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I. Abstract 

A computational framework that supports dynamic fidelity for aeroelastic analysis and optimization is presented. 
The current research represents some of the recent developments in the Service Oriented Computing EnviRonment

(SORCER)[1-6]. From an engineering perspective SORCER is a programming and computing environment that enables
one to perform large scale system level engineering analysis and design space exploration that may be done on a geo-
graphically distributed heterogeneous computing environment. From a computer science view SORCER is a federated
service-to-service (S2S) meta-computing environment that treats service providers as network peers with well-defined
semantics of a service-object oriented architecture (SOOA). Here we present the evolution of SORCER from an Exertion-
Oriented Programming paradigm to a Variable Oriented paradigm and its ability to enable dynamic fidelity of engineering
responses and their respective sensitivities.   In Exertion-Oriented Programming the SORCER framework supports the
development of an engineering analysis or design process by enabling the developer to easily combine services on the net-
work to create a process (Exertion) that performs multidisciplinary analysis or design of an engineering system. Hence,
the application developer constructs the Exertions (Tasks and Jobs) and their relationships. In Exertion-Oriented Program-
ming the focus is on engineering applications or services and the combination of these services to produce an analysis or
result. Variable Oriented (VO) Programming focuses on a specific engineering quantity and views its calculation as a
function or a function of functions as opposed to an engineering application or service. This effort describes the develop-
ment and capability of the VO programming along with a demonstration of the dynamic fidelity by performing aeroelastic
analysis with six different fidelities of induced drag. Euler based calculations with a Trefftz-plane, linear panel methods
with a Trefftz-plane, standard one-point approximations with Euler and panel methods, and modified one-point approxi-
mations with Euler and panel methods. The fidelity can be selected dynamically by the analysis or optimization algorithm
based on either   accuracy or efficiency requirements.

II. Background

Over the past thirty years the two primary paradigms that have emerged to perform Multidisciplinary Analysis and
Design (MAD) are “Monolithic Approach (MA)” and “Best in Class Approach (BCA)” systems. The monolithic
approach consists of a single application, which contains all the necessary functionality or tools to model, analyze, and
optimize a given component or an entire configuration. MA systems are usually easy to use, administer, and are robust but
tend to be somewhat rigid and do not contain the latest tools or technology for all disciplines. BCA typically uses a script-
ing language to “glue” together several independent applications that provide the “best” functionality for a given domain.
The BCA tends to give more flexibility but at the cost of robustness in the overall system. In recent years companies and
organizations have been favoring BCA systems such as ModelCenter®[7], iSight[8], Execution Engine(formerly
FIPER)[9], VisualDoc[10], OpenMDAO[11], and SORCER. 

Companies and institutions are often organized by specialized areas for a given project or product. For example, in
the aerospace industry within a project there are the aerodynamics group, controls group, structures group, and the propul-
sion group. These groups or Centers of Excellence (COE) are often physically separated and the product development
process specified for inter-organization communication is “throwing things over the wall”. Historically this was not a
problemsince the designs kept the disciplines orthogonal. That is, the mutual influence between aerodynamics and struc-
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tures was limited and occurred primarily through loads. With this in mind there was no need and very little to be
gained by integrating these two domains. With product performance requirements becoming more stringent and the
need for robust, optimum and cost effective designs, organizations are becoming challenged to produce satisfactory
designs. That is, in order to produce products that meet the new requirements, it is no longer proper to consider the
domains orthogonal. The product needs to be developed from the system level, not at the individual component level
followed by the assembly of these components. In addition, more detail is being required within a given domain in
order to fully understand the product or predict its behavior. This being recognized by organizations, new processes
no longer accept the “over the wall” technique for inter-organizational communication. The processes now requires
that the organizations be integrated and collaborate extensively. Concurrently, development increasingly takes place
at spatially distributed locations, with vendors and revenue sharing partners involved. Again, the process does not
permit “over the wall” communications to these team members. Now, all participants in the design process need con-
sistent real-time access to all current product information and applications adding additional strains on the integration
requirements. The new organizational environments along with the demands for competitive products are producing
two conflicting requirements: the need for very specialized domain specific expertise/applications and the need for
the generalist/multidisciplinary design and analysis that considers the entire design of the product at the system level.
One of the key factors in the success of future product development will be the ability to integrate the tools, data, and
information from different domains and organizations during the development process[13].

SORCER is being  developed with the above organizational structure, design process and resulting challenges in
mind. Specifically, it is addressing the ability to integrate the tools, data, and information from different domains and
organizations during the development process. It is a service-oriented product development environment providing
an open flexible design environment, which allows universal availability and incorporation of existing data, tools/
methods, processes and hardware as services distributed on a network and heeds the eight network computing falla-
cies identified by Deutsch[14]. It provides a common way to model an analysis and design process in conjunction
with product data. It is a network-based distributed framework which supports collaboration among geographically
distributed engineering and business partners. SORCER federates a series of network services (which may be distrib-
uted) in real time and orchestrates the communication between the services based on a user defined control strategy
algorithm to execute a desired process and perform the required calculations, thus enabling one to perform large scale
system level engineering analysis and design space exploration in a distributed heterogeneous computing environ-
ment. Large scale is defined as the integration of tens, hundreds, and possibly thousands of product development soft-
ware tools and their data distributed across a network. This network may span organizational boundaries, company
boundaries, or national boundaries. The product development tools addressed are primarily (but not limited to) engi-
neering tools. These include computer aided design (CAD), computer aided manufacture (CAM) and computer aided
engineering (CAE). The computing hardware environment is expected to range from laptops to high performance
computing resources that have 10Ks of compute nodes. Run times for the software tools will be from seconds to
weeks with input and output data in kilobytes to terabytes represented in various formats. In addition to the ability to
perform multidisciplinary analysis other significant requirements for the computing environment are: ability to easily
accommodate multiple fidelities/scales not only of the responses but also the response sensitivities with respect to
independent variables, ability to perform non-deterministic analyses, and the ability to account for uncertainty quan-
tification within the analyses and design space exploration. SORCER development supports these functional require-
ments. 

 

III. Service-object Oriented Platform: SORCER

The Service ORiented Computing EnviRonment (SORCER) is a federated service-to-service (S2S) meta com-
puting environment that treats service providers as network peers with well-defined semantics of a federated service-
object oriented architecture that is based on the federated method invocation (FMI) [15]. It incorporates Jini seman-
tics of services[16] in the network and the Jini programming model [17]with explicit leases, distributed events, trans-
actions, and discovery/join protocols. While Jini focuses on service management in a networked environment,
SORCER is focused on EO programming and the execution environment for exertions (see in Fig. 1). The SORCER
programming environment creates the unifying representation for three concrete programming syntaxes: the
SORCER Java API described in reference [18], and the graphical form in reference [19], and the functional composi-
tion form presented in this paper. The notation of functional composition has been developed for three related lan-
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guages: Exertion-Oriented Language (EOL), Var-Oriented Language (VOL), and Var-Oriented Modeling Language
(VML) that are  complemented with the Java object-oriented syntax. In the following two sections we will describe
the basic syntax of these three languages. EOL is fully described by Sobolewski in reference [23].

Figure 1. The SORCER layered architecture, where C0C5 (carrier)—the metaprocessor with its service 
cloud at C4 and C3, platform cloud at C2 and C1, M (management)—SORCER operating system, D 

(domain)—service requestors; where V1V4 stands virtualization of the corresponding layer

IV. Expressing a Process of Federating Processes: Exertion Oriented Programming

In language engineering, the art of creating languages, a metamodel is a model to specify a language. An exer-
tion is a metamodel to model a connectionist process expression that models a behavioral phenomena as the emergent
processes of interconnected networks of service providers. The central exertion principle is that a process can be
described by the interconnected federation of simple and often uniform end efficient service providers that compete
with one another for activation in the process.

Exertion-oriented programming (EOP) is a service-oriented programming paradigm using service providers and
service commands. A service command-exertion-is interpreted by the SORCER Operating System (SOS) and repre-
sented by the data structure that consist of a data context, multiple service signatures, and a control context together
with their interactions, to design distributed applications as service collaborations. In EOP a service signature deter-
mines a service invocation on a provider. The signature usually includes the service type, operation of the service
type, and expected quality of service (QoS). While exertion's signatures identify (match) the required collaborating
providers (federation), the control context defines for the SOS how and when the signature operations are applied to
the data context. Note that the service type is the classifier of service providers with respect to its behavior (inter-
face), but the signature is the classifier of service providers with respect to the invocation (operation in the interface)
and service deployment defined by its QoS.

An exertion is an expression of a distributed process that specifies for the SOS how a service collaboration is
actualized by a collection of providers playing specific roles used in a specific way[25]. The collaboration specifies a
collection of cooperating providers, the exertion federation, identified by the exertion's signatures. Exertions encap-
sulate explicitly data, operations, and a control strategy for the collaboration. The signatures are dynamically bound
to corresponding service providers, members of the exerted collaboration.

The exerted members in the federation collaborate transparently according to their control strategy managed by
the SOS. The SOS invocation model is based on the Triple Command Pattern [26] that defines the federated method
invocation (FMI).
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A task exertion (or simply a task) is an elementary service command executed by a single service provider or its
small-scale federation. The task federation is managed by the receiving provider for the same service context used by
all providers in the federation. A job exertion is a composite service command defined hierarchically in terms of tasks
and other jobs, including control flow exertions [27]. A job exertion is a kind of command script, that is similar con-
ceptually to a UNIX script, but with service commands, to execute a large-scale federation. The job federation is
managed by one of two SOS rendezvous providers, (Jobber or Spacer) but the task federation is managed by the
receiving provider as previously stated. Either a task or job is a service-oriented program that is dynamically bound
by the SOS to all required and currently available or provisioned on-demand service providers.

The exertion's data defined as the data context describes the information that tasks and jobs operate on. A data
context, or simply a context, is a data structure that describes a service provider’s ontology along with related data
[27]. Conceptually a data context is similar in structure to a file system, where paths refer to objects instead of to
files. A provider's ontology (paths) is controlled by the provider vocabulary that describes the data structures in a pro-
vider's namespace within a specified service domain of interest. A requestor submitting an exertion to a provider has
to comply with that ontology as it specifies how the context data is interpreted and used by the provider.

The exertion collaboration defines its interaction. The exertion interaction specifies how invocations of signature
operations are sent between service providers in a collaboration to perform a specific behavior. The interaction is
defined by control contexts of all component exertions. From the computing platform point of view, exertions are
entities considered at the programming level, interactions at the operating system level, and federations at the proces-
sor level. Thus, exertions are programs that define distributed collaborations on the service processor. The SOS man-
ages these collaborations as interactions on its virtual service processor, the dynamically formed service federations
(see Fig. 1).

In SORCER the provider is responsible for deploying the service on the network, publishing its proxy to one or
more registries, and allowing requestors to access its proxy. Providers advertise their availability on the network; reg-
istries intercept these announcements and cache proxy objects to the provider services. The SOS looks up proxies by
sending queries to registries and making selections from the available service types. Queries generally contain search
criteria related to the type and quality of service. Registries facilitate searching by storing proxy objects of services
and making them available to requestors. Providers use discovery/join protocols to publish services on the network;
the SOS uses discovery/join protocols to obtain service proxies on the network. While the exertion defines the
orchestration of its service federation, the SOS implements the service choreography in the federation defined by its
FMI.

Three forms of EOP have been developed: Exertion-oriented Java API, interactive graphical, and textual pro-
gramming. Exertion-oriented Java API is presented in [27]. Graphical interactive exertion-oriented programming is
presented in [19]. Details regarding textual EOP and two examples of simple EO programs can be found in [23] and
[28].

V. Expressing a Process of Converging Processes: Var-oriented Programming    and Var-
oriented Modeling

In every computing process variables represent data elements and the number of variables increases with the
increased complexity of the problems being solved. The value of a computing variable is not necessarily part of an
equation or formula as in mathematics. In computing, a variable may be employed in a repetitive process: assigned a
value in one place, then used elsewhere, then reassigned a new value and used again in the same way. Handling large
sets of interconnected variables for transdisciplinary computing requires adequate programming methodologies.

Var-Oriented Programming (VOP) is a programming paradigm using service variables called “Vars”, data struc-
tures defined by the triplet <value, evaluator, filter>, together with a Var composition of evaluator's dependent vari-
ables to design var-oriented multi-fidelity compositions. It is based on dataflow principles that changing the value of
a var should automatically force recalculation of the values of vars, which depend on its value. That is demand driven
calculations. VOP promotes values defined by evaluators/filters to become the main concept behind any processing.

Var-Oriented Modeling (VOM) is a modeling paradigm using vars in a specific way to define heterogeneous
multidisciplinary var-oriented models, in particular large-scale multidisciplinary analysis models including analysis
and optimization component models. The programming style of VOM is declarative; models describe the desired
results of the program, without explicitly listing commands or steps that need to be carried out to achieve the results.
VOM focuses on how vars connect, unlike imperative programming, which focuses on how evaluators calculate.
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VOM represents models as a series of interdependent var connections, with the evaluators/filters between the connec-
tions being of secondary importance.

Figure 2. The var structure: value/evaluator/filter. Vars are indicated in blue color. The basic var y1, 
z=y1(x1, x2, x3), depends on its argument vars and derivative vars.

The SORCER meta modeling architecture [28] is the unifying representation for three concrete programming
syntaxes: the SORCER Java API described in [27], the functional composition form[23],[28] and the graphical form
described in reference [19]. The functional composition notation has been used for the Var-Oriented Language
(VOL) and Var-oriented Modeling Language (VML) that are  complemented with the Java object-oriented syntax.

The fundamental principle of functional programming is that a computation can be realized by composing func-
tions. Functional programming languages consider functions to be data, avoid states, and mutable values in the eval-
uation process in contrast to the imperative programming style, which emphasizes changes in state values. Thus, one
can write a function that takes other functions as parameters, returning yet another function. Experience suggests that
functional programs are more robust and easier to test than imperative ones.

Not all operations are mathematical functions. In nonfunctional programming languages, “functions” are subrou-
tines that return values while in a mathematical sense a function is a unique mapping from input values to output val-
ues. In SORCER the special type of variable called var allows one to use functions, subroutines, or coroutines in the
same way. A value of var can be associated with a mathematical function, subroutine, coroutine, object, or any data.
The concept of var links the three languages VOL, VML, and EOL into a uniform service-oriented programming
model that combines federating services (EOP) with other type of process execution.

The semantics of a variable depends on the process expression formalism:
1. A variable in mathematics is a symbol that represents a quantity in a mathematical expression.
2. A variable in programming is a symbolic name associated with a value.
3. A variable in object-oriented programming is a set of object's attributes accessible via operations called get-

ters.
4. A var in service-oriented programming is a triplet <value, evaluator, filter>, where:

a) a value is a valid quantity in an expression; a value is invalid when the current evaluator is changed, its
arguments change, or is undefined;

b) an evaluator is a service with the var dependents that define the variable composition; and
c) a filter: is a getter operation.

Var-oriented programming is the programming paradigm that treats any computation as the triplet: value, filter
(pipeline of filters), and evaluator (VFE, see Fig. 2). Evaluators and filters can be executed locally or remotely,
sequentially or concurrently. An evaluator may use a differentiator to calculate the rates at which the var quantities
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change. Multiple associations of evaluator-filter can be used with the same var enabling a var to havemulti-fidelity.
The VFE paradigm emphasizes the usage of evaluators and filters to define the value of a var. The semantics of the
value, whether the var represents a mathematical function, subroutine, coroutine, or just data, depends on the evalua-
tor and filter currently used by the var. It is important to note that functions of functions can also be represented in the
VFE model. 

A service in VOL is the work performed by a variable's evaluator. Evaluators for a basic var, that depends on
other vars arguments, define:

1. var composition via the var arguments of evaluator (dependent vars)
2. multiple processing services (multi-fidelity)
3. multiple differentiation services (multi-fidelity)
4. evaluators can execute commands (executable codes), object-oriented services (method invocations), and

exertion-oriented services).
Thus, in the same process various forms of services (intra and interprocess) can be mixed within the same pro-

cess expression in VOL. Also, the fidelity of var values can change as it depends on a currently used evaluator. 
The variable evaluation strategy is defined as follows: the var value is returned if is valid, otherwise the current

evaluator determines the variable's raw value (not processed or subjected to analysis), and the current pipeline of fil-
ters returns the output value from the evaluator result and makes that value valid. Evaluator's raw value may depend
on other var arguments and those arguments in turn can depend on other argument vars and so on. This var depen-
dency chaining is called the var composition and provides the integration framework for all possible kinds of compu-
tations represented by various types of evaluators including exertions via exertion evaluators.

In general, it is perceived that the languages used for either modeling or programing are different. However, both
are complementary views of process expression and after transformation and/or compilation both need to be execut-
able. An initial model, for example an initial design of an aircraft engine, can be imprecise, not executable, at a high
level with informal semantics. However, its detailed model (detailed design) has to be precise, executable, and low
level with execution semantics. Differences between modeling and programming that traditionally seemed very
important are becoming less and less distinctive. For example models created with Executable UML[29] are precise
and executable.

Data contexts (objects implementing the Context interface) with specialized aggregations of vars are called var-
models. Three types of  models: response, parametric, and optimization have been developed[23]. These models are
expressed in VML using functional composition and/or the Java API for var-oriented modeling.

The modularity of the VFE framework, reuse of evaluators and filters, including exertion evaluators, in defining
var-models is the key feature of variable-oriented programming (VOP) and var-oriented modeling (VOM). The same
evaluator with different filters can be associated with many vars in the same var-model. VOM integrates var-oriented
modeling with other types of computing via various types of evaluators. In particular, evaluators in var-models can be
associated with commands (executables), messages (objects), and services (exertions).

Var-models support multidisciplinary and multi-fidelity computing. Var compositions across multiple models
define multidisciplinary problems; multiple evaluators per var and multiple differentiators per evaluator define their
multi-fidelity. These are called amorphous models. For the same var-model an alternative set of evaluators/filters
(another fidelity) can be selected at runtime to evaluate a new particular process (“shape”) of the model and quickly
update the related computation appropriately.

VI. Engineering Example: Induced Drag Design Optimization Model Definition, 
Configuration and Behavior in SORCER

When performing engineering analysis and design space exploration there is often the need to compute engineer-
ing quantities at different levels of fidelity. This may be due to different flight conditions or, depending on the search
algorithm, one may wish to use various types of surrogate models. Here, the definition of fidelity is associated with
the level of accuracy of a computed quantity. Higher fidelity implies greater accuracy but not necessarily greater
computational cost. This example will focus on various levels of fidelity for computing induced drag including
aeroelastic effects. 
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First, consider an optimization problem where the objective is to minimize the induced drag( ) of a system by

selecting a trimmed angle of attack  along with the scheduling of various control surfaces . This can be stated in

the following form:

( 1)

( 2)

Where  and the   represent a vector of design variables ( ) and the equality constraint  enforces

the trimmed state (lift) for the vehicle. 
With the Munk[30] displacement theorem, one can calculate induced drag by using a Trefftz-plane located far

downstream from the lifting surface. Utilizing this the induced drag, , can be expressed solely in terms of the lift

per unit span( ) and the span wise coordinates  . 

( 3)

 The sensitivities of  can be obtained by differentiating Equation (3) with respect to the design variables . 

( 4)

For the current work the  are defined in  Figure 3, consisting of 20 trailing edge control surfaces ( )

and the free stream angle of attack ( ) of the wing. Since a full span model is considered there are an additional 20

trailing edge control surfaces on the left wing as well. These are shown in Figure 3   as 

Inspection of Equation (4) reveals that the calculation of    are required. For the present study  are

determined by finite difference making the sensitivities semi-analytic.
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Functionally we see that  and  which can be written as

 . ( 5)

This is the functional composition to be represented in SORCER. In addition, we would like to compute

 and  with various fidelities. As discussed previously a SORCER var consists of three compo-

nents; Value, Evaluators, and Filters. The purpose of this example is to take the engineering functional relationship
defined in Equation (5) and create a Model with multiple fidelities in SORCER. Currently SORCER has three types
of models; ResponseModel, ParametricModel, and OptimizationModel. Here the development of the Optimization-
Model will be demonstrated. This will require the definition of the independent design variables, response variables,
objective function, and constraints followed by the configuration of each variable with the appropriate Filters and
Evaluators. 

For the case depicted in Equation (5) there are a total of 21 design variables, 20 design variables associated with

 and one design variable associated with . The remaining control surface variables  will be

“linked” (a set relationship) to . The response variables consists of the 40 lift per unit span values,  ,

the induced drag, , and the total lift, . The different fidelities for the responses  and  along

with their respective sensitivities that are to be represented by the model can be found in Table 1. Table 1 indicates

that  has four different fidelities for its responses and sensitivities while  has six fidelities. 

The four fidelities used to represent  are; linear potential method (LPM), standard one point Taylor

Series Approximation using linear potential methods (SOA-LPM), Euler method (EM), and Standard One point Tay-
lor Series Approximation using the Euler method (SOA-EM). The sensitivities for the LMP and the EM are com-
puted by forward finite difference (FFD) and used to construct the SOA-LPM and SOA-EM respectively. The six

fidelities for  are; LPM, SOA-LPM, EM, SOA-EM along with a Modified One point Taylor Series

Approximation where instead of performing the Taylor Series approximation directly on  it employes the

linear approximation on  and substitutes this into Equation (3) and Equation (4). This results in maintaining

the nonlinear behavior of the function and it’s respective sensitivities. Details of the SOA and the MOA used can be
found in reference [32].

 

Figure 3. Goland Wing Aerodynamic Configuration
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 A.  Model Definition
There are two primary steps in constructing a model within the SORCER environment. These are model defini-

tion and model configuration. The model definition is essentially a skeleton or meta information about the model. To
define the optimization model describe in Equation (1) with its various fidelities defined in Table I the following syn-
tax is used. 

OptimizationModel omodel = optimizationModel(“Induced Drag Optimization Model”, 
designVars(vars(loop("i",1,20),"cs$i$", 0.2, -10.0, 10.0)), 
linkedVars(names(loop("i",21,40),"csl$i$")),
designVars(var("alpha", 5.0, -5.0, 10.0)),

responseVars(loop("i",1,40),"Lpus$i$",
realization( 

evaluation("Lpus$i$LinearPotentialExact", "LpusAstrosExacte",
differentiation(wrt(names(loop("k",1,20),"cs$k$"),"alpha","q"),

gradient("Lpus$i$AstrosExacteg1"))),     
evaluation("Lpus$i$LinearPotentialSOA","Lpus$i$AstrosSOAe", 

differentiation(wrt(names(loop("k",1,20),"cs$k$"),"alpha","q"),
gradient("Lpus$i$AstrosSOAeg1"))),

evaluation("Lpus$i$EulerExact", "LpusAvusExacte",
differentiation(wrt(names(loop("k",1,20),"cs$k$"),"alpha"), 

gradient("Lpus$i$AvusExacteg1"))),     
evaluation("Lpus$i$EulerSOA","Lpus$i$AvusSOAe", 

differentiation(wrt(names(loop("k",1,20),"cs$k$"),"alpha"),
gradient("Lpus$i$EulerSOAeg1"))),

responseVar("DI",
realization(

evaluation("LinearPotentialExact", "DIAstrosExacte",
differentiation(wrt(names(loop("i",1,20),"Lpus$i$"),"q"), 

gradient("DIAstrosExacteg1"))), 
evaluation("LinearPotentialSOA", "DIAstrosSOAe",

differentiation(wrt(names(loop("i",1,20),"Lpus$i$"),"q"),
 gradient("DIAstrosSOAeg1"))), 

evaluation("LinearPotentialMOA", "DIAstrosMOAe",
differentiation(wrt(names(loop("i",1,20),"Lpus$i$"),"q"), 

Table 1. Fidelities for , , , and 

Fidelity

Liner Potential Method (LPM) X FFD X FFD

Standard One Point Approximation with 
Linear Potential Method (SOA-LPM)

X Constant X Constant

Euler Method (EM) X FFD X FFD

Standard One Point Approximation with 
Euler Method (SOA-EM)

X Constant X Constant

Modified One Point Approximation with 
Linear Potential Method (MOA-LPM)

X Semi-Analytic

Modified One Point Approximation with 
Euler Method (MOA-EM)

X Semi-Analytic

Lpusi xi
Lpusi DI xi

DI

Lpusi xi
Lpusi DI xi

DI
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gradient("DIAstrosMOAeg1"))),
evaluation("EulerExact", "DIAvusExacte",

differentiation(wrt(names(loop("i",1,20),"Lpus$i$"),"q"), 
gradient("DIAvusExacteg1"))), 

evaluation("EulerSOA", "DIAvusSOAe",
differentiation(wrt(names(loop("i",1,20),"Lpus$i$"),"q"), 

gradient("DIAvusSOAeg1"))), 
evaluation("EulerMOA", "DIAvusMOAe",

differentiation(wrt(names(loop("i",1,20),"Lpus$i$"),"q"), 
gradient("DIAvusMOAeg1"))),

responseVar("LT",
realization(

evaluation("LinearPotentialExact", "LTAstrosExacte", 
differentiation(wrt(names(loop("i",1,20),"Lpus$i$")), 

gradient("LTAstrosExacteg1"))), 
evaluation("LinearPotentialSOA", "LTAstrosSOAe", 

differentiation(wrt(names(loop("i",1,20),"Lpus$i$")), 
gradient("LTAstrosSOAeg1"))), 

evaluation("EulerExact", "LTAvusExacte", 
differentiation(wrt(names(loop("i",1,20),"Lpus$i$"), "q"), 

gradient("LTAvusExacteg1"))), 
evaluation("EulerSOA", "LTAvusSOAe", 

differentiation(wrt(names(loop("i",1,20),"Lpus$i$"), "q"), 
gradient("LTAvusSOAeg1"))) 

objectiveVars(var("DIo", "DI", Target.min )),
constraintVars(var("LTc", "LT", Relation.eq, 1000.0)))

This is a single statement with embedded statements. An OptimizationModel Object is created called
omodel, the name of the model is “Induced Drag Optimization Model”. This name is arbitrary and user
specified. The following describes the constructors;

designVars("cs",20) - Returns a list of 20 Variable objects with the type attribute set to “DESIGN”
and names “cs1”, “cs2”,... “cs20”. 

designVars("alpha") - Returns a single Variable object with type attribute of “DESIGN” and name
“alpha”

linkedVars("cs", 20,21) - Returns a list of 20 Variable objects with type attribute “DESIGN” and
kind attribute of “LINKED” with names “cs21”, “cs22”, ...”cs40”

responseVars(loop("i",1,40),"Lpus$i$",- Returns a list of 40 Variable objects with type attri-
bute of “RESPONSE” with names “Lpus1”, “lpus2”, ...”lpus40”. 

As can be seen each response Var contains multiple evaluation objects and each evaluation contains a single dif-
ferentiation object. In general the evaluation can contain multiple differentiation objects to allow multi-fidelity for
sensitivities as well. Each evaluation specifies a fidelity for each “Lpusi” response and its respective sensitivities.
The response variables for Induced Drag “DI” and total lift “LT” are defined in a similar fashion. 
10



Figure 4. Var, Filter, Evaluation Class Diagram

 A.  Model Configuration
The next step required is to configure the DesignVariables, LinkedVariables, and the ResposneVariables. 

a. configure the Design Variables - Each independent design variable consists of zero, one, or more Fil-
ters. For this case the independent design variables reside in three locations depending on the fidelity being

employed. For the LPM, which uses the ASTROS application to compute the , all the independent Vars are in

the ASTROS input file. For the EM, which uses the Air Vehicles Unstructured Solver (AVUS), The  variables

reside in an ascii text file(AVUS_Boundary_Condition.dat) and  resides in a separate ascii text file
(AVUS_Job.job). In order to have the ability to get and set the values in these files from anywhere on the network
(we have no idea where AVUS may run) we need to create Filter objects and place them into the Variables. Filters
take a larger entity and “filter” out a portion of that entity for either reading, writing or passing to another filter. Since
we are working with ascii text files a BasicFileFilter object will be used. Each BasicFileFilter
requires a Pattern object which is used to locate the desired quantity in the entity. Here our pattern is essentially
line, field, delimiter information. Other patterns such as regular expressions are available as well. As an example the
filters for the EM fidelity are developed.  Figure 5 is an excerpt from the AVUS_Boundary_condition.dat file and the
AVUS_Job.job file (the line numbers are not actually in the file. They are shown here to indicate the location in the
file the excerpt has been taken). 

Evaluator
delta: double
dependents: VarSet
description: ApplicationDescription
id: String
isInitialized: boolean
multiplicity: VarList
name: String
perturbation: double
perturbedValue: Object
properties: Properties
provider: EvaluationManagement
simulatedValue: Object
stepSize: double
type: EvaluatorType
value: Object
valueChange:: boolean

Realization
differentiations: List<Differentiation>
evaluations: List<Evaluation>
evaluatorNames: List<String>
filterNames: List<String>
selectedEvaluation: Evaluation
variableName: String 

Var
configFilename: String
differentiatorName: String
differentiators: Map<String, Differentiator>
evaluator: Evaluator
evaluators: List<Evaluator>
filter: Filter
filters: List<Filter>
innerName: String
innerVar: Var<T>
Persister: Persister

AnalysisModel

ServiceContext Evaluation
differentiation: Differentiation
evaluationName: String
evalutorName: String
filterName : String
gradientName : String
varName: String
wrt: Wrt

Differentiation
evaluatorName: String
gradients: List<Gradient>
wrtNames: List<String>

Observable Observer

ExpressionEvaluator

ModelContext

Optimization Model

VarList

VarInfo
allowable: Object 
constraintRelation: Relation
description: ApplicationDescription
differentiatorName:String
distribution: Distribution
evaluationName: String
evaluatorName: String
filterName: String
gradientName:String
gradientVarNames: List<String>
infoConstraintResponse: Object
innerVarInfo: VarInfo<?>
kind: Set<Type>
lowerBound: Double
lowerMoveLimit: Double
mathTypes: Set<MathType>
path: String
pattern: Pattern
realization: Realization
target: Target
type: Type
upperBound: Double
upperMoveLimit: Double
val: T
valueType: ValueType

Differentiator
serialVersionID: long
columnNames:List<String>
current: Var<?>
dataList: List<VarList>
rowNames: List<String>
x: int
y: int

Filter
count: int
logger: Logger
serialVersionUID: long
evaluator: Evaluator
filters: List<FilterManagement>
id: String
name: String
target: Object
valueChanged: boolean

Model Classes

Variable Classes
Mapping Classes

Selection 
Classes

Wrt
serialVersionUID: long

Gradient
serialVersionUID: long
evaluationName: String
wrt: Wrt

ArrayList<String>

Lpusi

csi


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187 Upper CS01
188 Transpiration
189 Boundary
190 Yes
191 TBC-Type  Rx  Ry  Rz  Thetax Thetay Thetaz
192 1 4.5 0.0 0.0 0.0 12.0 0.0
193 ##################################################################
194  32
195 Upper CS02
196 Transpiration
197 Boundary
198 Yes
199 TBC-Type  Rx  Ry  Rz  Thetax Thetay Thetaz
200 1 4.5 0.0 0.0 0.0 0.0 0.0
201 ###################################################################
202  33
203 Upper CS03
204 Transpiration
205 Boundary
206 Yes
207 TBC-Type  Rx  Ry  Rz  Thetax Thetay Thetaz
208 1 4.5 0.0 0.0 0.0 0.0 0.0
209 ##################################################################
210  34
211 Upper CS04
212 Transpiration
213 Boundary
214 Yes
215 TBC-Type  Rx  Ry  Rz  Thetax Thetay Thetaz
216 1 4.5 0.0 0.0 0.0 0.0 0.0
217 ##################################################################

Figure 5. Excerpt from AVUS_Boundary_Condition.dat

94 ******************************************************
95 UNITS (1=MKS, 2=CGS, 3=FOOT-SLUG-SEC, 4=INCH-SNAIL-SEC)
96   3
97 MACH NO.   ANGLE OF ATTACK   ANGLE OF SIDESLIP
98 0.85 5.14159 0.0
99 STATIC PRESSURE    STATIC TEMPERATURE
100   -1.             -1.
101 GAMMA    GAS CONSTANT    PRANDTL NUMBER    GRAVITY
102   -1.       -1.            -1.               0.
103 ******************************************************
104                INITIAL CONDITIONS

Figure 6. Excerpt from AVUS_Job.job file
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To configure the Var first a Pattern is created and is supplied to construct the Filter. Once the Filter is obtained it
can be assigned to a specific Var in the mode.

Below is the syntax for creating the Pattern objects for the filter for .

// create the patterns for the csi filters
Pattern cs1p= new BasicPattern("cs1", "File", "Double", 192, 6, " ");
Pattern cs2p = new BasicPattern("cs2", "File", "Double", 200, 6, " " );
Pattern cs3p = new BasicPattern("cs3", "File", "Double", 208, 6, " " );
Pattern cs4p = new BasicPattern("cs4", "File", "Double", 216, 6, " " );
.
.
.
Pattern alphap = new BasicPattern("alpha", "File", "Double", 98, 2, " ");

The arguments for the BasicPattern construction are the String patternName , String patternType, String data-
Type, int line, int field, String delimiter. For the above cases we see that cs1p identifies the value at line 192, field 6,
using a “space” delimiter between each field. Hence it references the Thetay value that currently holds a value = 12.0.
Twenty patterns need to be created for the cs1-cs20 and a final Pattern created for alpha. Once all of the Patterns are
created then the BasicFileFilters can be constructed for each item.

BasicFileFilter cs1bff = new BasicFileFilter(bcURL, cs1p);
BasicFileFilter cs2bff = new BasicFileFilter(bcURL, cs2p);
BasicFileFilter cs3bff = new BasicFileFilter(bcURL, cs3p);
BasicFileFilter cs4bff = new BasicFileFilter(bcURL, cs4p);
.
.
.
BasicFileFilter abff = new BasicFileFilter(alphaURL, alphap);

The arguments for the BasicFileFilter constructor used here (there are others) are a URL object and a Pattern

object. The URL objects are references to the respective files; AVUS_Boundary_Condition.dat for all the  and

AVUS_Job.job for  .

The final step is to add the BasicFileFilter objects to each of the design Variables. The below lines first extract
the design Variables from the ResponseModel and then adds the Filters to the Variables.

omodel.getDesignVariable(“cs1”).setFilter(cs1bff);
omodel.getDesignVariable(“cs2”).setFilter(cs2bff);
omodel.getDesignVariable(“cs3”).setFilter(cs3bff);
.
.
.
omodel.getDesignVariable(“alpha”).setFilter(abff);

This completes the configuration of the Design Variables. At this point the programmer can perform gets and
sets on these objects which will read or write values to the respective files. For example if  one wishes to set the value
for cs1=15.0 the following syntax could be used

Variable cs1Var = omodel.getDesignVariable(“cs1”);
cs1Var.setValue(15.0);
or all in one line
omodel.getDesignVariable(“cs1”).setValue(15.0)

This would cause the value in the file AVUS_Boundary_Condition.dat at line 192, field 6 to be changed to 15.0.
Another useful method available is to have a local copy of the file made (anywhere on the network) and update the
value in the local copy of the file.

cs1Var.setValueLocal(15.0);

cs1

csi


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b. configure the Linked Variables - Each linked variable consists of an Evaluator and one or more Fil-
ters. For this case the linked variables are the  and reside in the ascii text file

AVUS_Boundary_Condition.dat for the EM fidelity and the ASTROS input file for LPM. Patterns and BasicFileFil-

ters need to be constructed in the same fashion as those for the  design Variables. 

Pattern cs21p = new BasicPattern("cs21", "File", "Double", 512, 6, " " );
Pattern cs22p = new BasicPattern("cs22", "File", "Double", 520, 6, " " );
Pattern cs23p = new BasicPattern("cs23", "File", "Double", 528, 6, " " );
.
.
.
Pattern cs40p = new BasicPattern("cs40", "File", "Double", 664, 6, " " );

BasicFileFilter cs21bff = new BasicFileFilter(bcURL, cs21p);
BasicFileFilter cs22bff = new BasicFileFilter(bcURL, cs22p);
BasicFileFilter cs23bff = new BasicFileFilter(bcURL, cs23p);
.
.
.
BasicFileFilter cs40bff = new BasicFileFilter(bcURL, cs40p);

Now there is a difference when configuring a linked Variable versus a design Variable. Instead of setting the fil-
ter on the Variable we set the Persister (with the Filter) with the following syntax.

omodel.getLinkedVariable(“cs21”).setPersister(cs21bff);
omodel.getLinkedVariable(“cs22”).setFilter(cs22bff);
omodel.getLinkedVariable(“cs23”).setFilter(cs23bff);

The last task that needs to be performed is the development of the functional relationship between the linked
Variable and the design Variable. Here is the simple functional relationships that we wish to enforce

 ( 6)

It should be noted that any arbitrary functional relationship can be used. To create the functional relationship we
have to create Evaluators. Evaluator Objects essentially perform computations given an set of inputs or Variables in
this case, and the result of the calculations can be sent to a Variable Filter or Variable Persister. To create an Evaluator
(a Java Expression Parser - JepEvaluator is used here, see the sorcer.calculus.evaluator package for a complete list of

available evaluators) for the relationship  the following syntax is used. 

Evaluator lcs21 = new JepEvaluator(“cs21”, “cs1”);

This creates a Jep Expression . For the remaining linked Variables we have 

Evaluator lcs22 = new JepEvaluator(“cs22”, “cs2”);
Evaluator lcs23 = new JepEvaluator(“cs23”, “cs3”);
.
.
.
Evaluator lcs40 = new JepEvaluator(“cs40”, “cs20”);

Next we define the Evaluator dependencies
Evaluator lcs21.addDependent(“cs1”)
Evaluator lcs22.addDependent(“cs2”)

cs21 cs40–

cs1 cs20–

cs21 cs1=

cs22 cs2=


cs40 cs20=

cs21 cs1=

cs21 cs1=
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Evaluator lcs23.addDependent(“cs3”)
.
.
.
Evaluator lcs40.addDependent(“cs20”)

 Now that the Evaluator and it’s dependencies have been defined the Evaluator can now be assigned to the linked
Variable.

omodel.getLinkedVariable(“cs21”).setEvaluator(lcs21,”EulerExact”);
omodel.getLinkedVariable(“cs22”).setEvaluator(lcs22,”EulerExact”);
omodel.getLinkedVariable(“cs23”).setEvaluator(lcs23,”EulerExact”);
.
.
.
omodel.getLinkedVariable(“cs40”).setEvaluator(lcs40,”EulerExact”);

The behavior that will occur now is the following. If a design Variable, say , has it’s value set, then all linked

Variables that depend on  will be set according to their respective Evaluators. So for our case performing the fol-

lowing statement 
omodel.getVariable(“cs3”).setValue(19.5,”EulerExact”)
Results in not only the value in the file AVUS_Boundary_Condition.dat at line 208, field 6 to be changed to 19.5

but also the value in the file AVUS_Boundary_Condition.dat at line 528, field 6 to be changed to 19.5 as well. 

c. Configuration of the Response Variables - The response Variables expose calculated quantities or engineer-
ing responses computed within the SORCER environment. Response Variables consists of an Evaluator and one
or more Filters. Evaluators are the actual compute engines and they have potential dependencies. That is they
depend on Vars (other Response, Design, and indirectly Linked) as their input. Since in SORCER a Response Vari-
able, like all Vars, must reduce to a single scalar object and Evaluators compute essentially “blobs”, Filters are used

to “filter” the “blobs” to the scalar entity the response Variable represents. First, configure the  response Vari-

ables. There are 40 response Variables on the semi-span for the  and they are dependent on the . and .

Functionally this can be written as   . First the Evaluators for the  are developed. As it

turns out all 20  are computed by performing a single AVUS run. Hence all 20  response variables will

use the same Evaluator. This Evaluator executes AVUS for a given set of  and produces an AvusOutput Object

that contains all  values. The type of Evaluator used is an ExertionEvaluator. An ExertionEvaluator can be

either a single Task or an entire Job. Each Exertion has a simple method that returns an Evaluator object for itself.
The below syntax shows the configuration of the “Lpusi”

// get a list of the Design Variables and a list of the Response Variables
// from the model to be used in the Response Variable Configuration
VarList<Variable> dvs = omodel.getDesignVars();
VarList<Variable> rvs = omodel.getResponseVars();

// configure the lpus response variables.
//construct the exertion evaluator for the lift per unit span (lpus)
// response variables

// Construct the avusTask
Task avusTask = getAvusTask();
Evaluator avusEvaluator = avusTask.getEvaluator();

// add the dependencies to the avusEvaluator evaluator (all designVars in 
// the omodel model)

cs3

cs3

Lpusi

Lpusi cs1 40– 

Lpusi cs1cs40   Lpusi

Lpusi Lpusi

csi 

Lpusi
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avusEvaluator.addDependents(dvs);

Once the Evaluator with it’s dependencies has been constructed, which will be used by all of the  response

variables, each  response Variable sets it’s Evaluator to the avusEvaluator.

// Set the Evaluator for each of the Lpus response variables
rvs.get(1).setEvaluator(avusEvaluator);
rvs.get(2).setEvaluator(avusEvaluator);
.
.
.
rvs.get(20).setEvaluator(avusEvaluator);

Now construct the Filters for each “Lpusi” response Variable. The goal is to filter from the result of the Evaluator

(Task in this case) to the individual values for the . In order to do this it is necessary to see what is in the

AvusTask.  Figure 7 illustrates the objects in the Task object. Specifically the MethodSignature and the Con-
text. 

The Context contains the input and output produced by executing the task/Evaluator. Of specific interest
here is the last entry in the Context, the entry that has the path “AVUS/AVUSOUTPUT” and the data
AVUS_OUTPUT_OBJECT. The AVUS_OUTPUT_OBJECT is an object(AvusOutput.java) that contains much
of the information generated from an Avus run and in particular a field named “windAxisLpus” this field is an

object that contains a field which is a array which in turn contains the  values. Hence a set of filters are nec-

essary to extract the AVUS_OUTPUT_OBJECT from the Task, extract the “windAxisLpus” field from the

AVUS_OUTPUT_OBJECT and then a final filter that extracts the th  from the array.  Figure 8 depicts this
filtering process graphically. One can think of this as “piping” the result of one filter to the next. This is similar to the
concept of piping in the unix shell environment. 

Lpusi

Lpusi

Lpusi

Task – Avus Task

Context ‐AvusContext
"AVUS/BCFILE",URL_to_AVUS_BC_FILE
"AVUS/JOBFILE", URL_to_AVUS_JOB_FILE
"AVUS/RESTARTFILE", URL_to_AVUS_JOB_RESTART_FILE
"AVUS/GRIDFILE", URL_to_AVUS_GRID_FILE
"AVUS/TAPFILE",URL_to_AVUS_TAP_FILE
"AVUS/TRIPFILE", URL_to_AVUS_TRIP_FILE
"AVUS/AVUSOUTPUT",AVUS_OUTPUT_OBJECT

MethodSignature – AvusMethod ServiceSignature(engineering.provider.avus.AvusRemoteInterface.class) 

Figure 7. AVUS Task, Method, Context

Lpusi

i Lpus
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The following syntax creates filters shown in  Figure 8. 

// create the filter pipeline for each of the Lpus rvs's 
// The first filter is the ContextFilter that extracts the
// AVUS_OUTPUT_OBJECT from the Evaluator(AvusTask) Context at the path
// location of "AVUS/AVUSOUTPUT"

ContextFilter contextFilter = new ContextFilter("avusTaskContext", 
"AVUS/AVUSOUTPUT");

// Object Filter to extract the windAxisLpus field from the
// AVUS_OUTPUT_OBJECT

ObjectFilter objFilter = new ObjectFilter("windAxisLpus");

// List filter to extract the ith  Lpus from the windAxisLpus
// Array
ListFilter lf1 = new ListFilter(1); 
ListFilter lf2 = new ListFilter(2); 
ListFilter lf3 = new ListFilter(3); 
.

AVUS_OUTPUT_OBJECT

ContextFilter(“AVUS/AVUSOUTPUT”)

ObjectFilter(“windAxisLpus”)

LPUS_ARRAY

LPUS_i

ListFilter(i)

Figure 8. Filter Pipeline for obtaining LPUS_i
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.

.
ListFilter lf20 = new ListFilter(20); 

// Finally create the pipeline of filters (filtering will occur in this
// order
Filter rvFilter = new Filter(contextFilter, objFilter, lf1);
// Set the filter on the ith(1st here) Response Variable
rvs.get(1).setFilter(rvFilter);
Filter rvFilter = new Filter(contextFilter, objFilter, lf2);
rvs.get(2).setFilter(rvFilter);
Filter rvFilter = new Filter(contextFilter, objFilter, lf3);
rvs.get(3).setFilter(rvFilter);
.
.
.
Filter rvFilter = new Filter(contextFilter, objFilter, lf20);
rvs.get(20).setFilter(rvFilter);

This completes the configuration of the  response variables. The following is a few examples of the behav-

ior of the environment for the defined design and response variables under different conditions. Note: this assumes
that the fidelity for all the Vars is set to “EulerExact”

Example 1
// set cs1=15.0
dvs.get(1).setValue(15.0)

// get value of 

rvs.get(1).getValue();

The statement set =15.0 causes  and  (remember they are linked) to be changed in the boundary con-

dition file. The statement rvs.get(1).getValue(); Will cause the Evaluator to “evaluate” the value for  since

some of it’s dependencies (  in this case) have changed. The Evaluator will execute the AvusTask to compute a

new .

Example 2
// set cs1=15.0
dvs.get(1).setValue(15.0)

// get value of 

rvs.get(2).getValue();

The the statement set =15.0 causes  and  (remember they are linked) to be changed in the boundary

condition file. The statement rvs.get(1).getValue(); Will cause the Evaluator to “evaluate” the value for  since

some of it’s dependencies (  in this case) have changed. The Evaluator will execute the Avus task to compute a

new . The statement rvs.get(2).getValue() retunes the value for . It does not cause the Evaluator to

“evaluate”. Remember all the  response variables have the same Evaluator (just different Filters) and none of

this Evaluator’s dependencies have changed since the dvs.get(1).getValue() command. 

Now consider the configuration of the induced drag variable .   This requires constructing the functional rela-

tionship found in Equation (5) . A separate Class called InducedDrag.java has been created

to compute . This class has a method called evaluateInducedDrag which takes as an argument a list of Variables.

These Variables are expected to be the Lpus_i response Variables. The method essentially computes Equation (3). For
this a MethodEvaluator will be used. 

Lpusi

Lpus1

cs1 cs1 cs21

Lpus1

cs1

Lpus1

Lpus1

cs1 cs1 cs21

Lpus1

cs1

Lpus1 Lpus2

Lpusi

DI

DI Lpusi cs1cs40   

DI
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// Construct the InducedDrag Object
InducedDrag idragObj = new InducedDrag("avusIdrag", yiA);
// Create the Method Evaluator
MethodEvaluator iDragMethodEval = new MethodEvaluator("iDragEvaluator",
 idragObj, "evaluateIDrag");
// Set the arguments for the Method
iDragMethodEval.setArgs(lpusVars);

// set the iDrag evaluator dependencies 
iDragMethodEval.addDependents(lpusVars);

// add the Evaluator to the iDrag response Variable
rvs.getVariable(“iDrag”).setEvaluator(iDragMethodEval);

This completes the configuration of the idrag response Variable. 

Example behavior assuming fidelity is set as “EulerExact”:
// set cs1=15.0
dvs.get(1).setValue(15.0)

// get value of 

rvs.getVariable(“iDrag”).getValue();

The  statement set =15.0 causes  and  (remember they are linked) to be changed in the boundary

condition file. The statement rvs.getVariable(“iDrag”).getValue(); Will cause the Evaluator to “evaluate” the value

for  since some of it’s implicit dependencies (  in this case) have changed. It causes the Lpus_i Evaluator (avu-

sEvaluator) to “evaluate” since it is its explicit dependency, , that has changed. Once this completes, the idrag-

MethodEvaluator evaluates with the updated set of Lpusi’s, its explicit dependencies, and produce a new value for
induced drag.

d. Model Fidelity Selection & Query - In the previous section an optimization model was defined and config-
ured. In addition, a few examples were given showing how an individual Var could be manipulated and its resulting
behavior. Here we will show how one can interact with the model as a whole. Specifically to change the fidelity of
the model Vars and to query the model for information such as responses and sensitivities. The interaction with the
model is carried out by suppling a ModelContext object to the model. This object contains information to reconfigure
the model (select fidelities), update the model, make additions to the model, and or query the model for information.
As an initial example consider the desire to obtain the objectives, constraints and respective gradients from the model
for the values of “cs1” = 2.0 and “cs15”=-0.041. The below syntax shows how this is done.

// create ModelContext object
ModelContext modelContext = new ModelContext("Induced Drag Opti Model Query");
//create VarInfoList specifying the desired values for cs1 and cs15
VarInfoList designInfo = varsInfo(varInfo("cs1", 2.0),varInfo("cs15", -0.041) 
//
modelContext.setDesignVarsInfo(designInfo);
modelContext.setObjectivesInfo(null);
modelContext.setConstraintsInfo(null);
modelContext.setObjectivesGradientInfo(null);
modelContext.setConstraintsGradientInfo(null);
// Send the modelContext to the model for the query
modelContext = (ModelContext)omodel.evaluate(modelContext);

The above results in the model setting the values of “cs1” = 2.0 and “cs15”=-0.041 and evaluating the con-
straints, objectives, and their respective gradients and returns them in the modelContext. It is worthwhile to note that
a “null” passed into the query indicates that all of that information is to be computed. If one desires only a subset then

DI

cs1 cs1 cs21

DI cs1

cs1
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a VarInfoList containing the subset of desired quantities should be suppled. For example if only the responses
“Lpus1”, “Lpus2”, and Lpus3” were desired from the model the following query would be used.

VarInfoList lpusiInfo=varsInfo(varInfo(“Lpus1”),varInfo(“Lpus2”),varInfo(“Lous3”));
modelContext.setResponseInfo(lpusiInfo);
modelContext = (ModelContext)omodel.evaluate(modelContext);

The API for extracting the calculated objective, constraints and respective gradient values from the modelCon-
text are as follows.

VarInfoList objInfo=modelContext.getObjectiveInfo();
VarInfoList constInfo=modelContext.getConstraintsInfo();
TableList objGradInfo=modelContext.getObjectivesGradientValues();
TableList constGradInfo=modelContext.getConstraintsGradientValues();

As a second example, consider the reconfiguration of the model to a new fidelity of the responses and sensitivi-
ties. This is achieved by first creating a ModelContext and placing Evaluation objects in the ModelContext. The Eval-
uation objects select the given fidelity for a Var or set of Vars. As an example, the changing of the fidelity of the
response to “Linear Potential Method” and sensitivity to “Lpus1AstrosExacteg1” for the “Lpus1” variable can be done
with the following;

// Create the Evaluation 
Evaluation eval=new Evaluations(“Lpus1”,“Linear Potential Method”,
                                 “Lpus1AstrosExacteg1”); 
VarInfoList lpusiInfo=varsInfo(varInfo(“Lpus1”));

// Create the ModelContext
ModelContext modelContext = new ModelContext("Induced Drag Opti Model Query");
modelContext.setSelectEvaluations(eval);
modelContext.setResponsesInfo(lpusiInfo);
modelContext = (ModelContext)omodel.evaluate(modelContext);

This query results in the Evaluation for for “Lpus1” to be changed to “Linear Potential Method” which will
change the Evaluator for “Lpus1” to “LpusAstrosExacte” and the Gradient to “Lpus1AstrosExacteg1”. Finally, the
query requests the values of “Lpus1” be computed with the new Evaluation. 

VII.Concluding Remarks

As designers develop complex systems that have very little historical information associated with them, it is
becoming evident that new programming languages for transdisciplinary computing are required. These languages
should reflect the complexity of meta computing problems we are facing in service-oriented computing, for example,
concurrent engineering processes of the collaborative design by hundreds of people working together and using thou-
sands of programs written already in software languages (languages for computers) that are dislocated around the
globe. The transdisciplinary design of an aircraft engine or even a whole air vehicle requires large-scale high perfor-
mance meta computing systems handling dynamically executable codes represented by software languages.

Domain-specific languages (DSL) are for humans, intended to express specific complex problems and related
solutions. Three programming languages for transdisciplinary computing are described in this paper: VOL, VML,
and EOL. These languages are interpreted by the exertion shell of SOS. 

As complexity of problems being solved increases continuously, we have to recognize the fact that in transdisci-
plinary computing the only constant is change. The concept of the evaluator in the VFE framework provides the uni-
form service-orientation for all computing and meta computing needs with various applications, tools, utilities, and
exertions as services. The SORCER operating system supports the two-way convergence of three programming mod-
els for transdisciplinary computing. On one hand, EOP is uniformly converged with VOP and VOM to express a ser-
vice-oriented computation process in terms of other (inter/intra) process expressions (the network is the computer).
On the other hand, VOM and VOP are uniformly converged with EOP to express an advanced multidisciplinary com-
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putation model with multi-fidelity compositions in terms of other (intra/inter) process expressions including service
federations (the computer is the network).

The SORCER platform with three layers of converged programming: exertion-oriented (for service collabora-
tions), var-oriented (for var-oriented multi-fidelity compositions), and var-oriented modeling (multidisciplinary var-
oriented models) has been successfully deployed and tested in multiple concurrent engineering and large-scale dis-
tributed applications including Distributed High Fidelity Engineering Design Optimization. 

A computational framework that supports dynamic fidelity for aeroelastic analysis and optimization is presented.
This effort describes the development and capability of the VO programming along with a demonstration of the
dynamic fidelity by performing aeroelastic analysis with six different fidelities of induced drag. Euler based calcula-
tions with a Trefftz-plane, linear panel methods with a Trefftz-plane analysis, standard one-point approximation with
Euler and panel methods, and a modified one-point approximation with Euler and panel methods. The fidelity can
selected dynamically by the analysis or optimization algorithm based on either   accuracy or efficiency requirements.
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