).

• A service object is a remote object that
deploys/undeploys service providers. A service

object, that manages multiple service providers,
shares the same virtual platform for all its service
providers in a common container.

• A service provider is a remote object that provides
services to service requestors. Service providers
are identified primarily by service (interface)
types and typically do not have a lifecycle of their
own; any state they do contain tends to be an
aggregate of the states of the local entity objects
(service beans) that they offer to service
requestors. A service provider that implements
multiple interface provides multiple services.

• A metacomputation is a form of distributed
computation determined by collaborating service
providers that a metacomputer can interpret and
execute. A service provider selected at runtime by
a metaoperating system implements services that
invoke what are usually commands and messages.

• A collection of service providers selected and
managed for a metacomputation is called a service
federation.

• A metamogram is an expression of
metacomputation, represented in a mogramming
language, which a metacomputer follows in
processing shared data for a service collaboration

Figure 1: Software cannot operate without a platform or be platform independent. The cloud platform (mP: mD/mM/mC)
with its meta-domain (mD), meta-management (mD), and meta-carrier (mC) is composed of n distributed platform clouds
mCi, i = 1, 2, ..., n.

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-13

managed by its metaoperating system on its
virtual metaprocessor.

• A service-oriented architecture (SOA) is a
software architecture using loosely coupled
service providers. The SOA integrates them into a
distributed computing system by means of
service-oriented (SO) mogramming. Service
providers are made available as independent
components that can be accessed without a priori
knowledge of their underlying platform,
implementation, and location. The client-server
architecture separates a client from a server, SOA
introduces a third component, a service registry.
The registry allows the metaoperating system (not
the requestor) to dynamically find service
providers on the network.

• If the application (wire) protocol between
requestors and all service providers is predefined
and final then this type of SOA is called a service-
protocol oriented architecture (SPOA). In
contrast, when the communication is based on
remote message passing with the ability to pass
objects using the wire protocol that can be chosen
by a provider to satisfy efficient communication
with its requestors, then the architecture is called a
service-object oriented architecture (SOOA).

Let's emphasize the major distinction between
SOOA and SPOA: in SOOA, a proxy object is
created and always owned by the service provider,
but in SPOA, the requestor creates and owns a proxy
which has to meet the requirements of the protocol
that the provider and requestor agreed upon a priori.
Thus, in SPOA the protocol is always fixed, generic,
and reduced to a common denominator—one size
fits all—that leads to inefficient network
communication with heterogeneous large datasets.
In SOOA, each provider can decide on the most
efficient protocol(s) needed for a particular
distributed application. For example, SPOA wire
protocols are: SOAP in Web and Grid Services,
IIOP in CORBA, JRMP in Java RMI. SORCER
implements its SOOA with the Jini service
architecture (Jini Architecture, n.d.)

The computing platforms and related
programming models have evolved as process
expression has evolved from the sequential process
expression actualized on a single computer to the
concurrent process expression actualized on multiple
computers. The evolution in process expression
introduces new platform benefits but at the same
time introduces additional programming complexity
that operating systems have to deal with. We can
distinguish seven quantum jumps in process
expression and related programming complexity

(Sobolewski, 2009):
1. Sequential programming (e.g., von Neumann

architecture)
2. Multi-threaded programming (e.g., Java

platform)
3. Multi-process programming (e.g., Unix

platform)
4. Multi-machine-process programming (e.g.,

CORBA)
5. Knowledge-based distributed programming

(e.g., DICEtalk (Sobolewski, 1996))
6. Service-protocol oriented programming (e.g.,

Web and Grid Services)
7. Service-object oriented programming (e.g.

SORCER)
SORCER introduces a special type of variable
called var (Section 3) with var-oriented (VO)
programming, var-modeling (VM), and exertion-
oriented (EO) programming model with federated
method invocation (FMI) in its SOOA. FMI
(Sobolewski, 2009) defines the communication
framework between three SORCER architectural
layers: metamogramming, management, and
execution.

This paper is organized as follows: Section 2
briefly describes the SORCER metacomputing
architecture; Section 3 introduces the programming
model and related three programming languages;
Section 4 presents the SORCER operating system
with its cloud processor; Section 5 describes the
service cloud provisioning for exertion-oriented
programming, and Section 6 provides concluding
remarks.

2 ARCHITECTURE

The term "federated" means that a single service
invocation with no network configuration creates at
runtime a federation of required collaborating
services. SORCER (Service-ORiented Computing
EnviRonment) is a federated service-to-service
(S2S) metacomputing environment that treats
service providers as network peers with well-defined
semantics of a service-object oriented architecture
(SOOA) (Sobolewski, 2010a). The SORCER
platform has evolved from the service-object
abstractions introduced in the FIPER project (1999–
2003 (Sobolewski, 2002)), the service-oriented
operating system at the SORCER Lab, Texas Tech
University (2002-2009 (SORCERsoft, n.d.)), finally
with metaprogramming languages for programming
convergence at the Multidisciplinary Science and
Technology Center, AFRL/WPAFB (2006-2010)
(Sobolewski, 2010b). It is based on Jini semantics of

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-14

services (Jini Architecture, n.d.) in the network and
the Jini programming model (Edwards, 2000) with
explicit leases, distributed events, transactions, and
discovery/join protocols. The Jini network
technology focuses on service management in a
networked environment, while SORCER is focused
on metamogramming and the environment for
executing metamograms.

The languages in which languages are expressed
are often called metalanguages. A language
specification can be expressed by a grammar or by a
metamodel. A metamodel is a model to define a
language. An obvious consequence of multiple
syntaxes of service-oriented programming languages
in SORCER is that a concrete syntax cannot be the
form of the language design. This makes the need
for a unifying representation apparent.
Consequently, the abstract (conceptual) form for a
service-oriented programming has been developed in
SORCER with multiple concrete models of the same
metamodel (abstract model).

The SORCER metamodeling architecture is
based on the notion of the metamodel called the
DMC-triplet: Domain/Management/Carrier. For
example, a computing platform is the DMC-triplet of

a mogramming language (domain), an operating
system (management), and a processor (carrier). A
language is the DMC-triplet of language
expressions (domain), a grammar or metamodel
(management), and a language alphabet (carrier).
Therefore, a platform is a composition of a domain-
specific language (DSL), management with relevant
constraints applied to the domain, and the carrier
that allows for actualization of both the domain and
its management.

The SORCER abstract metamodel is a kind of
UML class diagram depicted in Figure 2, where each
"class" is an instance of the DMC-triplet (meta-
metamodel). This metamodeling architecture
distinguishes three computing platforms (command,
object, and service platforms) and three new
programming platforms (var-modeling, var
programming, and exertion programming
platforms).

An exertion is a service command that specifies
how a collaboration is realized by a federation of
service providers playing specific roles used in a
specific way (Sobolewski, 2008b). The collaboration
specifies a view of cooperating providers identified
by service types (interfaces)⎯a projection of service

Figure 2: The SORCER metamodeling architecture: evaluation, modeling, metaprogramming, metacomputation,
programming, and computation. Each platform is shown as the DMC triplet (domain, management, carrier). The service
platform manages the service providers (service cloud) that are autonomically provisioned by service objects on virtualized
object/command platforms.

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-15

federation. It describes the associations between
service types (interfaces) that play the required roles
in collaboration, as well as the quality of service
(QoS) attributes that describe quality of the
participating providers. Several exertions may
describe different projections of the same federation
since different operations can be used in the same set
of federated interfaces. Exertions specify for
collaborations explicitly: data (data context),
operations with related QoS (signatures), and
control strategy actualized by the exertion shell. The
exertion participants in the federation collaborate
transparently according to its control strategy
managed by the SOS based on the Triple Command
Pattern described in (Sobolewski, 2009). The
functional SORCER architecture is depicted in
Figure 3 as the DMC triplet as well.

The exertion's collaboration defines a service
interaction. The service interaction describes how
invocations of operations are managed between
service providers to perform a collaborative
computation. The interaction is defined by exertion's
control strategy and control flow exertions
(Sobolewski, 2008a). From the computing platform
point of view, exertions are service commands at the
programming level D, interactions at the SOS level
M, and service federations are groups of domain-
specific (DS) providers at the processor level C4.
The SOS manages federations dynamically on its
virtual metaprocessor (cloud processor)⎯the layers
C0-C5 in Figure 3.

SOOA (Sobolewski, 2010a) consists of four
major types of network objects: providers,
requestors, registries, and proxies for remote
communication. The provider is responsible for
deploying the service on the network, publishing its
proxy object to one or more registries, and allowing
requestors to access its proxy. Providers advertise
their availability on the network; registries intercept
these announcements and cache proxy objects to the
provider services. The requestor looks up proxies by
sending queries to registries and making selections
from the available service types. Queries generally
contain search criteria related to the type and quality
of service (QoS). Registries facilitate searching by
storing proxy objects of services and making them
available to requestors. Providers use discovery/join
protocols to publish services on the network;
requestors use discovery/join protocols to obtain
service proxies on the network. Each provider
implements multiple interfaces (services) and a
single service object hosts multiple providers. A
service-object's container is actualized on the virtual
object platform (e.g., Java Platform). Two containers
called Tasker and Rio cybernodes (Rio Project, n.d)
are used predominantly to host service providers.
Thus, both service providers/objects and
object/command platforms can be provisioned by
SOS—service virtualization indicated by SPV/SOV
at C4/C3 and platform virtualization indicated by
OPV/CPV at C2/C1 in Figure 3. SOS uses Jini
discovery/join protocols to implement its federated
SOOA with its exertion shell.

Figure 3: The SORCER layered architecture, where C0-C5 (carrier)—the metaprocessor with its service cloud at C4 and
C3, platform cloud at C2 and C1, M (management)—SORCER operating system, D (domain)—service requestors; where
PV and OV stands for provider and object virtualization respectively with the prefix S for service, O for object, and C for
command.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-16

In SORCER, a service bean is a plain Java
object (POJO) that implements domain-specific
interfaces. A service provider exposes on the
network interfaces of embedded service beans that
implement own domain-specific interfaces, if any.
The provider creates and registers its proxy object
with service registries. Registered providers then
execute operations in its published interfaces that are
requested by service requestors and invoked by SOS
on proxy objects.

A task exertion is an elementary service
command executed by a single service provider or a
small-scale federation managed by the provider
executing the task. A compound service command
called a job exertion is defined hierarchically in
terms of tasks and other jobs, including control flow
exertions. A job exertion is a kind of distributed
metaprogram executed by a large-scale federation.
The executing exertion, interpreted by the SORCER
shell, is a service-oriented program that is
dynamically bound to all required and currently
available service providers on the network. This
collection of service providers identified at runtime
is called an exertion federation.

The overlay network of all service providers is
called the service metaprocessor or the service
cloud. The metainstruction set of the metaprocessor
consists of all operations offered by all service
providers in the cloud. Thus, a service-oriented
program is composed of metainstructions with its
own service-oriented control strategy and data
context representing the metaprogram data. Service
signatures used in metaprograms, at the D level in
Figure 3, specify runtime SOS selected methods for
virtual providers at the C4 level that are hosted by
service objects at the C3 level. In turn, the required
service objects are deployed on virtual object and
command platforms at C2 and C1 correspondingly.

Each signature is defined by an interface type,
operation in that interface, and a set of optional QoS
attributes. Four types of signatures are distinguished:
PROCESS, PREPROCESS, POSTPROCESS, and APPEND.
A PROCESS signature—of which there is only one
allowed per exertion—defines the dynamic late
binding to a provider that implements the signature’s
interface. The service context describes the data on
which tasks and jobs work. An APPEND signature
defines the context received from the provider
specified by the signature. The received context is
then appended at runtime to the service context later
processed by PREPROCESS, PROCESS, and
POSTPROCESS operations of the exertion. Appending
a service context allows a requestor to use actual
network data produced at runtime not available to

the requestor when it initiates its execution. A
metacompute OS allows for an exertion to create
and manage dynamic federation and transparently
coordinate the execution of all component exertions
within the federation. Please note that these
metacomputing concepts are defined differently in
traditional grid computing where a job is just an
executing process for a submitted executable code
with no federation being formed for the executable.

3 PROGRAMMING MODEL

The abstract model depicted in Figure 2 is the
unifying representation for three concrete
programming syntaxes: the functional composition
form, the SORCER Java API described in
(Sobolewski, 2008a), and the graphical form
described in (Sobolewski and Kolonay, 2006). The
functional composition notation has been developed
for three related languages: Var-Modeling Language
(VML), Var-Oriented Language (VOL), and
Exertion-Oriented Language (EOL) that are usually
complemented with the Java object-oriented syntax.
In the reminder of this Section we will describe the
basic syntax of these three languages. More details
on EOL can be found in (Sobolewski, 2010b).

The fundamental principle of functional
programming is that a computation can be realized
by composing functions. Functional programming
languages consider functions to be data, avoid states,
and mutable values in the evaluation process in
contrast to the imperative programming style, which
emphasizes changes in state values. Thus, one can
write a function that takes other functions as
parameters, returning yet another function.
Experience suggests that functional programs are
more robust and easier to test than imperative ones.

Not all operations are mathematical functions.
In nonfunctional programming languages,
"functions" are subroutines that return values while
in a mathematical sense a function is a unique
mapping from input values to output values. The var
entity allows one to use functions, subroutines, or
coroutines in the same way. Here the term var is
used to denote a mathematical function, subroutine,
coroutine, any data or object.

Var-oriented programming is the programming
paradigm that treats any computation as the triplet:
value, filter (pipeline of filters), and evaluator (VFE,
see Figure 4). Evaluators and filters can be executed
locally or remotely, sequentially or concurrently.
The evaluator may use a differentiator to calculate
the rates at which the var quantities change. The

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-17

VFE paradigm emphasizes the usage of evaluators
and filters to define the value of var. The semantics
of the var value, whether the var represents a
mathematical function, subroutine, coroutine, or just
data, depends on the evaluator and filter currently
used by the var. VO programming allows for
exertions to use vars in data contexts. Alternatively,
data contexts (implementing Context interface) with
specialized aggregations of vars, called var-models,
can be used for enterprise-wide metacomputing.
Three types of models: response, parametric, and
optimization have been studied already (Sobolewski,
2010b).

Figure 4: The var structure: value/filter/evaluator. Vars are
indicated in blue color. The basic var y1, z=y1(x1, x2, x3),
depends on its argument vars and derivative vars.

The variable evaluation strategy is defined as
follows: the associated current evaluator determines
the variable’s raw value (not processed or subjected
to analysis), and the current pipeline of filters returns
the output value from the evaluator result. Multiple
associations of evaluator-filter can be used with the
same var (multifidelity). Evaluator's raw value may
depend on other var arguments and those arguments
in turn can depend on other argument vars and so on.
This var dependency chaining is called var
composition and provides the integration framework
for all possible kinds of computations represented by
various types of evaluators including exertions via
exertion evaluators.

The modularity of the VFE metamodel, reuse of
evaluators and filters, including exertion evaluators,
in defining var-models is the key feature of variable-
oriented programming (VOP). The same evaluator
with different filters can be associated with many
vars. The VOP model complements distributed
service-oriented computing with other types of
computing. In particular, evaluators can be
associated with commands (executables), messages

(objects), and services (exertions) as indicated by a,
b, and c dependences in Figure 2.

Var-models support multidisciplinary and
multifidelity computing. Var compositions across
multiple models define multidisciplinary problems;
multiple evaluators per var and multiple
differentiators per evaluator define their
multifidelity. They are called amorphous models.
For the same var-model an alternative set of
evaluators/filters (another fidelity) can be selected at
runtime to evaluate a new particular version
("shape") of the model and quickly update the
related computation in the right evolving or new
direction.

Let's consider the Rosen-Suzuki optimization
problem to illustrate the basic VML, VOL, and EOL
concepts, where:
1. design vars: x1, x2, x3, x4
2. response vars: f, g1, g2, g3,
 and
3. f = x1^2-5.0*x1+x2^2-5.0*x2+2.0*x3^2-

21.0*x3+x4^2+7.0*x4+50.0
4. g1 = x1^2+x1+x2^2-x2+x3^2+x3+x4^2-x4-8.0
5. g2 = x1^2-x1+2.0*x2^2+x3^2+2.0*x4^2-x4-10.0
6. g3 = 2.0*x1^2+2.0*x1+x2^2-x2+x3^2-x4-5.0
The goal is then to minimize f subject to
 g1 <= 0, g2 <= 0, and g3 <= 0.

In VML this case is expressed by the following
mogram:
int designVarCount = 4;
int responseVarCount = 4;
OptimizationModel model = optimizationModel("Rosen-
Suzuki Model",
 designVars(vars(loop(designVarCount),
 "x", 20.0, -100.0, 100.0)),
 responseVars("f"),
 responseVars(loop(responseVarCount-1),
 "g"),
 objectiveVars(var("fo", "f", Target.min)),
 constraintVars(
 var("g1c", "g1", Relation.lte, 0.0),
 var("g2c", "g2", Relation.lte, 0.0),
 var("g3c","g3", Relation.lte, 0.0)));
configureAnalysisModel(model);

Response vars f, g1, g2, g3 are configured by the
function configureAnalysisModel defined in VOL, for
example var f is configured as follows:
var(model, "f",
 evaluator("fe1",
 "x1^2- 5.0*x1+x2^2-5.0*x2+2.0
 *x3^2-21.0*x3+x4^2+7.0*x4+50.0"),
 args("x1", "x2", "x3", "x4"));
The model above can be provisioned directly in
SORCER as a servicer provider and used by the

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-18

space exploration provider of the Exploration type
that also uses the CONMIN optimization
(CONMIN, n.d) service provider of the Optimization
type.

The requestor creates the exertion opti as
follows:
// Create an optimization data context
Context exploreContext = exploreContext("Rosen-Suzuki
context",
 varsInfo(varInfo("x1", 1.0),
 varInfo("x2", 1.0),
 varInfo("x3", 1.0),
 varInfo("x4", 1.0)),
 strategy(new ConminStrategy(
 new File(System.getProperty(
 "conmin.strategy.file")))),
 dispatcher(
 sig(null, RosenSuzukiDispatcher.class,
 Process.INTRA)),
 model(sig("register",
 OptimizationModeling.class,
 "Rosen-Suzuki Model")),
 optimizer(sig("register",
 Optimization.class,
 "Rosen-Suzuki Optimizer")));

// Create a task exertion
Task opti= task("opti",
 sig("explore", Exploration.class,
 "Rosen-Suzuki Explorer"),
 exploreContext);

then executes the opti exertion:
// Execute the exertion and log results
logger.info(">>>>>>>>>>>>> results: "
 + context(exert(opti));

with the exertion's output data context logged as
follows:
[java] Objective Function fo = 6.002607805900986
[java] Design Variable Values
[java] x1 = 2.5802964087086235E-4
 x2 = 0.9995594642481355
 x3 = 2.000313835134211
 x4 = -0.9986692050113675
[java] Constraint Values
[java] g1c = -0.002603585246998996
 g2c =-1.0074147118087602
 g3c = 4.948009193483927E-7
[java] ITERATIONS
[java] Number of Objective Evaluations = 88
[java] Number of Constraint Evaluations = 88
[java] Number of Objective
 Gradient Evaluations = 29
[java] Number of Constraint Gradient
 Evaluations = 29

The exploreContext defines initialization of
design vars (varsInfo), the optimization strategy, and
the exploration dispatcher with two required
services—two signatures for: optimizer and model.
The context then is used to define the exertion task
opti with the signature for exploration service named
Rosen-Suzuki Explorer of the Exploration type. For
simplicity, signatures above do not specify QoS for
the specified providers. To illustrate the provider
QoS concept (Rubach and Sobolewski, 2009), for
example, the optimizer's signature can be expressed
as follows:
 sig("register", Optimization.class, qosCtx))
where the qosCtx context may be defined as follows:
QosContext qosCtx = qos(
 serviceProvider(entry(
 "Name","Rosen-Suzuki Optimizer"),
 libs(entry("Name","Conmin"),
 entry("Class",
 NativeLibrarySupport.class),
 entry("FileName",
 "conmin.so"))),
 objectPlatform(entry("Name","Java"),
 entry("Class", J2SESupport.class),
 entry("Version", "1.5.*")),
 commandPlatform(
 processor(entry("Available", "2"),
 entry("Architecture", "x86")),
 memory(entry("Capacity", "4G"),
 entry("Available", "2G")),
 disk(entry("Capacity", "20G"),
 entry("Available", "4G"))),
 sla(
 entry("cost", 200),
 entry("time", 5000),
 entry("CPU", range(0.0, 0.9)),
 entry("Memory", range(0.2, 0.5)),
 entry("ProcAvail_CPU_Util", range(1.5,
 2.0),
 metric("ProcAvail_CPU_Util",
 impl("result
 = Double.parseDouble(proc_avail)
 * cpu_util",
 args(
 var("proc_avail", ...)))),
 var("cpu_util",)))))))),
 authorization(
 entry("estimatedDuration", 30000l),
 entry("priority", range(5,10)),
 execDate("2011-01-10 00:00:00",
 "2011-01-11 12:00:00"),
 project(
 entry("name","RS"),
 entry("manager","Smith"),
 entry("description",
 "RS optimization")),
 organization(

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-19

 entry("name", "TTU"),
 entry("department", "CS"),
 entry("description",
 "SORCER Testbed"))));

The qosCtx context specifies for the optimizer
required QoS: for the provider by operator
serviceProvider, for the object platform by operator
objectPlatform, for the command platform by
operator commandPlatform, expected SLA by
operator sla and authorization by authorization for the
service requestor.

4 SORCER OPERATING SYSTEM
AND SERVICE CLOUDS

SOS allows execution of a service-oriented program
and by itself is the service-oriented system. The
overlay network of the service providers defining the
functionality of SOS is called the sos-cloud (M layer
in Figure 3) and the overlay network of application
providers is called the app-cloud—metaprocessor
(C4 layer in Fgure 3). Both the sos-cloud and app-
cloud constitute the service cloud. The
metainstruction set of the SORCER metaprocessor
consists of all operations offered by all service
providers in the app-cloud. Thus, an exertion is
composed of metainstructions with its own control
strategy per service composition and data context
representing the shared data for the underlying
federation. Service signatures (instances of Signature
type) returned by sig operators specify operations of
collaboration participants in the app-cloud. Each
signature is defined primarily by an interface type,
operation in that interface, and by a QoS context.

As explained in Section 2, four types of
signatures are distinguished. A PROCESS signature—
of which there is only one allowed per exertion—
defines the dynamic late binding to a provider that
implements the signature’s interface. The data
context describes the data that tasks and jobs operate
on and create. SOS allows for an exertion to create
and manage a service collaboration and
transparently coordinate the execution of all
exertion's nested signatures within the assembled
federation. These exertion-based computing
concepts are defined differently in traditional
grid/cloud computing where a job is just an
executing process for a submitted executable code—
the executable becomes the single service itself that
can be parallelized on multiple processors, if needed.
Here, a job is the federation of collaborating
executable codes (command providers) and related

other providers that is formed by SOS for a single
exertion as specified by its all nested signatures.

An exertion object of the Exertion type is
returned by either task or job operators of EOL.
Then, the exertion can be actualized by the exertion
shell, by invoking the exert operation on the shell as
follows:

ExertionShell#exert(Exertion ,Transaction)
 :Exertion,

where a parameter of the Transaction type is required
when a transactional semantics is needed for
required participating service providers within the
collaboration defined by the exertion. Thus, EO
programming allows us to execute an exertion and
invoke exertion’s signatures on collaborating service
providers indirectly, but where does the service-to-
service communication come into play? How do
these services communicate with one another if they
are all different? Top-level communication between
services, or the sending of service requests, is done
through the use of the generic Servicer interface and
the operation service that SORCER providers are
required to implement:

Servicer#service(Exertion,
 Transaction):Exertion.

This top-level service operation takes an exertion
object as an argument and gives back an exertion
object as the return value.

So why are exertion objects used rather than
directly calling on a provider's method and passing
data contexts? There are two basic answers to this.
First, passing exertion objects helps to aid with the
network-centric messaging. A service requestor can
send an exertion object implicitly out onto the
network—SorcerShell#exert(Exertion)—and any
service provider can pick it up. The receiving
provider can then look at the signature's interface
and operation requested within the exertion object,
and if it doesn't implement the desired interface and
provide the desired method, it can continue
forwarding it to another service provider who can
service it. Second, passing exertion objects helps
with fault detection and recovery. Each exertion
object has its own completion state associated with it
to specify if it has yet to run, has already completed,
or has failed. Since full exertion objects are both
passed and returned, the user can view the failed
exertion to see what method was being called as well
as what was used in the data context input that may
have caused the problem. Since exertion objects
provide all the information needed to execute the
exertion including its control strategy, the user
would be able to pause a job between component

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-20

exertions, analyze it and make needed updates. To
figure out where to resume an exertion, the
executing provider would simply have to look at the
exertion’s completion states and resume the first one
that wasn't completed yet. In other words, EO
programming allows the user, not programmer to
update the metaprogram on-the-fly, what practically
translates into creating new interactive collaborative
applications at runtime.

Applying the inversion principle, SOS executes
the exertion’s collaboration with dynamically found,
if present, or provisioned on-demand service
providers. The exertion caller has no direct
dependency to service provider since the exertion
uses only service types they implement.

Despite the fact that any Servicer can accept any
exertion, SOS services have well defined roles in the
S2S platform (Sobolewski, 2010b) (see Figure 3):
a) Taskers–accept exertion tasks; they are used to

create application services by dependency
injection (service assembly from service beans)
or by inheritance (subclassing ServiceTasker and
implementing required service interfaces);

b) Jobbers–manage service collaboration for PUSH
service access;

c) Spacers–manage service collaboration for PULL
service access using space-based computing;

d) Contexters–provide data contexts for APPEND
signatures;

e) FileStorers–provide access to federated file
system providers;

f) Catalogers–Servicer registries, provide
management for QoS-based federations;

g) SlaMonitors–provide monitoring of SLAs;
h) Provisionersvprovide on-demand provisioning;
i) Persisters–persist data contexts, tasks, and jobs to

be reused for interactive EO programming;
j) Relayers–gateway providers; transform exertions

to native representation, for example integration
with Web services and JXTA;

k) Authenticators, Authorizers, Policers, KeyStorers
–provide support for service security;

l) Auditors, Reporters, Loggers–support for
accountability, reporting, and logging

m) Griders, Callers, Methoders–support for a
conventional compute grid (allocating
executables codes on the network);

n) Notifiers–use third party services for collecting
provider notifications for time consuming
programs and disconnected requestors.

Both sos-providers and app-providers do not have
mutual associations prior to the execution of an
exertion; they come together dynamically (federate)
for all nested tasks and jobs in the exertion.

DS servicers within the app-cloud—taskers—
execute task exertions. Rendezvous peers (jobbers,
spacers, and catalogers) manage service
collaborations. Providers of the Tasker, Jobber,
Spacer, and Cataloger type are basic SOS exertion
management providers. In the view of the P2P
architecture (Sobolewski, 2008b) defined by the
Servicer interface, a job can be sent to any servicer. A
peer that is not a Jobber or Spacer type is responsible
for forwarding the job to one of the available
rendezvous peers in the SORCER environment and
returning results to the requestor. Thus implicitly,
any peer can handle any exertion type. Once the
exertion execution is complete, the federation
dissolves and the providers in the federation disperse
to seek other exertions to join.

5 CLOUD PROVISIONING

The SOS manages service collaborations with
dynamically found, if present, or provisioned on-
demand service providers. The exertion caller has no
direct dependency to service providers since the
exertion uses only interface types they implement.
The SOS shell offers requestors the ability to
dynamically invoke SOS services in the sos-cloud
and then required collaborating providers in the app-
cloud selected by SOS provisioning. Selected QoS
attributes or QoS context in signatures are optional.
However, if used, the required command platform
(V1 in Figure 2), object platform (V2 in Figure 2),
and provider (V2 in Figure 2), can be provisioned if
no service provider is available in the app-cloud.

Without an efficient resource management the
assignment of providers to the requestor's signatures
cannot be optimized and cannot offer high reliability
without relevant SLA guarantees. A SLA-based
SERViceable Metacomputing Environment
(SERVME) (Rubach and Sobolewski, 2009) is
capable of matching providers based on QoS
requirements and performing autonomic
provisioning and deprovisioning of providers
according to dynamic requestor needs. In SERVME
an exertion signature includes a QoS context with
SLA requirements as illustrated in Section 4.
SERVME is a generic resource management
framework in terms of common QoS/SLA data
structures and extensible communication interfaces
which hide all implementation details.

Along with the QoS/SLA object model
SERVME defines basic components and
communication interfaces as depicted in the UML
component diagram illustrated in Figure 5. We

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-21

distinguish two forms of autonomic provisioning:
monitored and on-demand. In monitored
provisioning the Rio Provisioner (Rio Project, n.d.)
deploys a requested collection of providers, then
monitors them for presence and makes sure that the
required number of providers is always on the
network as defined by the collection’s deployment
descriptor. On-demand provisioning refers to a type
of provisioning (On-demand Provisioner) where the
actual provider is presented to the requestor, once an
SLA subscription to the requested service is
successfully processed. In both cases, if services
become unavailable, or fail to meet processing
requirements, the recovery of those service providers
to available compute resources is enabled by the Rio
provisioning mechanisms.

The basic SERVME components are defined as
follows:
• QosProviderAccessor is a component used by the

service requestor that is responsible for processing
the exertion request containing QosContext in its
signature. If the exertion type is Task then
QosCatalog is used, otherwise a relevant
rendezvous peer: Jobber, Spacer is used.

• QosCatalog is an independent service that acts as
a QoS-based Lookup Service. The QosCatalog
uses the functional requirements as well as related
non-functional QoS requirements to find a service
provider from currently available in the network.
If a matching provider does not exist, the
QosCatalog may provision the needed one.

• SlaDispatcher is a component built into each
service provider. It performs two roles. On one

hand, it is responsible for retrieving the actual
QoS parameter values from the operating system
in which it is running, and on the other hand, it
exposes the interface used by QosCatalog to
negotiate, sign and manage the SLA with its
provider.

• SlaPrioritizer is a component that allows
controlling the prioritization of the execution of
exertions according to the organizational
requirements of SlaContext.

• QosMonitor UI provides an embedded GUI that
allows the monitoring of provider’s QoS
parameters at runtime.

• SlaMonitor is an independent service that acts as a
registry for negotiated SLA contracts and exposes
the GUI for administrators to allow them to
monitor, update or cancel active SLAs.

• On-demandProvisioner enables on-demand
provisioning of services in cooperation with the
Rio Provisioner ("Rio Project", n.d.) The
QosCatalog uses it when no matching service
provider can be found that meets requestor's QoS
requirements.

Two forms of provisioning are considered:
monitored and on-demand. In monitored
provisioning the provisioner deploys a requested
collection of providers, then monitors them for
presence and in the case of any failure in the
deployed collection, the provisioner makes sure that
the collection is always on the network as defined by
the collection's deployment descriptor. On-demand
provisioning refers to a type of provisioning when
the actual provider is presented to the requestor,

Figure 5: SERVME resource management architecture.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-22

once a subscription to the requested service is
successfully processed. In both cases, if services
become unavailable, or fail to meet processing
requirements, the recovery of those service providers
to available compute resources is enabled by Rio
provisioning mechanisms.

As described in Section 4, the service requestor
submits the exertion with QoS contexts into the
network by invoking evaluate(Exertion) in EOL. If
the exertion is of Task type, then
QosProviderAccessor via QosCalatog finds in
runtime a matching service provider with a
corresponding SLA.

If the SLA can be directly provided then the
contracting provider approached by the QosCalatog
returns it in the form of a SlaContext, otherwise a
negotiation can take place for the agreeable
SlaContext between the requestor and provider. The
provider's SlaDispatcher drives this negotiation in
cooperation with SlaPrioritizer and the exertion's
requestor.

If the task contains multiple signatures then the
provider is responsible for contracting SLAs for all
other signatures of the task before the SLA for its
PROCESS signature is guaranteed.

However, if the submitted exertion is of Job
type, then QosProviderAccessor via QosCalatog
finds at runtime a matching rendezvous provider
with a guaranteed SLA. Before the guaranteed SLA
is returned, the rendezvous provider recursively
acquires SLAs for all component exertions as
described above depending on the type (Task or Job)
of component exertion.

6 CONCLUSIONS

Cloud computing it is not just computing on a
collection of virtualized platforms. A service-
oriented system is not just a collection of distributed
objects—it is the unreliable network of service
providers that may come and go on virtualized
platforms. SORCER introduces the new
metacomputing abstractions for evaluation,
modeling, metaprogramming, metacomputation,
programming, and computation (Figure 2). EO
programming introduces the new abstractions of
service providers and exertions for
metaprogramming instead of objects and messages
in object-oriented programming. Exertions
encapsulate service data, signatures with QoS, and a
control strategy interpreted by the exertion shell.
The exertions are service commands that define

reliable network collaborations in unreliable
networks.

Applying the inversion principle, SOS looks up
service providers by implemented interface types
with optional QoS attributes. SOS utilizes Jini-based
service management that provides for dynamic
services, mobile code shared over the network, and
network security. Federations are aggregated from
independent service-providers in the service cloud
that do not require heavyweight containers like
application servers. SOS defines the coherent
framework between three SORCER architectural
layers: programming, management, and cloud
processor.

The SORCER platform uses a dynamic service
discovery mechanism allowing new services to enter
the network and disabled services to leave the
network gracefully without need for reconfiguration.
This allows the exertion federation to be distributed
without sacrificing the robustness of the service-
oriented process. This architecture also improves the
utilization of the network resources by distributing
the execution load over multiple nodes of the
network. The exertion's federation shows resilience
to service failures on the network as it can search for
alternate services and maintain continuity of
operations even during periods when there is no
service available.

The presented approach to the autonomic
provisioning framework with QoS in exertions and
the negotiation for the acceptable SLA addresses the
challenges of spontaneous federations and allows for
better resource allocation. Also, SERVME provides
for better hardware utilization due to Rio monitored
provisioning and SORCER on-demand provisioning.
The SOS on-demand provisioning reduces the
number of compute resources to those presently
required for collaborations defined by corresponding
exertions. Once a service is provisioned, the SOS
provisioners ensure that services are maintained to
the expected QoS. Provisioning thus refers to
bootstrapping of the service provider, and
monitoring to the ongoing service responsibility. In
the case of any provider's failure the service provider
is re-provisioned in the network with the same
required QoS. When diverse and specialized
hardware is used, SERVME provides a means to
manage the prioritization of tasks according to the
organization’s strategy that defines "who is
computing what and where".

SORCER defines clearly its separate meta-
computing architectural layers: metamogramming,
management, and cloud processor layers integrated
via SOS. That introduces simplicity to SORCER

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-23

mogramming with flexible enterprise
interoperability achieved via three neutralities
(protocol, implementation, and location
(Sobolewski, 2009)) and architectural means (Figure
1, 2, 3, and 4), not by neutral data exchange formats,
e.g., XML. Neutral data exchange formats when
overused introduce unintended complexity and
degraded performance.

The service-oriented cloud computing
philosophy described in this paper implies that
separating explicitly programming from
metaprogramming with corresponding platforms and
metaplatforms gives us the understanding of what is
and is not important for building large-scale adaptive
and dynamic enterprise systems. Otherwise,
reducing programming to the level of middleware
programming only and within the command/object
platform, introduces intolerable complexity for
building such distributed systems.

SORCER with its hierarchical mogramming
model has been successfully deployed and tested in
multiple concurrent engineering and large-scale
distributed applications (Kolonay et al., 2007; Goel,
et al., 2008; Xu, et al., 2009).

ACKNOWLEDGEMENTS

This work was partially supported by Air Force
Research Lab, Air Vehicles Directorate,
Multidisciplinary Science and Technology Center,
the contract number F33615-03-D-3307, Algorithms
for Federated High Fidelity Engineering Design
Optimization. I would like to express my gratitude to
all those who helped me in my SORCER research at
AFRL, GE Global Research Center, and my students
at the SORCER Lab, TTU. Especially I would like
to express my gratitude to Dr. Ray Kolonay, my
technical advisor at AFRL/RBSD for his support,
encouragement, and advice.

REFERENCES

Apache River, Available at: http://incubator.apache.org/riv
er/RIVER/index.html. Accessed on: August 10, 2010.

CONMIN User's Manual, Available at: http://www.eng.bu
ffalo.edu/Research/MODEL/mdo.test.orig/CONMIN/
manual.html. Accessed on: August 10, 2010.

Edwards, W.K. (2000) Core Jini, 2nd ed., Prentice Hall
Fant, K.M., 1993. A Critical Review of the Notion of

Algorithm in Computer Science, Proceedings of the
21st Annual Computer Science Conference, February
1993, pp. 1-6.

Foster I.; Kesselman C. & Tuecke S., 2001. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations,
International J. Supercomputer Applications, 15(3).

Goel, S.; Talya, S.S. & Sobolewski, M., 2008. Mapping
Engineering Design Processes onto a Service-Grid:
Turbine Design Optimization, International Journal of
Concurrent Engineering: Research & Applications,
Concurrent Engineering, Vol.16, pp 139-147.

Jini Architecture Specification. Accessed on: February
30, 2011. Available at: http://www.jini.org/wiki/Jini_
Architecture_Specification.

Kleppe A. 2009. Software Language Engineering, Pearson
Education, ISBN: 978-0-321-55345-4.

Kolonay, R. M., Thompson, E.D., Camberos, J.A. &
Eastep, F., 2007. Active Control of Transpiration
Boundary Conditions for Drag Minimization with an
Euler CFD Solver, AIAA-2007-1891, 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, Honolulu,
Hawaii.

Linthicum, D. S., 2009) Cloud Computing and SOA
Convergence in Your Enterprise: A Step-by-Step
Guide, Addison-Wesley Professional, ISBN-10
0136009220.

Metacomputing: Past to Present, February 30, 2011. Avail
able at: http://archive.ncsa.uiuc.edu/Cyberia/MetaCom
p/MetaHistory.html.

Rio Project. Available at: http://www.rio-project.org/.
Accessed on: February 30, 2011.

Rubach, P. & Sobolewski, M., 2009. Autonomic SLA
Management in Federated Computing Environments.
International Conference on Parallel Processing
Workshops, Vienna, Austria: 2009, pp. 314-321.

Sobolewski, M., 2002. Federated P2P Services in CE
Environments, Advances in Concurrent Engineering,
A.A. Balkema Publishers, 2002, ISBN 90 5809502 9,
pp. 13-22.

Sobolewski, M. & Kolonay, R., 2006. Federated Grid
Computing with InteractiveService-oriented Pro-
gramming, International Journal of Concurrent
Engineering: Research & Applications, Vol.14, No.1,
pp. 55-66.

Sobolewski, M., 2008a. Exertion Oriented Programming,
IADIS, vol. 3 no. 1, pp. 86-109, ISBN: ISSN: 1646-
3692.

Sobolewski, M., 2008b. Federated Collaborations with
Exertions, 17h IEEE International Workshop on
Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE), pp.127-132.

Sobolewski, M., 2009. Metacomputing with Federated
Method Invocation, Advances in Computer Science
and IT, edited by M. Akbar Hussain, In-Tech,
intechweb.org, ISBN 978-953-7619-51-0, s. 337-
363. Accessed on: February 30, 2011. Available at:
http: // sciyo.com/articles/show/title/metacomputing-
with-federated-method-invocation.

Sobolewski, M., 2010a. Object-Oriented Metacomputing
with Exertions, Handbook On Business Information
Systems, A. Gunasekaran, M. Sandhu (Eds.), World
Scientific, ISBN: 978-981-283-605-2.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-24

Sobolewski, M., 2010b. Exerted Enterprise Computing:
From Protocol-Oriented Networking to Exertion-
Oriented Networking, R. Meersman et al. (Eds.): OTM
2010 Workshops, LNCS 6428, 2010, Springer-Verlag
Berlin Heidelberg 2010, pp. 182– 201.

SORCERsoft. Available at: http://sorcersoft.org.
Accessed on: August 10, 2010.

Xu, W., Cha, J., Sobolewski, M., 2008. A Service-
Oriented Collaborative Design Platform for
Concurrent Engineering, Advanced Materials
Research, Vols. 44-46 (2008) pp. 717-724.

BRIEF BIOGRAPHY

Mike Sobolewski received his Ph.D. from the
Institute of Computer Science, Polish Academy of
Sciences. He is the Principal Investigator of the
SORCER Lab (http://SORCERsoft.org) focused on
research in distributed service-centric
metacomputing. Currently he is a World Class
Scientist at the Air Force Research Lab (AFRL),
WPAFB/USA. Before, he was a Professor of
Computer Science, Texas Tech University and
Director of SORCER Lab from 2002 till 2009. Now
he is engaged in development of Algorithms for
Federated High Fidelity Engineering Design
Optimization applying his innovative SORCER
solutions at the Multidisciplinary Science and
Technology Center, AFRL/WPAFB.

While at the GE Global Research Center (GE
GRC), 1994-2002, he was a senior computer
scientist and the chief architect of large-scale
projects funded by the United States Federal
Government including the Federated Intelligent
Product EnviRonment (FIPER) project and
Computer Aided Manufacturing Network
(CAMnet). Also, based on his web-based generic
application framework he developed seventeen
successful distributed systems for various GE
business components. Before his work at GE GRC,
he was a Research Associate at the Concurrent
Engineering Center (CERC) and and Visiting
Professor at Computer Science Department, West
Virginia University (1998-1994). At CERC/WVU
he was a project leader for knowledge-based
integration for the DARPA Initiative in Concurrent
Engineering (DICE).

Prior to coming to the USA, during 18-year
career with the Polish Academy of Sciences,
Warsaw, Poland, he was the Head of the Pattern
Recognition and Image Processing Department, the
Head of the Expert Systems Laboratory, and was
engaged in research in the area of knowledge
representation, knowledge-based systems, pattern

recognition, image processing, neural networks,
object-oriented programming, and graphical
interfaces. He has served as a visiting professor,
lecturer, or consultant in Sweden, Finland, Italy,
Switzerland, Germany, Hungary, Slovakia, Poland,
Russia, China, and USA.

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-25

