

American Institute of Aeronautics and Astronautics

1

Efficient Supersonic Air Vehicle Analysis and Optimization
Implementation using SORCER

Scott A. Burton1
American Optimization LLC, Liberty Township, Ohio, 45044

Edward J. Alyanak2 and Raymond M. Kolonay3
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 45433

The Air Force Research Lab’s Multidisciplinary Science and Technology Center is
currently investigating conceptual design processes and computing frameworks that could
significantly impact the design of the next generation efficient supersonic air vehicle (ESAV).
To make the technological advancements required of a new ESAV, the conceptual design
process must accommodate both low- and high-fidelity multidisciplinary engineering
analyses. These analyses may be coupled and computationally expensive, which poses a
challenge since a large number of configurations must be analyzed. In light of these
observations, a design process described herein uses the SORCER (Service-Oriented
Computing Environment) software to combine propulsion, structures, aerodynamics,
performance, and aeroelasticity in a multidisciplinary analysis (MDA) of an ESAV. The
SORCER engineering software provides the MDA automation and tight integration to grid
computing resources necessary to achieve the volume of analyses required for conceptual
design. Details of the SORCER implementation are illustrated through ESAV design studies
using a gradient-based optimization method. A discussion of preliminary optimization
results and SORCER grid computing integration is provided.

Nomenclature
AFRL = Air Force Research Lab
CFD = computational fluid dynamics
ESAV = efficient supersonic air vehicle
FEM = finite element model
LP = linear programming
MSTC = Multidisciplinary Science and Technology Center
IP = Internet Protocol
SORCER = Service-Oriented Computing Environment
SLP = successive linear programming
𝑛𝑐𝑜𝑛 = number of constraint functions
𝑛𝑑𝑣 = number of design variables
𝑓(∙) = objective function
𝒈(∙) = constraint functions (ncon-by-1)
𝒙 = design variable vector (ndv-by-1)

1 Manager, Ph.D., AIAA Senior Member. E-mail: ScottABurton@AmOpti.com
2 Project Engineer, Ph.D., AFRL/RQSE, AIAA Senior Member, E-mail: Edward.Alyanak@wpafb.af.mil
3 Principal Engineer, Ph.D., AFRL/RQSE, AIAA Associate Fellow, E-mail: Raymond.Kolonay@wpafb.af.mil

12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM
17 - 19 September 2012, Indianapolis, Indiana

AIAA 2012-5520

Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

2

I. Introduction
HE process of designing
supersonic aircraft has well

known engineering and financial
challenges. The ability of a new
aircraft design to meet various
requirements is largely dictated by
decisions made during the conceptual
design phase. This is especially true
for acquisition and life cycle costs.
With this in mind, it is advantageous
to include the best physics-based
analyses possible given the schedule
and resources. This typically results
in the use of simple closed-form
equations and statistical models
during conceptual design. These
computationally inexpensive tools
facilitate the assessment of the
thousands of designs required, but
may lack the fidelity to uncover
significant engineering risks in a
design.

In recent years, advances in computer processing speed and the prevalence of grid computing resources in
industry have opened the door to more computationally expensive analyses during conceptual design. The
conceptual design process described herein is based on the availability of such resources and incorporates analyses
from several engineering disciplines. The analyses used in the efficient supersonic air vehicle (ESAV)
multidisciplinary analysis (MDA) include techniques from traditional conceptual and preliminary design processes.

Details of the ESAV MDA are discussed in section II. Multidisciplinary Analysis. While the existence of grid
computing facilities is a necessary condition for performing large-scale conceptual design studies, it is not by itself
sufficient. Software to integrate the different engineering analysis codes and coordinate the execution of thousands
of analyses remains an area of research. The study herein uses the SORCER (Service-Oriented Computing
Environment) software to perform these functions.1 Salient features of the SORCER ESAV application are
discussed in section III. Multidisciplinary Analysis Implementation. The ESAV MDA is exercised in two
optimization problems described in IV. Design Studies. Lastly, results of the ESAV design studies and conclusions
are presented in sections V. Results and VI. Conclusions, respectively.

II. Multidisciplinary Analysis
The MDA used herein is a blend of conceptual and preliminary design methods from propulsion, structures,

aerodynamics, performance, and aeroelasticity disciplines. The analysis process and data flow is shown in the ESAV
N2 diagram in Fig. 1. The process begins by parametrically generating discretized geometry suitable for several
different analyses at varying fidelities. The geometry is used as input to compute several figures of merit of the
aircraft, which include the aircraft drag polars, design mass, range, and aeroelastic performance. The different
responses are evaluated for several flight conditions and maneuvers. These responses are then used to construct the
objective and constraints of the multidisciplinary optimization (MDO) problem.

T

Figure 1. The ESAV MDA N2 diagram includes geometry
generation, aerodynamic analysis, aeroelastic analysis, and
performance analysis.

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

3

A. Airframe Geometry
The purpose of the airframe geometry application

MSTCGEOM is to create geometry data for the
physics-based analyses in the MDA. MSTCGEOM is
compiled Matlab™ code and is considered medium
fidelity. The application does not replace or replicate
the extensive functionality of a commercial CAD
package (i.e., a high fidelity geometry application);
however, it does go beyond the functionality of a
typical conceptual design tool. MSTCGEOM
parametrically creates mid-plane panel aerodynamic
models, and FEM stiffness and mass distribution
models of the aircraft. The geometric features of the
aircraft modeled include the fuselage and all of the
lifting aircraft components (wings, vertical stabilizer,
and horizontal stabilizers). The physics-based analyses
that use the MSTCGEOM output include ASTROS,
FRICTION, TORNADO, AWAVE, WINGDES, and
MSTCPERF.2-4

MSTCGEOM is computationally inexpensive to
execute and produces the required fidelity for the
preliminary ESAV analyses described herein. In this
manner, MSTCGEOM is a bridge between conceptual
and preliminary design fidelities. MSTCGEOM may be
used to make both parametric and topological changes
to the airframe wing during the MDO. Figure 2 shows
an example of the MSTCGEOM application output for
the baseline ESAV.

B. Aeroelasticity
Stress analyses for the ESAV are performed for four static aeroelastic maneuver cases at an altitude of 10,000 ft.

Specifically, they are the following: 1) a 9g pull-up at Mach 0.9; 2) a 7.2g pull-up at Mach 1.2; 3) a negative 3g
push-over at Mach 1.2; and 3) an anti-symmetric 100 deg/s aileron roll at Mach 1.2. ASTROS is used to do the
aeroelastic analysis and structural sizing such that it optimizes the structural weight subject to stress constraints.
(The structural sizing phase is independent of the ESAV MDO problem described later; the structural sizing sub-
optimization is an integral part of the MDA and is performed for each configuration analyzed.) There are fifty-seven
design variables in the structural sizing sub-optimization problem, which are distributed over the wing and tail
surface spar, rib, and skin thicknesses. The ESAV is modeled with aluminum and 70 ksi is used as the maximum
allowable stress.

C. Aerodynamics
To assess the aero performance of a configuration, estimations of zero lift drag and induced drag are required.

The zero lift drag components estimated are viscous and profile drag. They are calculated using the FRICTION
code.3 Solutions for zero lift drag are computed at a number of altitude and Mach numbers.

The induced drag is estimated using the vortex lattice code TORNADO.4 A TORNADO solution is computed
over a range of angles of attack and Mach numbers to develop a set of drag polars. The combination of the results
from FRICTION and TORNADO are used in the mission performance calculations for each configuration.

For the structural sizing problem described in the Aeroelasticity section above, the aerodynamic analysis used is
within the ASTROS application. USSAERO is the aerodynamic solver used in the version of ASTROS applied for
this paper. The USSAERO aerodynamic model contains all the lifting and control surfaces.

D. Propulsion
The aircraft engine performance is modeled using TERMAP (Turbine Engine Reverse Modeling Aid Program).

TERMAP is an engine cycle performance program developed by Allison Engineering that uses a building block
approach to predict both the steady state and transient performance of gas turbine engines.5 The program is
FORTRAN-based and requires the user to define engine component characteristics. TERMAP uses this information

Figure 2. The MSTCGEOM application creates
discrete geometry for ASTROS, FRICTION,
TORNADO, AWAVE, WINGDES, and
MSTCPERF applications (baseline ESAV half-
span shown).

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

4

to estimate flow path information at station numbers throughout the engine.
To improve the computational efficiency of the N2 process in Fig. 1, TERMAP is used to build an approximation

of thrust and specific fuel consumption over all flight conditions of interest. The approximation is used during the
optimization to calculate range and optimal altitude trajectory for the flight leg of interest.

E. Mission Performance
The mission performance assessment involves calculating the aircraft range for a given Mach number. This is

accomplished by using the design weight from ASTROS. This weight includes non-structural masses and internal
fuel load, such that the design weight is the gross takeoff weight for the airplane. (Since a half-span model is used,
the weight from ASTROS is half the takeoff gross weight.) The design weight along with the drag polars and the
propulsion system performance assessment are used to calculate the range for the vehicle.

The range calculation assumes that the vehicle is flying at the optimal altitude for its initial weight. The altitude
increases as fuel is burned, so the range reported is the distance traveled over the optimal altitude trajectory. For the
ESAV study herein, the range calculation is done for a 6000 lb fuel burn at Mach 0.8.

III. Multidisciplinary Analysis Implementation
The practical large-scale MDO of an ESAV requires the MDA behind the objective and constraint functions be

implemented such that the following hold true:

1) The evaluation of constraints and objectives is automatic and does not require user intervention.

2) The evaluation of constraints and objectives is reliable, repeatable, and accurate to the desired fidelity.

3) Constraint and objective evaluations that encounter errors or exceptions are communicated to the MDO
algorithm gracefully and the MDO algorithm handles them appropriately.

4) The evaluation of objective and constraint functions for different designs is done in parallel using the
computational resources available.

With these considerations in mind, the Java-based SORCER software is used to implement the ESAV MDA.1
The MDA is then driven by an optimization algorithm implemented in Matlab via the SORCER ModelClient class.

A. SORCER Fundamentals
SORCER is a Java-based, network-centric computing platform that enables engineers to perform analyses and

design studies in a very flexible, robust, and distributed computing environment. At the foundation of an engineering
analysis within SORCER is the concept of a service provider. A service provider—or simply “provider”—is Java
code implemented in accordance with SORCER standards that makes a number of Java methods available to remote
users over a computer network.6 These methods are referred to as the provider’s services.

Providers typically provide services that leverage existing domain-specific analysis codes (e.g., CFD or FEM
codes). These providers are referred to as analysis providers. The implementation of a given service in an analysis
provider usually involves wrapping an engineering analysis executable with Java code. The executable is generally
platform dependent and performs the bulk of the engineering-specific computations for a given service. An analysis
provider's service may also enhance the functionality of the underlying executable with Java code or simply pass
data to-and-from it.

Two common approaches to wrapping executables are to: 1) use the file system in conjunction with a system call
from the analysis provider's service; or 2) use more sophisticated technology such as Java Native Interface to tightly
couple the analysis provider's service to the executable. In the first case, the service writes an input file for the
executable to read, invokes the executable via a system call, and concludes by reading the output file produced by
the executable. The service may return the raw output files produced by the executable via a URL object or post-
process the file and pass higher-level Java objects to the remote user. If errors or exceptions occur in an analysis
provider's service, the caller is notified gracefully and may (or may not) take action to correct the problem. Once an
analysis provider has been implemented to provide a number of services, it may be published from a computer on
the network using SORCER. Remote users may then access the analysis provider's services via a small Java
program called a service requester, or use simple SORCER command-line tools to access services directly.

For example, the service used in the ESAV study to create input files for ASTROS is called
doMstcGeomService. This service is implemented by a provider called Engineering Air Vehicle Provider. The
underlying executable for the doMstcGeomService is the compiled Matlab program MSTCGEOM. MSTCGEOM
creates FEMs and other input decks required for the ESAV MDA. The argument for the Java method

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

5

doMstcGeomService is an object that contains all the information necessary to define the MSTCGEOM input deck,
including the ESAV wing design variables (area, aspect ratio, and taper ratio). Using the input object, the
Engineering Air Vehicle Provider's doMstcGeomService service writes an input deck for the MSTCGEOM Matlab
executable, invokes MSTCGEOM via system call, and returns the URL of the ASTROS input file produced by
MSTCGEOM to the remote user. In addition to the ASTROS input file, the MSTCGEOM executable also writes
input files required by the doTornadoService and executeFriction services. Both of these services are also provided
by the Engineering Air Vehicle Provider.

Like most services, the doMstcGeomService service returns multiple outputs that may be used by multiple
downstream services to form a complete MDA. The returned objects from a service may be used directly or post-
processed on the client-side (i.e., at the user’s location) such that the output may be meaningful for design
optimization. In the previous example, the output URL object pointing to the ASTROS input file is used directly by
a downstream service. If a scalar-value was desired—e.g., to assign a value to an objective function during an
optimization—the URL could be opened and parsed to yield a number. The means of reducing output from services
in this manner is accomplished with the SORCER Filter subclasses, discussed later.

To provide a layer of abstraction from a specific implementation of a service (i.e., Java method), providers
implement Java interfaces to identify the services they provide. (Java interfaces are defined by a list of method
signatures, which are composed of a method name, argument types, and return type.) These Java interfaces are
referred to as service types. In this manner, a remote-user is generally only concerned about finding a provider that
implements the service type containing the service of interest. The specific provider usually does not matter, since it
is the service that the user desires. Many providers on the network may have different implementations of the same
service in which case they would all implement the same interface (i.e., service type). If a user desires to select a
specific provider for a given service, the user may specify the name of the provider in addition to the service type.

To use SORCER providers that are published on a network, a user must specify the name of the service, the
service type that contains the service of interest, and the arguments for the service. The user does not have to specify
the hostname, port, or IP address of the computer the service is running on. The arguments for all SORCER services
are instances of the Context class. A Context object—or “context”—is a generic container that encapsulates name-
value pairs. In this manner, a context possesses its own namespace for identifying argument objects for a service.
The service name and service type are encapsulated in the SORCER ServiceSignature class. (Instances of
ServiceSignature are referred to as “signatures.”)

The combination of the service name, service type, and a context are encapsulated in an instance of the SORCER
Task class. A Task instance—or “task”—represents the basic unit of work that service providers operate on. Since
tasks involve using remote services, a layer of abstraction exists to encapsulate both remote and locally executed
units of work. The Evaluator class and its subclasses are the entities responsible for doing computational work via
their evaluate method from both remote and local resources in SORCER.

An Evaluator instance—or “evaluator”—that encapsulates a task is called an exertion evaluator. The word
“exertion” implies the remote use of service providers. This is in contrast to other subclasses of Evaluator that are
capable of doing simple calculations locally when the heavy lifting nature of an engineering analysis service is not
required. For example, the ExpressionEvaluator class enables a user to combine Var instances in algebraic equations
without using a remote service (the Var class is discussed later). In this light, evaluators are the entities responsible
for either defining the process of how data is produced via remote services or producing the data themselves locally
via their own logic.

Var instances—or “vars”—are used to form both independent and dependent variables in SORCER. In the case
of independent variables, vars have an instance of IndependentEvaluator that contains the value of the independent
variable. The IndependentEvaluator object acts as a simple container to store a value and does not perform any
calculations or use services on the network.

Dependent vars are typically created to implement scalar-valued mathematical functions, such as objective,
constraint, or other mathematical functions for use in analysis or optimization studies. They may also be to form
composite functions. Vars contain the objects necessary to produce—rather than store—the values they represent,
which may include Evaluator, Filter, and Persister instances. The three types of objects are used in a specific
sequence when the method getValue is invoked on a dependent var.

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

6

When the getValue method is
called on a dependent var, the
evaluator’s getValue method is
subsequently called. The evaluator’s
getValue method then, in turn, calls
getValue on its argument vars to
ensure their respective values are
current before proceeding. (If a var
represents a function dependent on
other vars, i.e., argument vars, the
evaluator of the var representing the
function holds references to those
argument vars.) The evaluator then
checks to see if it is out of date due to
argument vars changing since the last
invocation of evaluate. If the argument vars have not changed, the evaluator returns its current value without further
processing. In this manner, all calls to evaluate are demand-driven, i.e., the evaluate method is invoked only if the
evaluator’s arguments have changed since the last invocation of evaluate. As described earlier, the evaluate method
may use a remote service implemented by a provider on the network to perform the necessary calculations, or the
calculations may be done locally via its own logic. Once the evaluator’s evaluate and getValue methods complete
and return a new value to the var, an instance of a Filter subclass may be employed.

Since exertion evaluators typically return aggregate forms of data, reducing the output from them is often
necessary. This data reduction is accomplished using the Filter subclasses. Using a Filter subclass object—or
“filter”—on the returned objects from an evaluator allows users to reduce or transform the aggregate data produced
by evaluators to yield new objects. The result of filtering is often a scalar value of a mathematical function. In the
case where an evaluator produces aggregate data, the evaluator may be referenced by a number of different vars with
different filters to yield different values, see Fig. 3. A series of filters may be combined to form a filter pipeline,
such that downstream filters operate on the output of upstream filters. The resulting value returning from the filter
(or pipeline filter) is then passed to the var’s Persister instance if it exists.

The Persister instance—or
“persister”—uses the value from the
filter as an argument to its setValue()
method. Depending on the specific
subclass of Persister used, the persist
method may write the var value to a
file or set a field on an object. Once
the persister is done executing, the
var value is returned to the caller of
the var’s getValue method.

An OptimizationModel instance—
or “model”—is a collection of any
number of vars that define a specific
optimization problem. Figure 4
illustrates a simple example of an
OptimizationModel called model1.
The model contains three vars; one
independent and two dependent. The
var y1v is a function of x1v, which is
the independent var. The var y2v is a
function of y1v, thus it is a composite
function.

 The vars are the implementation
of the design variables, optimization
objective function, and constraint
functions. Additional vars may be
included for monitoring other figures-

Figure 4. An OptimizationModel is a collection of Var objects; each
var references an evaluator and may be referenced by other vars to
form composite functions.

Figure 3. A single Evaluator object may be referenced by multiple
Var objects employing different filters to reduce aggregate data to
scalar values; the values may be then written to a file (or object
field) using a var’s persister.

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

7

of-merit. Once a model is created, it may be published as a provider for users to access remotely. This type of
provider is referred to as a model provider to distinguish it from analysis providers. The model provider behaves like
shared memory that is accessible to remote users over the network. There is only one state of the model, which is
subject to manipulation by remote users. There are two techniques for users to interact with a published model
provider: 1) via a single model query; or 2) via a table model query.

A single model query is done from a requestor or SORCER command-line tool. In both cases, a query object is
constructed containing the design variable var names and values and the var names of the objective and constraint
functions that the user wishes to calculate. The query also contains the name of the model provider, so that it may be
found on the network.

In contrast to analysis providers, accessing model providers over the network does not require users to specify a
service type and service name. Since all OptimizationModel instances have only one service type with a single
service, the information is implied. This does, however, necessitate that the user specify the model provider name
when multiple models are published.

Once the query is constructed, it is executed by the user. The published model provider receives the query object
and proceeds to invoke setValue on all the design variables. Once the setValue calls are completed, the model begins
calling getValue on the user-specified objective and constraint functions. After all the getValue calls are complete,
the query object is returned to the remote user with the updated var values.

The second technique of using models is via a table query. Rather than passing a single set of design var values
to the model provider, a user may construct a table of runs containing the names of the design vars and their values
for each run. The table is added to the query with the name of the model provider and the var names of the objective
and constraint vars the user wishes to calculate. Since a table of runs is being sent to the model provider, the user
may specify the number of runs the model provider is to execute in parallel.

Once the table query is constructed and sent to the model provider, the model provider creates new child
instances of itself for parallel execution of the table. (The child instances are newly constructed objects, such that the
states of their respective vars are not inherited from the model provider.) The model provider then creates a thread
for each child model and begins to setValue and getValue on the vars as in the single model query. Once all the
threads complete, the var values for each run are returned to the caller in a table object.

In contrast to the single model query, the table query does not affect the state of the parent model provider’s
vars. The child models are isolated from one another and the parent model, and are used exclusively to perform the
user-requested calculations. Once the calculations are complete, the child models are discarded and the states of the
parent model vars remain unaffected.

B. SORCER Space Computing
Large numbers of engineering analyses are generally required to perform conceptual-level aircraft design. This

significant computational burden is addressed at the AFRL MSTC by using the SORCER software. The network-
centric approach of SORCER enables the use of heterogeneous computing resources, including a variety of
operating systems, hardware, and software. Specifically, ESAV studies performed at the AFRL MSTC use
SORCER in conjunction with a mix of Linux-based cluster computers, desktop Linux-based PCs, Windows PCs,
and Macintosh PCs. The ability of SORCER to leverage these resources is significant to MDO applications in two
ways: 1) it supports platform-specific executables that may be required by an MDA; and 2) it enables a variety of
computing resources to be used as one entity (including stand-alone PCs, computing clusters, and high-performance
computing facilities). The main requirements for using a computational resource in SORCER are network
connectivity and Java compatibility. SORCER also supports load balancing across computational resources via the
JavaSpaces technology, making the evaluation of objective and constraint functions in parallel a simple and a
dynamically scalable process. 7 D

ow
nl

oa
de

d
by

 D
A

zz
o

R
es

ea
rc

h
L

ib
ra

ry
 D

E
T

 1
 A

FR
L

/W
SC

 o
n

Se
pt

em
be

r
29

, 2
01

2
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

01
2-

55
20

American Institute of Aeronautics and Astronautics

8

 SORCER employs JavaSpaces
technology to implement a loosely-
coupled distributed computing
system. JavaSpaces enables different
processes on different computers to
communicate asynchronously in a
reliable manner.7 Using this
technology, SORCER implements a
self-load balancing grid computing
system that can dynamically grow
and shrink during the course of an
optimization study.

A JavaSpace—or “space”—is
Java code running on a computer that
is accessible on the network in the
same manner as service providers, see
Fig. 5. The space provides a type of
shared memory where exertion
evaluators can put tasks they wish to
be processed by service providers.
Service providers, in turn, use Jini
discovery mechanisms upon startup
to find spaces on the network and
monitor them for tasks with their
service type. If a service provider sees
a task it can operate on in a space,
and the task has a flag indicating it
has not been processed, the provider
takes the task from the space. The
provider then executes the
appropriate service and returns the
task to the space with a flag indicating the task has been processed. Once the task has been returned to the space, the
process that initially wrote the task to the space detects the returned task and checks to see if it has been processed.
If the task indicates it has been processed, the evaluator removes the task from the space.

To achieve the load balancing across multiple computers, a service provider may be configured to have a fixed
number of worker threads. The number of worker threads determines the number of tasks a provider can process in
parallel. By configuring the number of worker threads for a specific service provider on a specific computer, the
provider can self-load balance the computer it is hosted on (assuming that it is the only service provider operating on
the host computer).

IV. Design Studies
The design of a supersonic aircraft involves assessing many figures of merit and the tradeoffs between them. In

this study, a preliminary exploration of the design space is performed through univariate parametric sweeps of the
design variables. In this manner, each design variable is independently swept from its lower bound to its upper
bound in equal steps. This process is costly, but it serves three important purposes: 1) the sweeps provide a set of
results that engineers may easily use to assess the validity of the MDA implementation; 2) the results may be used to
screen design variables and responses for significance, which may result in a smaller MDO problem; and 3) the
sweep results are used to calculate the sensitivities for the first iteration of the gradient-based optimization process.
Once the preliminary study is completed, the MDO problem is solved using a robust successive linear programming
(SLP) technique.

A. Optimization Problem Statement
A single objective function is identified along with nonlinear and side constraints to exercise the ESAV model in

SORCER. The optimization problem takes the general form:

Figure 5. SORCER uses JavaSpaces technology to provide a flexible,
dynamic grid computing facility for ESAV optimization studies.

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

9

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) (1)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒈(𝒙) ≤ 𝟎 (2)

 𝑎𝑛𝑑 𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (3)

 𝑤ℎ𝑒𝑟𝑒 𝒈 ∈ ℝ𝒏𝒄𝒐𝒏 𝑎𝑛𝑑 𝒙 ∈ ℝ𝒏𝒅𝒗. (4)

The objective is to minimize the weight of the ESAV, which includes the fuselage and lifting surface weights. In
this manner, the life cycle cost of the aircraft is kept down due to its strong correlation with takeoff gross weight.8

Two optimization problems are solved with different range constraints. In the first case, the cruise leg range is
constrained to be above 1500 mi at Mach 0.8 for 6000 lb of fuel. In the second case, the range is increased to 2500
mi. The design variables are wing area, taper ratio, and aspect ratio. The lower and upper bounds on the design
variables are: 100 and 300 ft2 for wing area, 0.6 and 5.0 for aspect ratio, and 0.1 and 1.0 for taper ratio, respectively.

B. Optimization Algorithm
The optimization technique applied is an adaptation of the Frank-Wolf implementation of the successive linear

programming (SLP) method.9 The SLP method used herein is tailored for parallel computing on a large number of
CPU cores such that gradient and line search calculations are executed in parallel.10 The algorithm is tolerant to
failed runs in both the gradient and line search phases of an optimization iteration. This robustness comes with the
computational cost associated from the extra analyses required over that of a typical first-order finite-difference
technique.

The optimization begins by calculating the gradient of the objective and constraint functions at the initial design
point. The gradients are then used to form a constrained linear programming (LP) problem where the optimum is
found using an LP solver. In traditional implementations of gradient-based methods, a line search follows that
involves sequentially searching for a minimum along a line from the initial design to the estimated optimum. This
approach is inefficient given the computing resources available to most engineers today.

Since many CPU cores are available on a single computer, cluster, or high-performance computing facility, the
line search is converted to a partial enumeration of the line. The number of designs evaluated on the line depends on
the computational resources available, the anticipated nonlinearity of the search, the computational expense of the
analysis, and the schedule of the MDO project. Once the line is partially enumerated, the local optimum may be
found via a simple curve fit to a quadratic polynomial. Using the local optimum determined from the partial line
enumeration, a subsequent iteration begins with a gradient evaluation at this point. The SLP process continues based
on optimization convergence criteria or schedule considerations.

The SLP algorithm is implemented using Matlab and uses the lingprog LP solver to determine search directions.
The responses required to calculate the objective and the constraints are supplied via the SORCER Engineering
ESAV Model Provider. The communication between Matlab and the Engineering ESAV Model Provider is done by
instantiating the SORCER ModelClient class within a Matlab session. The ModelClient class provides a simple
interface for setting design variable values, running the MDA, and obtaining the responses necessary to form the
objective and constraint functions.

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

10

V. Results
Figure 6 shows the planforms for the baseline

(approximately 1550 mi range), the 1500 mi range
design, and the 2500 mi range design. The optimization
iteration history is shown in Fig. 7 for the design
variables, constraint (range), and objective (weight).
Figure 8 plots the results of the ASTROS structural
sizing sub-optimization performed on the three ESAV
designs. The figure shows the optimal thicknesses of
the skins, ribs, and spars for the three configurations.

In the first case with the 1500 mi range constraint,
the wing area was reduced to minimize weight. Since
the baseline range was greater than 1500 mi, the
optimizer had the design freedom to reduce the
objective function in this manner. Taper ratio was also
reduced having a similar effect. The structural sizing
sub-optimization was driven in this case by two of the
four maneuvers: the 9g pull-up at Mach 0.9; and the
7.2g pull-up at Mach 1.2.

The second optimization problem solved was for the
2500 mi range constraint. The planform of the wing in
this case became long and slender with a high aspect
ratio, high wing area, and low taper ratio. Since the
initial design was infeasible, a considerable amount of
weight was added via increases in wing area and aspect
ratio to achieve the 2500 mi range. The structural sizing
sub-optimization was driven by the 9g pull-up at Mach
0.9 maneuver.

Figure 6. The ESAV optimization result half-span
planforms: baseline 1550 mi range (top); 1500 mi
range (middle); and 2500 mi range (bottom).

Figure 7. Results from ESAV optimization illustrate how the design variables, objective and constraint
functions are manipulated by the SLP technique (1500 mi range constraint, magenta; 2500 mi range
constraint, blue).

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

11

VI. Conclusions
The SORCER engineering software was used successfully in the design of two prototype ESAVs. The results

from both optimization cases exhibited the correct trends consistent with historical aircraft design. These results
provide a degree of validation of the implementation of the Matlab SLP code, the SORCER ESAV model, the
SORCER providers, and the JavaSpaces technology.

The use of the JavaSpaces technology for parallel distributed computing proved reliable and efficient. It was a
straightforward process to add computers to the SORCER grid as needed during the course of the two optimization
studies. This flexibility proved valuable as the number of computers available varied from day-to-day.

Lastly, the application of a gradient-based solution technique capable of handling failed design points was
demonstrated successfully. The robust nature of the SLP technique and its ability to perform gradient and line search
functions in parallel made the ESAV optimization studies possible in a short period of time with minimal user
intervention.

Figure 8. The ESAV planform and structural design thicknesses from the ASTROS structural sizing sub-
optimization problem are shown above for the 1550 mi range baseline design (top row), the 1500 mi range
design (middle row), and the 2500 mi range design (bottom row) optimal designs. (The left column shows the
thicknesses for the wing skins and the right column shows the thicknesses of the ribs and spars.)

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

American Institute of Aeronautics and Astronautics

12

References
1Kolonay, R. M., & Sobolewski, M., “Service ORiented Computing EnviRonment (SORCER) for Large Scale, Distributed,

Dynamic Fidelity Aeroelastic Analysis & Optimization,” International Forum on Aeroelasticity and Structural Dynamics. Paris,
2011.

2Neill, D., & Herendeen, D., ASTROS Enhancements: Volume I – Astros User’s Manual, Wright Laboratory WL-TR-96-
3004, 1995

3Mason, W. H. (2002). Software for Aerodynamics and Aircraft Design. Retrieved 2012, from Skin Friction/Form Factor
Drag estimation: http://www.dept.aoe.vt.edu/~mason/Mason_f/MRsoft.html#SkinFriction

4Melin, T. (2000). A Vortex Lattice MATLAB Implementation for Linear Aerodynamic Wing Applications. Royal Institute
of Technology

5Macinnis, D. V., “A Simplified Cycle-Matching Transient Simulation of a Turbofan Engine,” AIAA Joint Propulsion
Conference, Indianapolis, 1994.

6Newmarch, J., Foundations of Jini 2 Programming, Apress, Inc., 2006, Chap. 1.
7Freeman, E., Hupfer, S., and Arnold, K., JavaSpaces Principles, Patterns, and Practice, Addison Wesley Longman, Inc.,

1999, Chap. 1.
8Raymer, D., Aircraft Design: A Conceptual Approach, 2nd ed., AIAA Education Series, 1992, Chap. 18.
9Reklaitis, G. V., Ravindran, A. and Ragsdell, K. M., Engineering Optimization: Methods and Applications, John Wiley &

Sons, Inc., New York, 1983, Chap. 8.
10Burton, S. A., Prakash, C., and Machnaim, J., “Multistage Low Pressure Turbine Airfoil Shape Optimization using the C3

Process,” 3rd AIAA Multidisciplinary Design Optimization Specialist Conference, Honolulu, 2007.

D
ow

nl
oa

de
d

by
 D

A
zz

o
R

es
ea

rc
h

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n
Se

pt
em

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

2-
55

20

http://www.dept.aoe.vt.edu/~mason/Mason_f/MRsoft.html#SkinFriction

