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The Air Force Research Lab’s Multidisciplinary Science and Technology Center is 
currently investigating conceptual design processes and computing frameworks that could 
significantly impact the design of the next generation efficient supersonic air vehicle (ESAV). 
To make the technological advancements required of a new ESAV, the conceptual design 
process must accommodate both low- and high-fidelity multidisciplinary engineering 
analyses. These analyses may be coupled and computationally expensive, which poses a 
challenge since a large number of configurations must be analyzed. In light of these 
observations, a design process described herein uses the SORCER (Service-Oriented 
Computing Environment) software to combine propulsion, structures, aerodynamics, 
performance, and aeroelasticity in a multidisciplinary analysis (MDA) of an ESAV. The 
SORCER engineering software provides the MDA automation and tight integration to grid 
computing resources necessary to achieve the volume of analyses required for conceptual 
design. Details of the SORCER implementation are illustrated through ESAV design studies 
using a gradient-based optimization method. A discussion of preliminary optimization 
results and SORCER grid computing integration is provided. 

Nomenclature 
AFRL = Air Force Research Lab 
CFD =  computational fluid dynamics 
ESAV = efficient supersonic air vehicle 
FEM = finite element model 
LP = linear programming 
MSTC =  Multidisciplinary Science and Technology Center 
IP =  Internet Protocol 
SORCER = Service-Oriented Computing Environment 
SLP = successive linear programming 
𝑛𝑐𝑜𝑛 = number of constraint functions 
𝑛𝑑𝑣 = number of design variables 
𝑓(∙) = objective function 
𝒈(∙) =  constraint functions (ncon-by-1) 
𝒙 = design variable vector (ndv-by-1) 
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I. Introduction 
HE process of designing 
supersonic aircraft has well 

known engineering and financial 
challenges. The ability of a new 
aircraft design to meet various 
requirements is largely dictated by 
decisions made during the conceptual 
design phase. This is especially true 
for acquisition and life cycle costs. 
With this in mind, it is advantageous 
to include the best physics-based 
analyses possible given the schedule 
and resources. This typically results 
in the use of simple closed-form 
equations and statistical models 
during conceptual design. These 
computationally inexpensive tools 
facilitate the assessment of the 
thousands of designs required, but 
may lack the fidelity to uncover 
significant engineering risks in a 
design.  

In recent years, advances in computer processing speed and the prevalence of grid computing resources in 
industry have opened the door to more computationally expensive analyses during conceptual design. The 
conceptual design process described herein is based on the availability of such resources and incorporates analyses 
from several engineering disciplines. The analyses used in the efficient supersonic air vehicle (ESAV) 
multidisciplinary analysis (MDA) include techniques from traditional conceptual and preliminary design processes.  

Details of the ESAV MDA are discussed in section II. Multidisciplinary Analysis. While the existence of grid 
computing facilities is a necessary condition for performing large-scale conceptual design studies, it is not by itself 
sufficient. Software to integrate the different engineering analysis codes and coordinate the execution of thousands 
of analyses remains an area of research. The study herein uses the SORCER (Service-Oriented Computing 
Environment) software to perform these functions.1 Salient features of the SORCER ESAV application are 
discussed in section III. Multidisciplinary Analysis Implementation. The ESAV MDA is exercised in two 
optimization problems described in IV. Design Studies. Lastly, results of the ESAV design studies and conclusions 
are presented in sections V. Results and VI. Conclusions, respectively. 

II. Multidisciplinary Analysis 
The MDA used herein is a blend of conceptual and preliminary design methods from propulsion, structures, 

aerodynamics, performance, and aeroelasticity disciplines. The analysis process and data flow is shown in the ESAV 
N2 diagram in Fig. 1. The process begins by parametrically generating discretized geometry suitable for several 
different analyses at varying fidelities. The geometry is used as input to compute several figures of merit of the 
aircraft, which include the aircraft drag polars, design mass, range, and aeroelastic performance. The different 
responses are evaluated for several flight conditions and maneuvers. These responses are then used to construct the 
objective and constraints of the multidisciplinary optimization (MDO) problem.  

T 

 

Figure 1. The ESAV MDA N2 diagram includes geometry 
generation, aerodynamic analysis, aeroelastic analysis, and 
performance analysis. 
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A. Airframe Geometry 
The purpose of the airframe geometry application 

MSTCGEOM is to create geometry data for the 
physics-based analyses in the MDA. MSTCGEOM is 
compiled Matlab™ code and is considered medium 
fidelity. The application does not replace or replicate 
the extensive functionality of a commercial CAD 
package (i.e., a high fidelity geometry application); 
however, it does go beyond the functionality of a 
typical conceptual design tool. MSTCGEOM 
parametrically creates mid-plane panel aerodynamic 
models, and FEM stiffness and mass distribution 
models of the aircraft. The geometric features of the 
aircraft modeled include the fuselage and all of the 
lifting aircraft components (wings, vertical stabilizer, 
and horizontal stabilizers). The physics-based analyses 
that use the MSTCGEOM output include ASTROS, 
FRICTION, TORNADO, AWAVE, WINGDES, and 
MSTCPERF.2-4  

MSTCGEOM is computationally inexpensive to 
execute and produces the required fidelity for the 
preliminary ESAV analyses described herein. In this 
manner, MSTCGEOM is a bridge between conceptual 
and preliminary design fidelities. MSTCGEOM may be 
used to make both parametric and topological changes 
to the airframe wing during the MDO. Figure 2 shows 
an example of the MSTCGEOM application output for 
the baseline ESAV.  

B. Aeroelasticity 
Stress analyses for the ESAV are performed for four static aeroelastic maneuver cases at an altitude of 10,000 ft. 

Specifically, they are the following: 1) a 9g pull-up at Mach 0.9; 2) a 7.2g pull-up at Mach 1.2; 3) a negative 3g 
push-over at Mach 1.2; and 3) an anti-symmetric 100 deg/s aileron roll at Mach 1.2. ASTROS is used to do the 
aeroelastic analysis and structural sizing such that it optimizes the structural weight subject to stress constraints. 
(The structural sizing phase is independent of the ESAV MDO problem described later; the structural sizing sub-
optimization is an integral part of the MDA and is performed for each configuration analyzed.) There are fifty-seven 
design variables in the structural sizing sub-optimization problem, which are distributed over the wing and tail 
surface spar, rib, and skin thicknesses. The ESAV is modeled with aluminum and 70 ksi is used as the maximum 
allowable stress. 

C. Aerodynamics 
To assess the aero performance of a configuration, estimations of zero lift drag and induced drag are required. 

The zero lift drag components estimated are viscous and profile drag. They are calculated using the FRICTION 
code.3 Solutions for zero lift drag are computed at a number of altitude and Mach numbers.  

The induced drag is estimated using the vortex lattice code TORNADO.4 A TORNADO solution is computed 
over a range of angles of attack and Mach numbers to develop a set of drag polars. The combination of the results 
from FRICTION and TORNADO are used in the mission performance calculations for each configuration.  

For the structural sizing problem described in the Aeroelasticity section above, the aerodynamic analysis used is 
within the ASTROS application. USSAERO is the aerodynamic solver used in the version of ASTROS applied for 
this paper. The USSAERO aerodynamic model contains all the lifting and control surfaces.  

D. Propulsion 
The aircraft engine performance is modeled using TERMAP (Turbine Engine Reverse Modeling Aid Program). 

TERMAP is an engine cycle performance program developed by Allison Engineering that uses a building block 
approach to predict both the steady state and transient performance of gas turbine engines.5 The program is 
FORTRAN-based and requires the user to define engine component characteristics. TERMAP uses this information 

 

Figure 2. The MSTCGEOM application creates 
discrete geometry for ASTROS, FRICTION, 
TORNADO, AWAVE, WINGDES, and 
MSTCPERF applications (baseline ESAV half-
span shown). 
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to estimate flow path information at station numbers throughout the engine.  
To improve the computational efficiency of the N2 process in Fig. 1, TERMAP is used to build an approximation 

of thrust and specific fuel consumption over all flight conditions of interest. The approximation is used during the 
optimization to calculate range and optimal altitude trajectory for the flight leg of interest. 

E. Mission Performance 
The mission performance assessment involves calculating the aircraft range for a given Mach number. This is 

accomplished by using the design weight from ASTROS. This weight includes non-structural masses and internal 
fuel load, such that the design weight is the gross takeoff weight for the airplane. (Since a half-span model is used, 
the weight from ASTROS is half the takeoff gross weight.) The design weight along with the drag polars and the 
propulsion system performance assessment are used to calculate the range for the vehicle. 

The range calculation assumes that the vehicle is flying at the optimal altitude for its initial weight. The altitude 
increases as fuel is burned, so the range reported is the distance traveled over the optimal altitude trajectory. For the 
ESAV study herein, the range calculation is done for a 6000 lb fuel burn at Mach 0.8. 

III. Multidisciplinary Analysis Implementation 
The practical large-scale MDO of an ESAV requires the MDA behind the objective and constraint functions be 

implemented such that the following hold true:  

1) The evaluation of constraints and objectives is automatic and does not require user intervention. 

2) The evaluation of constraints and objectives is reliable, repeatable, and accurate to the desired fidelity. 

3) Constraint and objective evaluations that encounter errors or exceptions are communicated to the MDO 
algorithm gracefully and the MDO algorithm handles them appropriately. 

4) The evaluation of objective and constraint functions for different designs is done in parallel using the 
computational resources available. 

With these considerations in mind, the Java-based SORCER software is used to implement the ESAV MDA.1 
The MDA is then driven by an optimization algorithm implemented in Matlab via the SORCER ModelClient class. 

A. SORCER Fundamentals 
SORCER is a Java-based, network-centric computing platform that enables engineers to perform analyses and 

design studies in a very flexible, robust, and distributed computing environment. At the foundation of an engineering 
analysis within SORCER is the concept of a service provider. A service provider—or simply “provider”—is Java 
code implemented in accordance with SORCER standards that makes a number of Java methods available to remote 
users over a computer network.6 These methods are referred to as the provider’s services. 

Providers typically provide services that leverage existing domain-specific analysis codes (e.g., CFD or FEM 
codes). These providers are referred to as analysis providers. The implementation of a given service in an analysis 
provider usually involves wrapping an engineering analysis executable with Java code. The executable is generally 
platform dependent and performs the bulk of the engineering-specific computations for a given service. An analysis 
provider's service may also enhance the functionality of the underlying executable with Java code or simply pass 
data to-and-from it.  

Two common approaches to wrapping executables are to: 1) use the file system in conjunction with a system call 
from the analysis provider's service; or 2) use more sophisticated technology such as Java Native Interface to tightly 
couple the analysis provider's service to the executable. In the first case, the service writes an input file for the 
executable to read, invokes the executable via a system call, and concludes by reading the output file produced by 
the executable. The service may return the raw output files produced by the executable via a URL object or post-
process the file and pass higher-level Java objects to the remote user. If errors or exceptions occur in an analysis 
provider's service, the caller is notified gracefully and may (or may not) take action to correct the problem. Once an 
analysis provider has been implemented to provide a number of services, it may be published from a computer on 
the network using SORCER. Remote users may then access the analysis provider's services via a small Java 
program called a service requester, or use simple SORCER command-line tools to access services directly.  

For example, the service used in the ESAV study to create input files for ASTROS is called 
doMstcGeomService. This service is implemented by a provider called Engineering Air Vehicle Provider. The 
underlying executable for the doMstcGeomService is the compiled Matlab program MSTCGEOM. MSTCGEOM 
creates FEMs and other input decks required for the ESAV MDA. The argument for the Java method 
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doMstcGeomService is an object that contains all the information necessary to define the MSTCGEOM input deck, 
including the ESAV wing design variables (area, aspect ratio, and taper ratio). Using the input object, the 
Engineering Air Vehicle Provider's doMstcGeomService service writes an input deck for the MSTCGEOM Matlab 
executable, invokes MSTCGEOM via system call, and returns the URL of the ASTROS input file produced by 
MSTCGEOM to the remote user. In addition to the ASTROS input file, the MSTCGEOM executable also writes 
input files required by the doTornadoService and executeFriction services. Both of these services are also provided 
by the Engineering Air Vehicle Provider.  

Like most services, the doMstcGeomService service returns multiple outputs that may be used by multiple 
downstream services to form a complete MDA. The returned objects from a service may be used directly or post-
processed on the client-side (i.e., at the user’s location) such that the output may be meaningful for design 
optimization. In the previous example, the output URL object pointing to the ASTROS input file is used directly by 
a downstream service. If a scalar-value was desired—e.g., to assign a value to an objective function during an 
optimization—the URL could be opened and parsed to yield a number. The means of reducing output from services 
in this manner is accomplished with the SORCER Filter subclasses, discussed later. 

To provide a layer of abstraction from a specific implementation of a service (i.e., Java method), providers 
implement Java interfaces to identify the services they provide. (Java interfaces are defined by a list of method 
signatures, which are composed of a method name, argument types, and return type.) These Java interfaces are 
referred to as service types. In this manner, a remote-user is generally only concerned about finding a provider that 
implements the service type containing the service of interest. The specific provider usually does not matter, since it 
is the service that the user desires. Many providers on the network may have different implementations of the same 
service in which case they would all implement the same interface (i.e., service type). If a user desires to select a 
specific provider for a given service, the user may specify the name of the provider in addition to the service type. 

To use SORCER providers that are published on a network, a user must specify the name of the service, the 
service type that contains the service of interest, and the arguments for the service. The user does not have to specify 
the hostname, port, or IP address of the computer the service is running on. The arguments for all SORCER services 
are instances of the Context class. A Context object—or “context”—is a generic container that encapsulates name-
value pairs. In this manner, a context possesses its own namespace for identifying argument objects for a service. 
The service name and service type are encapsulated in the SORCER ServiceSignature class. (Instances of 
ServiceSignature are referred to as “signatures.”) 

The combination of the service name, service type, and a context are encapsulated in an instance of the SORCER 
Task class. A Task instance—or “task”—represents the basic unit of work that service providers operate on. Since 
tasks involve using remote services, a layer of abstraction exists to encapsulate both remote and locally executed 
units of work. The Evaluator class and its subclasses are the entities responsible for doing computational work via 
their evaluate method from both remote and local resources in SORCER. 

An Evaluator instance—or “evaluator”—that encapsulates a task is called an exertion evaluator. The word 
“exertion” implies the remote use of service providers. This is in contrast to other subclasses of Evaluator that are 
capable of doing simple calculations locally when the heavy lifting nature of an engineering analysis service is not 
required. For example, the ExpressionEvaluator class enables a user to combine Var instances in algebraic equations 
without using a remote service (the Var class is discussed later). In this light, evaluators are the entities responsible 
for either defining the process of how data is produced via remote services or producing the data themselves locally 
via their own logic. 

Var instances—or “vars”—are used to form both independent and dependent variables in SORCER. In the case 
of independent variables, vars have an instance of IndependentEvaluator that contains the value of the independent 
variable. The IndependentEvaluator object acts as a simple container to store a value and does not perform any 
calculations or use services on the network. 

Dependent vars are typically created to implement scalar-valued mathematical functions, such as objective, 
constraint, or other mathematical functions for use in analysis or optimization studies. They may also be to form 
composite functions. Vars contain the objects necessary to produce—rather than store—the values they represent, 
which may include Evaluator, Filter, and Persister instances. The three types of objects are used in a specific 
sequence when the method getValue is invoked on a dependent var. 
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When the getValue method is 
called on a dependent var, the 
evaluator’s getValue method is 
subsequently called. The evaluator’s 
getValue method then, in turn, calls 
getValue on its argument vars to 
ensure their respective values are 
current before proceeding. (If a var 
represents a function dependent on 
other vars, i.e., argument vars, the 
evaluator of the var representing the 
function holds references to those 
argument vars.) The evaluator then 
checks to see if it is out of date due to 
argument vars changing since the last 
invocation of evaluate. If the argument vars have not changed, the evaluator returns its current value without further 
processing. In this manner, all calls to evaluate are demand-driven, i.e., the evaluate method is invoked only if the 
evaluator’s arguments have changed since the last invocation of evaluate. As described earlier, the evaluate method 
may use a remote service implemented by a provider on the network to perform the necessary calculations, or the 
calculations may be done locally via its own logic. Once the evaluator’s evaluate and getValue methods complete 
and return a new value to the var, an instance of a Filter subclass may be employed.  

Since exertion evaluators typically return aggregate forms of data, reducing the output from them is often 
necessary. This data reduction is accomplished using the Filter subclasses. Using a Filter subclass object—or 
“filter”—on the returned objects from an evaluator allows users to reduce or transform the aggregate data produced 
by evaluators to yield new objects. The result of filtering is often a scalar value of a mathematical function. In the 
case where an evaluator produces aggregate data, the evaluator may be referenced by a number of different vars with 
different filters to yield different values, see Fig. 3. A series of filters may be combined to form a filter pipeline, 
such that downstream filters operate on the output of upstream filters. The resulting value returning from the filter 
(or pipeline filter) is then passed to the var’s Persister instance if it exists. 

The Persister instance—or 
“persister”—uses the value from the 
filter as an argument to its setValue() 
method. Depending on the specific 
subclass of Persister used, the persist 
method may write the var value to a 
file or set a field on an object. Once 
the persister is done executing, the 
var value is returned to the caller of 
the var’s getValue method. 

An OptimizationModel instance—
or “model”—is a collection of any 
number of vars that define a specific 
optimization problem. Figure 4 
illustrates a simple example of an 
OptimizationModel called model1. 
The model contains three vars; one 
independent and two dependent. The 
var y1v is a function of x1v, which is 
the independent var. The var y2v is a 
function of y1v, thus it is a composite 
function. 

 The vars are the implementation 
of the design variables, optimization 
objective function, and constraint 
functions. Additional vars may be 
included for monitoring other figures-

 

Figure 4. An OptimizationModel is a collection of Var objects; each 
var references an evaluator and may be referenced by other vars to 
form composite functions. 

 

Figure 3. A single Evaluator object may be referenced by multiple 
Var objects employing different filters to reduce aggregate data to 
scalar values; the values may be then written to a file (or object 
field) using a var’s persister. 
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of-merit. Once a model is created, it may be published as a provider for users to access remotely. This type of 
provider is referred to as a model provider to distinguish it from analysis providers. The model provider behaves like 
shared memory that is accessible to remote users over the network. There is only one state of the model, which is 
subject to manipulation by remote users. There are two techniques for users to interact with a published model 
provider: 1) via a single model query; or 2) via a table model query. 

A single model query is done from a requestor or SORCER command-line tool. In both cases, a query object is 
constructed containing the design variable var names and values and the var names of the objective and constraint 
functions that the user wishes to calculate. The query also contains the name of the model provider, so that it may be 
found on the network.  

In contrast to analysis providers, accessing model providers over the network does not require users to specify a 
service type and service name. Since all OptimizationModel instances have only one service type with a single 
service, the information is implied. This does, however, necessitate that the user specify the model provider name 
when multiple models are published.  

Once the query is constructed, it is executed by the user. The published model provider receives the query object 
and proceeds to invoke setValue on all the design variables. Once the setValue calls are completed, the model begins 
calling getValue on the user-specified objective and constraint functions. After all the getValue calls are complete, 
the query object is returned to the remote user with the updated var values. 

The second technique of using models is via a table query. Rather than passing a single set of design var values 
to the model provider, a user may construct a table of runs containing the names of the design vars and their values 
for each run. The table is added to the query with the name of the model provider and the var names of the objective 
and constraint vars the user wishes to calculate. Since a table of runs is being sent to the model provider, the user 
may specify the number of runs the model provider is to execute in parallel.  

Once the table query is constructed and sent to the model provider, the model provider creates new child 
instances of itself for parallel execution of the table. (The child instances are newly constructed objects, such that the 
states of their respective vars are not inherited from the model provider.) The model provider then creates a thread 
for each child model and begins to setValue and getValue on the vars as in the single model query. Once all the 
threads complete, the var values for each run are returned to the caller in a table object.  

In contrast to the single model query, the table query does not affect the state of the parent model provider’s 
vars. The child models are isolated from one another and the parent model, and are used exclusively to perform the 
user-requested calculations. Once the calculations are complete, the child models are discarded and the states of the 
parent model vars remain unaffected.  

B. SORCER Space Computing 
Large numbers of engineering analyses are generally required to perform conceptual-level aircraft design. This 

significant computational burden is addressed at the AFRL MSTC by using the SORCER software. The network-
centric approach of SORCER enables the use of heterogeneous computing resources, including a variety of 
operating systems, hardware, and software. Specifically, ESAV studies performed at the AFRL MSTC use 
SORCER in conjunction with a mix of Linux-based cluster computers, desktop Linux-based PCs, Windows PCs, 
and Macintosh PCs. The ability of SORCER to leverage these resources is significant to MDO applications in two 
ways: 1) it supports platform-specific executables that may be required by an MDA; and 2) it enables a variety of 
computing resources to be used as one entity (including stand-alone PCs, computing clusters, and high-performance 
computing facilities). The main requirements for using a computational resource in SORCER are network 
connectivity and Java compatibility. SORCER also supports load balancing across computational resources via the 
JavaSpaces technology, making the evaluation of objective and constraint functions in parallel a simple and a 
dynamically scalable process. 7 D
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 SORCER employs JavaSpaces 
technology to implement a loosely-
coupled distributed computing 
system. JavaSpaces enables different 
processes on different computers to 
communicate asynchronously in a 
reliable manner.7 Using this 
technology, SORCER implements a 
self-load balancing grid computing 
system that can dynamically grow 
and shrink during the course of an 
optimization study.  

A JavaSpace—or “space”—is 
Java code running on a computer that 
is accessible on the network in the 
same manner as service providers, see 
Fig. 5. The space provides a type of 
shared memory where exertion 
evaluators can put tasks they wish to 
be processed by service providers. 
Service providers, in turn, use Jini 
discovery mechanisms upon startup 
to find spaces on the network and 
monitor them for tasks with their 
service type. If a service provider sees 
a task it can operate on in a space, 
and the task has a flag indicating it 
has not been processed, the provider 
takes the task from the space. The 
provider then executes the 
appropriate service and returns the 
task to the space with a flag indicating the task has been processed. Once the task has been returned to the space, the 
process that initially wrote the task to the space detects the returned task and checks to see if it has been processed. 
If the task indicates it has been processed, the evaluator removes the task from the space. 

To achieve the load balancing across multiple computers, a service provider may be configured to have a fixed 
number of worker threads. The number of worker threads determines the number of tasks a provider can process in 
parallel. By configuring the number of worker threads for a specific service provider on a specific computer, the 
provider can self-load balance the computer it is hosted on (assuming that it is the only service provider operating on 
the host computer). 

IV. Design Studies 
The design of a supersonic aircraft involves assessing many figures of merit and the tradeoffs between them. In 

this study, a preliminary exploration of the design space is performed through univariate parametric sweeps of the 
design variables. In this manner, each design variable is independently swept from its lower bound to its upper 
bound in equal steps. This process is costly, but it serves three important purposes: 1) the sweeps provide a set of 
results that engineers may easily use to assess the validity of the MDA implementation; 2) the results may be used to 
screen design variables and responses for significance, which may result in a smaller MDO problem; and 3) the 
sweep results are used to calculate the sensitivities for the first iteration of the gradient-based optimization process. 
Once the preliminary study is completed, the MDO problem is solved using a robust successive linear programming 
(SLP) technique. 

A. Optimization Problem Statement 
A single objective function is identified along with nonlinear and side constraints to exercise the ESAV model in 

SORCER. The optimization problem takes the general form:  

 

Figure 5. SORCER uses JavaSpaces technology to provide a flexible, 
dynamic grid computing facility for ESAV optimization studies. 
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 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) (1) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒈(𝒙) ≤ 𝟎 (2) 

 𝑎𝑛𝑑 𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (3) 

 𝑤ℎ𝑒𝑟𝑒 𝒈 ∈ ℝ𝒏𝒄𝒐𝒏 𝑎𝑛𝑑 𝒙 ∈ ℝ𝒏𝒅𝒗. (4) 

The objective is to minimize the weight of the ESAV, which includes the fuselage and lifting surface weights. In 
this manner, the life cycle cost of the aircraft is kept down due to its strong correlation with takeoff gross weight.8  

Two optimization problems are solved with different range constraints. In the first case, the cruise leg range is 
constrained to be above 1500 mi at Mach 0.8 for 6000 lb of fuel. In the second case, the range is increased to 2500 
mi. The design variables are wing area, taper ratio, and aspect ratio. The lower and upper bounds on the design 
variables are: 100 and 300 ft2 for wing area, 0.6 and 5.0 for aspect ratio, and 0.1 and 1.0 for taper ratio, respectively. 

B. Optimization Algorithm 
The optimization technique applied is an adaptation of the Frank-Wolf implementation of the successive linear 

programming (SLP) method.9 The SLP method used herein is tailored for parallel computing on a large number of 
CPU cores such that gradient and line search calculations are executed in parallel.10 The algorithm is tolerant to 
failed runs in both the gradient and line search phases of an optimization iteration. This robustness comes with the 
computational cost associated from the extra analyses required over that of a typical first-order finite-difference 
technique. 

The optimization begins by calculating the gradient of the objective and constraint functions at the initial design 
point. The gradients are then used to form a constrained linear programming (LP) problem where the optimum is 
found using an LP solver. In traditional implementations of gradient-based methods, a line search follows that 
involves sequentially searching for a minimum along a line from the initial design to the estimated optimum. This 
approach is inefficient given the computing resources available to most engineers today.  

Since many CPU cores are available on a single computer, cluster, or high-performance computing facility, the 
line search is converted to a partial enumeration of the line. The number of designs evaluated on the line depends on 
the computational resources available, the anticipated nonlinearity of the search, the computational expense of the 
analysis, and the schedule of the MDO project. Once the line is partially enumerated, the local optimum may be 
found via a simple curve fit to a quadratic polynomial. Using the local optimum determined from the partial line 
enumeration, a subsequent iteration begins with a gradient evaluation at this point. The SLP process continues based 
on optimization convergence criteria or schedule considerations. 

The SLP algorithm is implemented using Matlab and uses the lingprog LP solver to determine search directions. 
The responses required to calculate the objective and the constraints are supplied via the SORCER Engineering 
ESAV Model Provider. The communication between Matlab and the Engineering ESAV Model Provider is done by 
instantiating the SORCER ModelClient class within a Matlab session. The ModelClient class provides a simple 
interface for setting design variable values, running the MDA, and obtaining the responses necessary to form the 
objective and constraint functions. 
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V. Results 
Figure 6 shows the planforms for the baseline 

(approximately 1550 mi range), the 1500 mi range 
design, and the 2500 mi range design. The optimization 
iteration history is shown in Fig. 7 for the design 
variables, constraint (range), and objective (weight). 
Figure 8 plots the results of the ASTROS structural 
sizing sub-optimization performed on the three ESAV 
designs. The figure shows the optimal thicknesses of 
the skins, ribs, and spars for the three configurations.  

In the first case with the 1500 mi range constraint, 
the wing area was reduced to minimize weight. Since 
the baseline range was greater than 1500 mi, the 
optimizer had the design freedom to reduce the 
objective function in this manner. Taper ratio was also 
reduced having a similar effect. The structural sizing 
sub-optimization was driven in this case by two of the 
four maneuvers: the 9g pull-up at Mach 0.9; and the 
7.2g pull-up at Mach 1.2.  

The second optimization problem solved was for the 
2500 mi range constraint. The planform of the wing in 
this case became long and slender with a high aspect 
ratio, high wing area, and low taper ratio. Since the 
initial design was infeasible, a considerable amount of 
weight was added via increases in wing area and aspect 
ratio to achieve the 2500 mi range. The structural sizing 
sub-optimization was driven by the 9g pull-up at Mach 
0.9 maneuver. 

 

Figure 6. The ESAV optimization result half-span 
planforms: baseline 1550 mi range (top); 1500 mi 
range (middle); and 2500 mi range (bottom). 

 

 
Figure 7. Results from ESAV optimization illustrate how the design variables, objective and constraint 
functions are manipulated by the SLP technique (1500 mi range constraint, magenta; 2500 mi range 
constraint, blue). 
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VI. Conclusions 
The SORCER engineering software was used successfully in the design of two prototype ESAVs. The results 

from both optimization cases exhibited the correct trends consistent with historical aircraft design. These results 
provide a degree of validation of the implementation of the Matlab SLP code, the SORCER ESAV model, the 
SORCER providers, and the JavaSpaces technology.  

The use of the JavaSpaces technology for parallel distributed computing proved reliable and efficient. It was a 
straightforward process to add computers to the SORCER grid as needed during the course of the two optimization 
studies. This flexibility proved valuable as the number of computers available varied from day-to-day. 

Lastly, the application of a gradient-based solution technique capable of handling failed design points was 
demonstrated successfully. The robust nature of the SLP technique and its ability to perform gradient and line search 
functions in parallel made the ESAV optimization studies possible in a short period of time with minimal user 
intervention. 

 

Figure 8. The ESAV planform and structural design thicknesses from the ASTROS structural sizing sub-
optimization problem are shown above for the 1550 mi range baseline design (top row), the 1500 mi range 
design (middle row), and the 2500 mi range design (bottom row) optimal designs. (The left column shows the 
thicknesses for the wing skins and the right column shows the thicknesses of the ribs and spars.) 
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