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Abstract: Each computing system requires a platform that allows software to run. The computing platform includes a 
programming environment to create application software with a coherent operating system and processor. 
Each platform’s programming environment reflects a relevant abstraction, and usually the type and quality 
of the abstraction implies the complexity of problems we are able to solve. The Service ORiented 
Computing EnviRonment (SORCER) targets service abstractions for metacomputing complexity in globally 
distributed systems. SORCER metaprograms—var-models, var-oriented, and exertion-oriented programs—
with the abstraction of a cloud processor, are executed on the network by the SORCER operating system 
(SOS). SOS manages the cloud processor using autonomic provisioning of service providers in the service 
cloud (service virtualization) and allocates compute resources in the platform cloud (platform virtualization) 
to satisfy QoS (quality of service) required by provisioned providers. Thus, the cloud processor and its both 
clouds are maintained by SOS and can also be updated on-the-fly to run metaprograms as collaborating net 
services. The QoS and SLA (service level agreement) required by service requestors is expressed directly in 
the metaprogramming language. While the service cloud consists of service providers that are implemented 
using conventional platforms and languages, for example the Java platform, the cloud requestors—
metaprograms—are written in the new metaprogramming languages. The SORCER service platform is 
described in this paper as the coherent metacomputing architecture for a fusion of service requestors and a 
virtualized cloud processor. 

1 INTRODUCTION 

As we look forward to metacomputing 
(Metacomputing, n.d.), globally distributed physical 
and virtual machines should play a major role in 
architecting very large service-oriented systems. 
While there is a significant interest in high 
performance, grid (Foster, et al., 2001), and cloud 
computing (Linthicum, 2009), much of this interest 
is the artifact of the hype associated with them as 
most of this computing is predominantly reduced to 
executable files. Without understanding the behavior 
of metacomputing architectures and related 
applications, it is unclear how future service-
oriented systems will be designed based on these 
architectures. Thus, it is greatly important to develop 
a complete picture of metacomputing applications 
and learn the architectures they require.  

In computing science the common thread in all 
computing disciplines are process expression and 
actualization of  process expression (Fant, 1993), for 

example: 
1. An architecture is an expression of a 

continuously acting process to interpret 
symbolically expressed processes. 

2. A user interface is an expression of an 
interactive human-machine process. 

3. A mogram (Kleppe, 2009) (which can be 
program or model) is an expression of a 
computing process. 

4. A mogramming (programming or modeling) 
language is an environment within which to 
create symbolic process expressions 
(mograms). 

5. A compiler is an expression of a process that 
translates between symbolic process 
expressions in different languages. 

6. An operating system is an expression of a 
process that manages the interpretation of other 
process expressions. 

7. A processor is an actualization of a process. 
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8. An application is an expression of the 
application process. 

9. A computing platform is an expression of a 
runtime process defined by the triplet: 
domain—mogramming language, 
management—operating system, and carrier—
processor. 

10. A computer is an actualization of a computing 
platform. 

11. A metamogram (metaprogram or metamodel) 
is an expression of a metaprocess, as the 
process of processes. 

12. A metamogramming language is an 
environment within which to create symbolic 
metaprocess expressions. 

13. A metaoperating system is an expression of a 
process that manages the interpretation of other 
metaprocess expressions. 

14. A metaprocessor is an actualization of the 
metaprocess on the aggregation of distinct 
computers working together so that to the user 
it looks and operates like a single processor. 

15. A metacomputing platform is an expression of 
a runtime process defined by its 
metamogramming language, metaoperating 
system, and metaprocessor. 

16. A metacomputer is an actualization of a 
metacomputing platform. 

17. Cloud computing is an expression of meta-
processes consolidated on a metaplatform with 
virtualization of its services and required 
computing platforms. 

Obviously, there is an essential overlap between 
the domains of computer science and information 
technology (IT), but the core concerns with the 
nature of process expression itself are usually 
ignored in IT since the IT community is mainly 
concerned with the efficiency of process 
actualization independent of how that process is 
expressed. Computer science is mainly concerned 
with the nature of the expression of processes 
independent of its platform actualization. 

The way of instructing a platform to perform a 
given task is referred to as entering a command for 
the underlying operating system. On many UNIX 
and derivative systems, a shell (command-line 
interpreter) then receives, analyzes, and executes the 
requested command. 

A shell script is a list of commands which all 
work as part of a larger process, a sequence 
(program) that you would normally have issued 
yourself on the command line. UNIX shells have the 
capability of command flow logic (foreach, while, 
if/then/else), retrieving the command line 
parameters, defining and using (shell) variables etc. 

"Scripts" are distinct from the executable code of the 
application, as they are usually written in a different 
language with distinctive semantics. Scripts are 
often interpreted from source code, whereas 
application (command) source code is typically first 
compiled to a native machine code or to an 
intermediate code (e.g. Java bytecode). Machine 
code is the form of instructions that the native 
processor executes as a command, while the object-
oriented method (intermediate code) is executed by 
an object-oriented virtual platform (e.g., a Java 
runtime environment) by sending a message from a 
sender to the recipient object. The message may 
create additional objects that can send and receive 
messages as well. 

Consequently, a shell script can be treated as a 
compound command, while an executable file as an 
elementary command on a command platform. In 
contrast, object-oriented and service-oriented 
programs run on virtual object-oriented and service-
oriented platforms respectively.  

In Figure 1 each computing platform (P) is 
depicted as three layers: domain (D), management 
(M), and carrier (C) with the prefix V standing for 
virtual, and m for meta. Each distributed metacarrier 
mCk,  k = 1, 2, ..., n,  consists of various platforms. 
For example, the mC1 metaprocessor consists of the 
native command platform P1,1, virtual command 
platform P2,1, and object-oriented virtual platform  
Pm1,1. All distributed metacarriers mCi,  i = 1, 2, ..., 
n,  constitute the metacarrier or simply the cloud 
processor (mC)—the processor of a metaplatform 
(mP). The metaplatform mP is treated as a cloud 
platform for service-oriented computing. 

SORCER service commands (services) at the 
mD level are called exertions (Sobolewski, 2002). 
The SORCER Operating System (SOS) with its 
exertion shell (at mM) allows us to execute service-
oriented programs—exertion scripts, by analogy to 
command scripts executed by a UNIX shell. 
Exertions as commands of the cloud processor (mC) 
invoke messages on service objects (at VD-Pm1,k) or 
commands (at VD-P1,1 and D-P2,1). Each distributed 
metaprocessor (mCk) runs multiple virtual platforms 
(Pi,k,  i = 1, 2, ..., n and k = 2, … , mi) on the same 
native platform (P1,i), while each virtual platform 
runs services implemented by service objects and 
commands. 

Before we delve into the SORCER 
metacomputing and metaprogramming concepts, the 
introduction of some terminology used throughout 
the paper is required: 
• A computation is a process following a well-

defined model that is understood and can be 
symbolically expressed and physically 
accomplished (actualized). A computation can be 
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seen as a purely physical phenomenon occurring 
inside a system called a computer.  

• Computing requires a computing platform 
(runtime) to operate. Computing platforms that 
allow mograms to run require a processor, 
operating system, and mogramming 
(programming or modeling) environment with 
related tools to create symbolic process 
expressions—mograms. A computation is 
physically expressed by a processor and 
symbolically expressed by a mogram. 

• A distributed computation allows for sharing 
computing resources usually located on several 
remote computers to collaboratively run a single 
complex computation in a transparent and 
coherent way. In distributed computing, 
computations are decomposed into mograms, 
processes, and computers.  

• A metacomputer is an interconnected and 
balanced set of computers that operate as a single 
unit, which is an actualization of its 
metacomputing platform (metaprocessor, 
metaoperating system, and metamogramming 
environment). 

•  A service object is a remote object that 
deploys/undeploys service providers. A service 

object, that manages multiple service providers, 
shares the same virtual platform for all its service 
providers in a common container.  

• A service provider is a remote object that provides 
services to service requestors. Service providers 
are identified primarily by service (interface) 
types and typically do not have a lifecycle of their 
own; any state they do contain tends to be an 
aggregate of the states of the local entity objects 
(service beans) that they offer to service 
requestors. A service provider that implements 
multiple interface provides multiple services. 

• A metacomputation is a form of distributed 
computation determined by collaborating service 
providers that a metacomputer can interpret and 
execute. A service provider selected at runtime by 
a metaoperating system implements services that 
invoke what are usually commands and messages. 

• A collection of service providers selected and 
managed for a metacomputation is called a service 
federation. 

• A metamogram is an expression of 
metacomputation, represented in a mogramming 
language, which a metacomputer follows in 
processing shared data for  a service collaboration 

 
Figure 1: Software cannot operate without a platform or be platform independent. The cloud platform (mP: mD/mM/mC) 
with its meta-domain (mD), meta-management (mD), and meta-carrier (mC) is composed of n distributed platform clouds 
mCi, i = 1, 2, ..., n.  
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managed by its metaoperating system on its 
virtual metaprocessor.  

• A service-oriented architecture (SOA) is a 
software architecture using loosely coupled 
service providers. The SOA integrates them into a 
distributed computing system by means of 
service-oriented (SO) mogramming. Service 
providers are made available as independent 
components that can be accessed without a priori 
knowledge of their underlying platform, 
implementation, and location. The client-server 
architecture separates a client from a server, SOA 
introduces a third component, a service registry. 
The registry allows the metaoperating system (not 
the requestor) to dynamically find service 
providers on the network. 

• If the application (wire) protocol between 
requestors and all service providers is predefined 
and final then this type of SOA is called a service-
protocol oriented architecture (SPOA). In 
contrast, when the communication is based on 
remote message passing with the ability to pass 
objects using the wire protocol that can be chosen 
by a provider to satisfy efficient communication 
with its requestors, then the architecture is called a 
service-object oriented architecture (SOOA). 

Let's emphasize the major distinction between 
SOOA and SPOA: in SOOA, a proxy object is 
created and always owned by the service provider, 
but in SPOA, the requestor creates and owns a proxy 
which has to meet the requirements of the protocol 
that the provider and requestor agreed upon a priori. 
Thus, in SPOA the protocol is always fixed, generic, 
and reduced to a common denominator—one size 
fits all—that leads to inefficient network 
communication with heterogeneous large datasets. 
In SOOA, each provider can decide on the most 
efficient protocol(s) needed for a particular 
distributed application. For example, SPOA wire 
protocols are: SOAP in Web and Grid Services, 
IIOP in CORBA, JRMP in Java RMI. SORCER 
implements its SOOA with the Jini service 
architecture (Jini Architecture, n.d.) 

The computing platforms and related 
programming models have evolved as process 
expression has evolved from the sequential process 
expression actualized on a single computer to the 
concurrent process expression actualized on multiple 
computers. The evolution in process expression 
introduces new platform benefits but at the same 
time introduces additional programming complexity 
that operating systems have to deal with. We can 
distinguish seven quantum jumps in process 
expression   and   related   programming  complexity 

(Sobolewski, 2009): 
1. Sequential programming (e.g., von Neumann 

architecture) 
2. Multi-threaded programming (e.g., Java 

platform) 
3. Multi-process programming (e.g., Unix 

platform) 
4. Multi-machine-process programming (e.g., 

CORBA)  
5. Knowledge-based distributed programming 

(e.g., DICEtalk (Sobolewski, 1996)) 
6. Service-protocol oriented programming (e.g., 

Web and Grid Services) 
7. Service-object oriented programming (e.g. 

SORCER) 
SORCER introduces a special type of variable 
called var (Section 3) with var-oriented (VO) 
programming, var-modeling (VM), and exertion-
oriented (EO) programming model with federated 
method invocation (FMI) in its SOOA. FMI 
(Sobolewski, 2009) defines the communication 
framework between three SORCER architectural 
layers: metamogramming, management, and 
execution. 

This paper is organized as follows: Section 2 
briefly describes the SORCER metacomputing 
architecture; Section 3 introduces the programming 
model and related three programming languages; 
Section 4 presents the SORCER operating system 
with its cloud processor; Section 5 describes the 
service cloud provisioning for exertion-oriented 
programming, and Section 6 provides concluding 
remarks. 

2 ARCHITECTURE 

The term "federated" means that a single service 
invocation with no network configuration creates at 
runtime a federation of required collaborating 
services. SORCER (Service-ORiented Computing 
EnviRonment) is a federated service-to-service 
(S2S) metacomputing environment that treats 
service providers as network peers with well-defined 
semantics of a service-object oriented architecture 
(SOOA) (Sobolewski, 2010a). The SORCER 
platform has evolved from the service-object 
abstractions introduced in the FIPER project (1999–
2003 (Sobolewski, 2002)), the service-oriented 
operating system at the SORCER Lab, Texas Tech 
University (2002-2009 (SORCERsoft, n.d.)), finally 
with metaprogramming languages for programming 
convergence at the Multidisciplinary Science and 
Technology Center, AFRL/WPAFB (2006-2010) 
(Sobolewski, 2010b). It is based on Jini semantics of 
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services (Jini Architecture, n.d.) in the network and 
the Jini programming model (Edwards, 2000) with 
explicit leases, distributed events, transactions, and 
discovery/join protocols. The Jini network 
technology focuses on service management in a 
networked environment, while SORCER is focused 
on metamogramming and the environment for 
executing metamograms. 

The languages in which languages are expressed 
are often called metalanguages. A language 
specification can be expressed by a grammar or by a 
metamodel. A metamodel is a model to define a 
language. An obvious consequence of multiple 
syntaxes of service-oriented programming languages 
in SORCER is that a concrete syntax cannot be the 
form of the language design. This makes the need 
for a unifying representation apparent. 
Consequently, the abstract (conceptual) form for a 
service-oriented programming has been developed in 
SORCER with multiple concrete models of the same 
metamodel (abstract model).  

The SORCER metamodeling architecture is 
based on the notion of the metamodel called the 
DMC-triplet: Domain/Management/Carrier. For 
example, a computing platform is the DMC-triplet of 

a mogramming language (domain), an operating 
system (management), and a processor (carrier). A 
language is the DMC-triplet of language 
expressions (domain), a grammar or metamodel 
(management), and a language alphabet (carrier). 
Therefore, a platform is a composition of a domain-
specific language (DSL), management with relevant 
constraints applied to the domain, and the carrier 
that allows for actualization of both the domain and 
its management.  

The SORCER abstract metamodel is a kind of 
UML class diagram depicted in Figure 2, where each 
"class" is an instance of the DMC-triplet (meta-
metamodel). This metamodeling architecture 
distinguishes three computing platforms (command, 
object, and service platforms) and three new 
programming platforms (var-modeling, var 
programming, and exertion programming 
platforms). 

An exertion is a service command that specifies 
how a collaboration is realized by a federation of 
service providers playing specific roles used in a 
specific way (Sobolewski, 2008b). The collaboration 
specifies a view of cooperating providers identified 
by service types (interfaces)⎯a projection of service  

 
Figure 2: The SORCER metamodeling architecture: evaluation, modeling, metaprogramming, metacomputation, 
programming, and computation. Each platform is shown as the DMC triplet (domain, management, carrier). The service 
platform manages the service providers (service cloud) that are autonomically provisioned by service objects on virtualized 
object/command platforms. 
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federation. It describes the associations between 
service types (interfaces) that play the required roles 
in collaboration, as well as the quality of service 
(QoS) attributes that describe quality of the 
participating providers. Several exertions may 
describe different projections of the same federation 
since different operations can be used in the same set 
of federated interfaces. Exertions specify for 
collaborations explicitly: data (data context), 
operations with related QoS (signatures), and 
control strategy actualized by the exertion shell. The 
exertion participants in the federation collaborate 
transparently according to its control strategy 
managed by the SOS based on the Triple Command 
Pattern described in (Sobolewski, 2009). The 
functional SORCER architecture is depicted in 
Figure 3 as the DMC triplet as well. 

The exertion's collaboration defines a service 
interaction. The service interaction describes how 
invocations of operations are managed between 
service providers to perform a collaborative 
computation. The interaction is defined by exertion's 
control strategy and control flow exertions 
(Sobolewski, 2008a). From the computing platform 
point of view, exertions are service commands at the 
programming level D, interactions at the SOS level 
M, and service federations are groups of domain-
specific (DS) providers at the processor level C4. 
The SOS manages federations dynamically on its 
virtual metaprocessor (cloud processor)⎯the layers 
C0-C5 in Figure 3.  

SOOA (Sobolewski, 2010a) consists of four 
major types of network objects: providers, 
requestors, registries, and proxies for remote 
communication. The provider is responsible for 
deploying the service on the network, publishing its 
proxy object to one or more registries, and allowing 
requestors to access its proxy. Providers advertise 
their availability on the network; registries intercept 
these announcements and cache proxy objects to the 
provider services. The requestor looks up proxies by 
sending queries to registries and making selections 
from the available service types. Queries generally 
contain search criteria related to the type and quality 
of service (QoS). Registries facilitate searching by 
storing proxy objects of services and making them 
available to requestors. Providers use discovery/join 
protocols to publish services on the network; 
requestors use discovery/join protocols to obtain 
service proxies on the network. Each provider 
implements multiple interfaces (services) and a 
single service object hosts multiple providers. A 
service-object's container is actualized on the virtual 
object platform (e.g., Java Platform). Two containers 
called Tasker and Rio cybernodes (Rio Project, n.d) 
are used predominantly to host service providers. 
Thus, both service providers/objects and 
object/command platforms can be provisioned by 
SOS—service virtualization indicated by SPV/SOV 
at C4/C3 and platform virtualization indicated by 
OPV/CPV at C2/C1 in Figure 3. SOS uses Jini 
discovery/join protocols to implement its federated 
SOOA with its exertion shell.  

 
Figure 3: The SORCER layered architecture, where C0-C5 (carrier)—the metaprocessor with its service cloud at C4 and 
C3, platform cloud at C2 and C1, M (management)—SORCER operating system, D (domain)—service requestors; where 
PV and OV stands for provider and object virtualization respectively with the prefix S for service, O for object, and C for 
command. 
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In SORCER, a service bean is a plain Java 
object (POJO) that implements domain-specific 
interfaces. A service provider exposes on the 
network interfaces of embedded service beans that 
implement own domain-specific interfaces, if any. 
The provider creates and registers its proxy object 
with service registries. Registered providers then 
execute operations in its published interfaces that are 
requested by service requestors and invoked by SOS 
on proxy objects.  

A task exertion is an elementary service 
command executed by a single service provider or a 
small-scale federation managed by the provider 
executing the task. A compound service command 
called a job exertion is defined hierarchically in 
terms of tasks and other jobs, including control flow 
exertions. A job exertion is a kind of distributed 
metaprogram executed by a large-scale federation. 
The executing exertion, interpreted by the SORCER 
shell, is a service-oriented program that is 
dynamically bound to all required and currently 
available service providers on the network. This 
collection of service providers identified at runtime 
is called an exertion federation.  

The overlay network of all service providers is 
called the service metaprocessor or the service 
cloud. The metainstruction set of the metaprocessor 
consists of all operations offered by all service 
providers in the cloud. Thus, a service-oriented 
program is composed of metainstructions with its 
own service-oriented control strategy and data 
context representing the metaprogram data. Service 
signatures used in metaprograms, at the D level in 
Figure 3, specify runtime SOS selected methods for 
virtual providers at the C4 level that are hosted by 
service objects at the C3 level. In turn, the required 
service objects are deployed on virtual object and 
command platforms at C2 and C1 correspondingly. 

Each signature is defined by an interface type, 
operation in that interface, and a set of optional QoS 
attributes. Four types of signatures are distinguished: 
PROCESS, PREPROCESS, POSTPROCESS, and APPEND. 
A PROCESS signature—of which there is only one 
allowed per exertion—defines the dynamic late 
binding to a provider that implements the signature’s 
interface. The service context describes the data on 
which tasks and jobs work. An APPEND signature 
defines the context received from the provider 
specified by the signature. The received context is 
then appended at runtime to the service context later 
processed by PREPROCESS, PROCESS, and 
POSTPROCESS operations of the exertion. Appending 
a service context allows a requestor to use actual 
network data produced at runtime not available to 

the requestor when it initiates its execution. A 
metacompute OS allows for an exertion to create 
and manage dynamic federation and transparently 
coordinate the execution of all component exertions 
within the federation. Please note that these 
metacomputing concepts are defined differently in 
traditional grid computing where a job is just an 
executing process for a submitted executable code 
with no federation being formed for the executable. 

3 PROGRAMMING MODEL 

The abstract model depicted in Figure 2 is the 
unifying representation for three concrete 
programming syntaxes: the functional composition 
form, the SORCER Java API described in 
(Sobolewski, 2008a), and the graphical form 
described in (Sobolewski and Kolonay, 2006). The 
functional composition notation has been developed 
for three related languages: Var-Modeling Language 
(VML), Var-Oriented Language (VOL), and 
Exertion-Oriented Language (EOL) that are usually 
complemented with the Java object-oriented syntax. 
In the reminder of this Section we will describe the 
basic syntax of these three languages. More details 
on EOL can be found in (Sobolewski, 2010b). 

The fundamental principle of functional 
programming is that a computation can be realized 
by composing functions. Functional programming 
languages consider functions to be data, avoid states, 
and mutable values in the evaluation process in 
contrast to the imperative programming style, which 
emphasizes changes in state values. Thus, one can 
write a function that takes other functions as 
parameters, returning yet another function. 
Experience suggests that functional programs are 
more robust and easier to test than imperative ones.  

Not all operations are mathematical functions. 
In nonfunctional programming languages, 
"functions" are subroutines that return values while 
in a mathematical sense a function is a unique 
mapping from input values to output values. The var 
entity allows one to use functions, subroutines, or 
coroutines in the same way. Here the term var is 
used to denote a mathematical function, subroutine, 
coroutine, any data or object.  

Var-oriented programming is the programming 
paradigm that treats any computation as the triplet: 
value, filter (pipeline of filters), and evaluator (VFE, 
see Figure 4). Evaluators and filters can be executed 
locally or remotely, sequentially or concurrently. 
The evaluator may use a differentiator to calculate 
the rates at which the var quantities change. The 

PROVISIONING OBJECT-ORIENTED SERVICE CLOUDS FOR EXERTION-ORIENTED PROGRAMMING

IS-17



 

VFE paradigm emphasizes the usage of evaluators 
and filters to define the value of var. The semantics 
of the var value, whether the var represents a 
mathematical function, subroutine, coroutine, or just 
data, depends on the evaluator and filter currently 
used by the var. VO programming allows for 
exertions to use vars in data contexts. Alternatively, 
data contexts (implementing Context interface) with 
specialized aggregations of vars, called var-models, 
can be used for enterprise-wide metacomputing. 
Three types of models: response, parametric, and 
optimization have been studied already (Sobolewski, 
2010b). 

 
Figure 4: The var structure: value/filter/evaluator. Vars are 
indicated in blue color. The basic var y1, z=y1(x1, x2, x3), 
depends on its argument vars and derivative vars. 

The variable evaluation strategy is defined as 
follows: the associated current evaluator determines 
the variable’s raw value (not processed or subjected 
to analysis), and the current pipeline of filters returns 
the output value from the evaluator result. Multiple 
associations of evaluator-filter can be used with the 
same var (multifidelity). Evaluator's raw value may 
depend on other var arguments and those arguments 
in turn can depend on other argument vars and so on. 
This var dependency chaining is called var 
composition and provides the integration framework 
for all possible kinds of computations represented by 
various types of evaluators including exertions via 
exertion evaluators. 

The modularity of the VFE metamodel, reuse of 
evaluators and filters, including exertion evaluators, 
in defining var-models is the key feature of variable-
oriented programming (VOP). The same evaluator 
with different filters can be associated with many 
vars. The VOP model complements distributed 
service-oriented computing with other types of 
computing. In particular, evaluators can be 
associated with commands (executables), messages 

(objects), and services (exertions) as indicated by a, 
b, and c dependences in Figure 2. 

Var-models support multidisciplinary and 
multifidelity computing. Var compositions across 
multiple models define multidisciplinary problems; 
multiple evaluators per var and multiple 
differentiators per evaluator define their 
multifidelity. They are called amorphous models. 
For the same var-model an alternative set of 
evaluators/filters (another fidelity) can be selected at 
runtime to evaluate a new particular version 
("shape") of the model and quickly update the 
related computation in the right evolving or new 
direction. 

Let's consider the Rosen-Suzuki optimization 
problem to illustrate the basic VML, VOL, and EOL 
concepts, where: 
1. design vars: x1, x2, x3, x4 
2. response vars: f, g1, g2, g3,  
   and 
3. f = x1^2-5.0*x1+x2^2-5.0*x2+2.0*x3^2-

21.0*x3+x4^2+7.0*x4+50.0 
4. g1 = x1^2+x1+x2^2-x2+x3^2+x3+x4^2-x4-8.0  
5. g2 = x1^2-x1+2.0*x2^2+x3^2+2.0*x4^2-x4-10.0 
6. g3 = 2.0*x1^2+2.0*x1+x2^2-x2+x3^2-x4-5.0 
The goal is then to minimize f subject to  
 g1 <= 0, g2 <= 0, and g3 <= 0. 
 
In VML this case is expressed by the following 
mogram: 
int designVarCount = 4; 
int responseVarCount = 4; 
OptimizationModel model = optimizationModel("Rosen-
Suzuki Model", 
 designVars(vars(loop(designVarCount), 
  "x", 20.0, -100.0, 100.0)), 
 responseVars("f"),  
 responseVars(loop(responseVarCount-1),   
 "g"), 
 objectiveVars(var("fo", "f", Target.min)), 
 constraintVars( 
  var("g1c", "g1", Relation.lte, 0.0),  
  var("g2c", "g2", Relation.lte, 0.0),  
  var("g3c","g3", Relation.lte, 0.0))); 
configureAnalysisModel(model); 
 
Response vars f, g1, g2, g3 are configured by the 
function configureAnalysisModel defined in VOL, for 
example var f is configured as follows: 
var(model, "f", 
 evaluator("fe1", 
  "x1^2- 5.0*x1+x2^2-5.0*x2+2.0 
   *x3^2-21.0*x3+x4^2+7.0*x4+50.0"), 
 args("x1", "x2", "x3", "x4")); 
The model above can be provisioned directly in 
SORCER as a servicer provider and used by the 
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space exploration provider of the Exploration type 
that also uses the CONMIN optimization 
(CONMIN, n.d) service provider of the Optimization 
type.  

The requestor creates the exertion opti as 
follows: 
// Create an optimization data context 
Context exploreContext = exploreContext("Rosen-Suzuki 
context",  
 varsInfo(varInfo("x1", 1.0), 
  varInfo("x2", 1.0), 
  varInfo("x3", 1.0), 
  varInfo("x4", 1.0)), 
 strategy(new ConminStrategy( 
  new File(System.getProperty( 
   "conmin.strategy.file")))), 
 dispatcher( 
  sig(null, RosenSuzukiDispatcher.class,   
 Process.INTRA)), 
 model(sig("register",  
  OptimizationModeling.class, 
   "Rosen-Suzuki Model")), 
 optimizer(sig("register",  
  Optimization.class,  
   "Rosen-Suzuki Optimizer"))); 
 
// Create a task exertion 
Task opti= task("opti",  
 sig("explore", Exploration.class,  
  "Rosen-Suzuki Explorer"), 
 exploreContext); 
 
then executes the opti exertion: 
// Execute the exertion and log results 
logger.info(">>>>>>>>>>>>> results: "  
 + context(exert(opti)); 
 
with the exertion's output data context logged as 
follows: 
[java] Objective Function fo =  6.002607805900986 
[java] Design Variable Values  
[java] x1 = 2.5802964087086235E-4  
 x2 = 0.9995594642481355  
 x3 = 2.000313835134211  
 x4 = -0.9986692050113675  
[java] Constraint Values  
[java] g1c = -0.002603585246998996  
 g2c =-1.0074147118087602  
 g3c = 4.948009193483927E-7  
[java] ITERATIONS  
[java] Number of Objective Evaluations = 88 
[java] Number of Constraint Evaluations = 88 
[java] Number of Objective  
 Gradient Evaluations = 29 
[java] Number of Constraint Gradient 
 Evaluations = 29 

The exploreContext defines initialization of 
design vars (varsInfo), the optimization strategy, and 
the exploration dispatcher with two required 
services—two signatures for: optimizer and model. 
The context then is used to define the exertion task 
opti with the signature for exploration service named 
Rosen-Suzuki Explorer of the Exploration type. For 
simplicity, signatures above do not specify QoS for 
the specified providers. To illustrate the provider 
QoS concept (Rubach and Sobolewski, 2009), for 
example, the optimizer's signature can be expressed 
as follows: 
 sig("register", Optimization.class, qosCtx)) 
where the qosCtx context may be defined as follows: 
QosContext qosCtx = qos( 
 serviceProvider(entry( 
  "Name","Rosen-Suzuki Optimizer"), 
  libs(entry("Name","Conmin"), 
   entry("Class", 
    NativeLibrarySupport.class),    
 entry("FileName",  
    "conmin.so"))), 
 objectPlatform(entry("Name","Java"), 
  entry("Class", J2SESupport.class), 
  entry("Version", "1.5.*")), 
 commandPlatform( 
  processor(entry("Available", "2"),    
 entry("Architecture", "x86")), 
  memory(entry("Capacity", "4G"), 
   entry("Available", "2G")), 
  disk(entry("Capacity", "20G"), 
   entry("Available", "4G"))), 
 sla( 
  entry("cost", 200),  
  entry("time", 5000), 
  entry("CPU", range(0.0, 0.9)),  
  entry("Memory", range(0.2, 0.5)), 
  entry("ProcAvail_CPU_Util", range(1.5,   
 2.0), 
  metric("ProcAvail_CPU_Util", 
   impl("result 
    = Double.parseDouble(proc_avail)  
     * cpu_util",  
    args( 
     var("proc_avail", ...)))), 
     var("cpu_util", )))))))), 
 authorization( 
  entry("estimatedDuration", 30000l), 
  entry("priority", range(5,10)), 
  execDate("2011-01-10 00:00:00", 
   "2011-01-11 12:00:00"), 
  project( 
   entry("name","RS"),  
   entry("manager","Smith"), 
   entry("description",  
    "RS optimization")), 
  organization( 
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   entry("name", "TTU"), 
   entry("department", "CS"), 
   entry("description", 
    "SORCER Testbed")))); 

The qosCtx context specifies for the optimizer 
required QoS: for the provider by operator 
serviceProvider, for the object platform by operator 
objectPlatform, for the command platform by 
operator commandPlatform, expected SLA by 
operator sla and authorization by authorization for the 
service requestor. 

4 SORCER OPERATING SYSTEM 
AND SERVICE CLOUDS 

SOS allows execution of a service-oriented program 
and by itself is the service-oriented system. The 
overlay network of the service providers defining the 
functionality of SOS is called the sos-cloud (M layer 
in Figure 3) and the overlay network of application 
providers is called the app-cloud—metaprocessor 
(C4 layer in Fgure 3). Both the sos-cloud and app-
cloud constitute the service cloud. The 
metainstruction set of the SORCER metaprocessor 
consists of all operations offered by all service 
providers in the app-cloud. Thus, an exertion is 
composed of metainstructions with its own control 
strategy per service composition and data context 
representing the shared data for the underlying 
federation. Service signatures (instances of Signature 
type) returned by sig operators specify operations of 
collaboration participants in the app-cloud. Each 
signature is defined primarily by an interface type, 
operation in that interface, and by a QoS context.  

As explained in Section 2, four types of 
signatures are distinguished. A PROCESS signature—
of which there is only one allowed per exertion—
defines the dynamic late binding to a provider that 
implements the signature’s interface. The data 
context describes the data that tasks and jobs operate 
on and create. SOS allows for an exertion to create 
and manage a service collaboration and 
transparently coordinate the execution of all 
exertion's nested signatures within the assembled 
federation. These exertion-based computing 
concepts are defined differently in traditional 
grid/cloud computing where a job is just an 
executing process for a submitted executable code—
the executable becomes the single service itself that 
can be parallelized on multiple processors, if needed. 
Here, a job is the federation of collaborating 
executable codes (command providers) and related 

other providers that is formed by SOS for a single 
exertion as specified by its all nested signatures. 

An exertion object of the Exertion type is 
returned by either task or job operators of EOL. 
Then, the exertion can be actualized by the exertion 
shell, by invoking the exert operation on the shell as 
follows: 

ExertionShell#exert(Exertion ,Transaction) 
 :Exertion, 

where a parameter of the Transaction type is required 
when a transactional semantics is needed for 
required participating service providers within the 
collaboration defined by the exertion. Thus, EO 
programming allows us to execute an exertion and 
invoke exertion’s signatures on collaborating service 
providers indirectly, but where does the service-to-
service communication come into play? How do 
these services communicate with one another if they 
are all different? Top-level communication between 
services, or the sending of service requests, is done 
through the use of the generic Servicer interface and 
the operation service that SORCER providers are 
required to implement: 

Servicer#service(Exertion, 
 Transaction):Exertion. 

This top-level service operation takes an exertion 
object as an argument and gives back an exertion 
object as the return value. 

So why are exertion objects used rather than 
directly calling on a provider's method and passing 
data contexts? There are two basic answers to this. 
First, passing exertion objects helps to aid with the 
network-centric messaging. A service requestor can 
send an exertion object implicitly out onto the 
network—SorcerShell#exert(Exertion)—and any 
service provider can pick it up. The receiving 
provider can then look at the signature's interface 
and operation requested within the exertion object, 
and if it doesn't implement the desired interface and 
provide the desired method, it can continue 
forwarding it to another service provider who can 
service it. Second, passing exertion objects helps 
with fault detection and recovery. Each exertion 
object has its own completion state associated with it 
to specify if it has yet to run, has already completed, 
or has failed. Since full exertion objects are both 
passed and returned, the user can view the failed 
exertion to see what method was being called as well 
as what was used in the data context input that may 
have caused the problem. Since exertion objects 
provide all the information needed to execute the 
exertion including its control strategy, the user 
would be able to pause a job between component 

CLOSER 2011 - International Conference on Cloud Computing and Services Science

IS-20



 

exertions, analyze it and make needed updates. To 
figure out where to resume an exertion, the 
executing provider would simply have to look at the 
exertion’s completion states and resume the first one 
that wasn't completed yet. In other words, EO 
programming allows the user, not programmer to 
update the metaprogram on-the-fly, what practically 
translates into creating new interactive collaborative 
applications at runtime. 

Applying the inversion principle, SOS executes 
the exertion’s collaboration with dynamically found, 
if present, or provisioned on-demand service 
providers. The exertion caller has no direct 
dependency to service provider since the exertion 
uses only service types they implement. 

Despite the fact that any Servicer can accept any 
exertion, SOS services have well defined roles in the 
S2S platform (Sobolewski, 2010b) (see Figure 3): 
a) Taskers–accept exertion tasks; they are used to 

create application services by dependency 
injection (service assembly from service beans) 
or by inheritance (subclassing ServiceTasker and 
implementing required service interfaces); 

b) Jobbers–manage service collaboration for PUSH 
service access; 

c) Spacers–manage service collaboration for PULL 
service access using space-based computing; 

d) Contexters–provide data contexts for APPEND 
signatures; 

e) FileStorers–provide access to federated file 
system providers; 

f) Catalogers–Servicer registries, provide 
management for QoS-based federations; 

g) SlaMonitors–provide monitoring of SLAs; 
h) Provisionersvprovide on-demand provisioning; 
i) Persisters–persist data contexts, tasks, and jobs to 

be reused for interactive EO programming; 
j) Relayers–gateway providers; transform exertions 

to native representation, for example integration 
with Web services and JXTA; 

k) Authenticators, Authorizers, Policers, KeyStorers 
–provide support for service security; 

l) Auditors, Reporters, Loggers–support for 
accountability, reporting, and logging 

m) Griders, Callers, Methoders–support for a 
conventional compute grid (allocating 
executables codes on the network); 

n) Notifiers–use third party services for collecting 
provider notifications for time consuming 
programs and disconnected requestors. 

Both sos-providers and app-providers do not have 
mutual associations prior to the execution of an 
exertion; they come together dynamically (federate) 
for all nested tasks and jobs in the exertion. 

DS servicers within the app-cloud—taskers—
execute task exertions. Rendezvous peers (jobbers, 
spacers, and catalogers) manage service 
collaborations. Providers of the Tasker, Jobber, 
Spacer, and Cataloger type are basic SOS exertion 
management providers. In the view of the P2P 
architecture (Sobolewski, 2008b) defined by the 
Servicer interface, a job can be sent to any servicer. A 
peer that is not a Jobber or Spacer type is responsible 
for forwarding the job to one of the available 
rendezvous peers in the SORCER environment and 
returning results to the requestor. Thus implicitly, 
any peer can handle any exertion type. Once the 
exertion execution is complete, the federation 
dissolves and the providers in the federation disperse 
to seek other exertions to join. 

5 CLOUD PROVISIONING 

The SOS manages service collaborations with 
dynamically found, if present, or provisioned on-
demand service providers. The exertion caller has no 
direct dependency to service providers since the 
exertion uses only interface types they implement. 
The SOS shell offers requestors the ability to 
dynamically invoke SOS services in the sos-cloud 
and then required collaborating providers in the app-
cloud selected by SOS provisioning. Selected QoS 
attributes or QoS context in signatures are optional. 
However, if used, the required command platform 
(V1 in Figure 2), object platform (V2 in Figure 2), 
and provider (V2 in Figure 2), can be provisioned if 
no service provider is available in the app-cloud. 

Without an efficient resource management the 
assignment of providers to the requestor's signatures 
cannot be optimized and cannot offer high reliability 
without relevant SLA guarantees. A SLA-based 
SERViceable Metacomputing Environment 
(SERVME) (Rubach and Sobolewski, 2009) is 
capable of matching providers based on QoS 
requirements and performing autonomic 
provisioning and deprovisioning of providers 
according to dynamic requestor needs. In SERVME 
an exertion signature includes a QoS context with 
SLA requirements as illustrated in Section 4. 
SERVME is a generic resource management 
framework in terms of common QoS/SLA data 
structures and extensible communication interfaces 
which hide all implementation details. 

Along with the QoS/SLA object model 
SERVME defines basic components and 
communication interfaces as depicted in the UML 
component diagram illustrated in Figure 5. We 
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distinguish two forms of autonomic provisioning: 
monitored and on-demand. In monitored 
provisioning the Rio Provisioner (Rio Project, n.d.) 
deploys a requested collection of providers, then 
monitors them for presence and makes sure that the 
required number of providers is always on the 
network as defined by the collection’s deployment 
descriptor. On-demand provisioning refers to a type 
of provisioning (On-demand Provisioner) where the 
actual provider is presented to the requestor, once an 
SLA subscription to the requested service is 
successfully processed. In both cases, if services 
become unavailable, or fail to meet processing 
requirements, the recovery of those service providers 
to available compute resources is enabled by the Rio 
provisioning mechanisms.  

The basic SERVME components are defined as 
follows:  
• QosProviderAccessor is a component used by the 

service requestor that is responsible for processing 
the exertion request containing QosContext in its 
signature. If the exertion type is Task then 
QosCatalog is used, otherwise a relevant 
rendezvous peer: Jobber, Spacer is used. 

• QosCatalog is an independent service that acts as 
a QoS-based Lookup Service. The QosCatalog 
uses the functional requirements as well as related 
non-functional QoS requirements to find a service 
provider from currently available in the network. 
If a matching provider does not exist, the 
QosCatalog may provision the needed one. 

• SlaDispatcher is a component built into each 
service provider. It performs two roles. On one 

hand, it is responsible for retrieving the actual 
QoS parameter values from the operating system 
in which it is running, and on the other hand, it 
exposes the interface used by QosCatalog to 
negotiate, sign and manage the SLA with its 
provider. 

• SlaPrioritizer is a component that allows 
controlling the prioritization of the execution of 
exertions according to the organizational 
requirements of SlaContext. 

• QosMonitor UI provides an embedded GUI that 
allows the monitoring of provider’s QoS 
parameters at runtime.  

• SlaMonitor is an independent service that acts as a 
registry for negotiated SLA contracts and exposes 
the GUI for administrators to allow them to 
monitor, update or cancel active SLAs. 

• On-demandProvisioner enables on-demand 
provisioning of services in cooperation with the 
Rio Provisioner ("Rio Project", n.d.) The 
QosCatalog uses it when no matching service 
provider can be found that meets requestor's QoS 
requirements.  

Two forms of provisioning are considered: 
monitored and on-demand. In monitored 
provisioning the provisioner deploys a requested 
collection of providers, then monitors them for 
presence and in the case of any failure in the 
deployed collection, the provisioner makes sure that 
the collection is always on the network as defined by 
the collection's deployment descriptor. On-demand 
provisioning refers to a type of provisioning when 
the   actual   provider  is  presented  to  the requestor, 

 
Figure 5: SERVME resource management architecture. 
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once a subscription to the requested service is 
successfully processed. In both cases, if services 
become unavailable, or fail to meet processing 
requirements, the recovery of those service providers 
to available compute resources is enabled by Rio 
provisioning mechanisms. 

As described in Section 4, the service requestor 
submits the exertion with QoS contexts into the 
network by invoking evaluate(Exertion) in EOL. If 
the exertion is of Task type, then 
QosProviderAccessor via QosCalatog finds in 
runtime a matching service provider with a 
corresponding SLA.  

If the SLA can be directly provided then the 
contracting provider approached by the QosCalatog 
returns it in the form of a SlaContext, otherwise a 
negotiation can take place for the agreeable 
SlaContext between the requestor and provider. The 
provider's SlaDispatcher drives this negotiation in 
cooperation with SlaPrioritizer and the exertion's 
requestor. 

If the task contains multiple signatures then the 
provider is responsible for contracting SLAs for all 
other signatures of the task before the SLA for its 
PROCESS signature is guaranteed. 

However, if the submitted exertion is of Job 
type, then QosProviderAccessor via QosCalatog 
finds at runtime a matching rendezvous provider 
with a guaranteed SLA. Before the guaranteed SLA 
is returned, the rendezvous provider recursively 
acquires SLAs for all component exertions as 
described above depending on the type (Task or Job) 
of component exertion. 

6 CONCLUSIONS 

Cloud computing it is not just computing on a 
collection of virtualized platforms. A service-
oriented system is not just a collection of distributed 
objects—it is the unreliable network of service 
providers that may come and go on virtualized 
platforms. SORCER introduces the new 
metacomputing abstractions for evaluation, 
modeling, metaprogramming, metacomputation, 
programming, and computation (Figure 2). EO 
programming introduces the new abstractions of 
service providers and exertions for 
metaprogramming instead of objects and messages 
in object-oriented programming. Exertions 
encapsulate service data, signatures with QoS, and a 
control strategy interpreted by the exertion shell. 
The exertions are service commands that define 

reliable network collaborations in unreliable 
networks.  

Applying the inversion principle, SOS looks up 
service providers by implemented interface types 
with optional QoS attributes. SOS utilizes Jini-based 
service management that provides for dynamic 
services, mobile code shared over the network, and 
network security. Federations are aggregated from 
independent service-providers in the service cloud 
that do not require heavyweight containers like 
application servers. SOS defines the coherent 
framework between three SORCER architectural 
layers: programming, management, and cloud 
processor. 

The SORCER platform uses a dynamic service 
discovery mechanism allowing new services to enter 
the network and disabled services to leave the 
network gracefully without need for reconfiguration. 
This allows the exertion federation to be distributed 
without sacrificing the robustness of the service-
oriented process. This architecture also improves the 
utilization of the network resources by distributing 
the execution load over multiple nodes of the 
network. The exertion's federation shows resilience 
to service failures on the network as it can search for 
alternate services and maintain continuity of 
operations even during periods when there is no 
service available. 

The presented approach to the autonomic 
provisioning framework with QoS in exertions and 
the negotiation for the acceptable SLA addresses the 
challenges of spontaneous federations and allows for 
better resource allocation. Also, SERVME provides 
for better hardware utilization due to Rio monitored 
provisioning and SORCER on-demand provisioning. 
The SOS on-demand provisioning reduces the 
number of compute resources to those presently 
required for collaborations defined by corresponding 
exertions. Once a service is provisioned, the SOS 
provisioners ensure that services are maintained to 
the expected QoS. Provisioning thus refers to 
bootstrapping of the service provider, and 
monitoring to the ongoing service responsibility. In 
the case of any provider's failure the service provider 
is re-provisioned in the network with the same 
required QoS. When diverse and specialized 
hardware is used, SERVME provides a means to 
manage the prioritization of tasks according to the 
organization’s strategy that defines "who is 
computing what and where". 

SORCER defines clearly its separate meta-
computing architectural layers: metamogramming, 
management, and cloud processor layers integrated 
via SOS. That introduces simplicity to SORCER 
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mogramming with flexible enterprise 
interoperability achieved via three neutralities 
(protocol, implementation, and location 
(Sobolewski, 2009)) and architectural means (Figure 
1, 2, 3, and 4), not by neutral data exchange formats, 
e.g., XML. Neutral data exchange formats when 
overused introduce unintended complexity and 
degraded performance.  

The service-oriented cloud computing 
philosophy described in this paper implies that 
separating explicitly programming from 
metaprogramming with corresponding platforms and 
metaplatforms gives us the understanding of what is 
and is not important for building large-scale adaptive 
and dynamic enterprise systems. Otherwise, 
reducing programming to the level of middleware 
programming only and within the command/object 
platform, introduces intolerable complexity for 
building such distributed systems.  

SORCER with its hierarchical mogramming 
model has been successfully deployed and tested in 
multiple concurrent engineering and large-scale 
distributed applications (Kolonay et al., 2007; Goel, 
et al., 2008; Xu, et al., 2009). 
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