
Monitoring Federated Services in CE Grids

Sekhar Soorianarayanan and Michael Sobolewski
sobol@cs.ttu.edu
SORCER Lab, Texas Tech University,
Lubbock, TX 79409

ABSTRACT: The goal of the Service-ORiented Computing EnviRonment (SORCER) is to form grids of dis-
tributed services that provide engineering data, applications and tools on a network. Such environment re-
quires a mechanism for monitoring and debugging of service-oriented programs: tasks (distributed atomic ac-
tivities) and jobs (aggregations of jobs and tasks) in the service grid and passing of results from the grid
environment back to the requestor. The design issues of such a system are described along with its implemen-
tation in the SORCER environment.

KEY WORDS: Service-oriented computing, grid computing, concurrent engineering, Jini network technol-
ogy.

1 INTRODUCTION

SORCER, which stands for Service ORiented Com-
puting EnviRonment, is a service-based concurrent
engineering project which is based on evolution of
the concepts and lessons learned in the FIPER pro-
ject [1-8], a $21.5 million program founded by NIST
(National Institute of Standards and Technology)
[1]. The goal of the SORCER project is to develop
an infrastructure for global communication of prod-
uct information, data, methods, and tools while satis-
fying stringent product performance requirements.
The architecture of the SORCER system is designed
to be flexible enough to handle the needs of almost
any product from aircraft engines to manufactured
goods such as plastics.

The architecture of the SORCER system is ser-
vice-based, network-centric, and web-centric. This
architecture houses the large pool of distributed ser-
vices that execute business logic and integrate tools
and applications in the underlying engineering do-
main. The web-centric architecture enables HTTP
communication between a web-based client and the
SORCER system, as well as transparent access to
the globally distributed data and the pool of feder-
ated services. The individual services requested by
the SORCER system act on behalf of the web client,
both in the role of providing services (provider
mode) and requesting services (requestor mode).
When requesting services, the SORCER system also

brokers the requests, delegating them to the appro-
priate registered service providers.

One of the key problems that arise with a distrib-
uted system of services and clients is the need for
the clients to monitor the execution of exertions [3,
5] in the distributed SORCER environment. An ex-
ertion is a distributed activity which can be either
atomic or compound. In SORCER there are two
types of basic exertions defined: tasks and jobs. A
task is the atomic exertion that is defined by its data
(a context model), and by its method. A job is the
compound exertion that is comprised of tasks and
other jobs, so the job is a recursive structure ex-
pressed in terms of exertions. While a classic com-
puter program is organized list of statements in a
programming language; a job’s exertions can be
treated as distributed statements that tell the SOR-
CER environment what to do with task context
models [3-5]. Execution of a job might require many
service providers. Once the job starts executing, the
exertions in a job get bound to relevant providers
that are determined in runtime. This dynamic collec-
tion of bound providers is called a federation. Also,
it might take many hours or days to execute a job.
Due to these reasons, it becomes very necessary to
monitor, control and debug the execution of the jobs.
It’s also necessary to have a recovery mechanism
through which, a user can correct and resume from a
failure point of a misbehaved exertion. This results
in higher tolerance level of any error in service-
oriented programming.

2 SYSTEM ARCHITECTURE OVERVIEW

Building on the object-oriented paradigm is the ser-
vice-oriented paradigm, in which the objects are dis-
tributed, or more precisely they are network objects
and play some predefined roles. A service provider
is an object that accepts messages from service re-
questors to execute an item of work – a task. The
task object is a service request – a kind of elemen-
tary grid operation executed by a service provider. A
service jobber is a specialized service provider (bro-
ker) that executes a job – a compound request in
terms of tasks and other jobs. The job object is a ser-
vice-oriented program that is dynamically bound to
all relevant and currently available service providers
on the grid. This collection of grid providers dy-
namically identified by a jobber is called a job fed-
eration. This runtime network or grid federation is
the jobs’ execution environment and the job object is
a service-oriented program. In other words, we ap-
ply the object-oriented concepts directly to the grid
in the service-oriented paradigm. Tasks and jobs as
grid programs are called exertions. A task is the
atomic exertion that is defined by its context model
(data), and by its method (a pair: interface and selec-
tor). A service context is the basic data structure
based on the percept-calculus knowledge representa-
tion scheme [9]. A context model is a tree like struc-
ture of data being processed. Each path of a tree
names a leave node where the data resides. An exer-
tion method defines a service provider (grid object)
to be bound to in runtime. This network object pro-
vides the business logic to be applied to the exertion
context model. The computing framework based on
concepts: context model, method and exertion is
called for short the CME framework (see Figure1 for
details).

Figure 1 Context-Method-Exertion Paradigm

The method is primarily defined by a provider
type (interface) and selector (method name) in the
provider’s interface. The service method may also
refer to a piece of code to be downloaded and exe-
cuted by a provider (mobile code). Optionally, addi-
tional attributes might be associated with the
method, for example a provider’s name or provider’s

identifier. The information included in the exertion
method allows the SORCER program to bind the
exertion to the network object and process the exer-
tion’s context by one of its peer’s operations, which
is defined by its published interface. This type of
service provider is called a method provider. An-
other type of service provider is a context provider
that provides shared data to the grid via the ob-
server-observable design pattern [12]. Thus, both
context and method providers represent grid data
and operations to be used in the grid-oriented pro-
grams. A context model in jobs is called a control
context since it defines the control strategy for the
execution of a job’s exertions. All the component
task contexts of a job constitute a combined context
called a job context.

A job usually is created in the GUI interactively
as a service-oriented program. Each “instruction” in
that program is represented by the exertion in it. All
dependencies between the data shared between exer-
tions are captured with metaattributes in exertion
context models.

2.1 Exertion Execution
All services in the SORCER environment are peers.
They implement the global interface called Servicer.
A service is an act of invoking a method of follow-
ing signature on a service provider:
Exertion service(Exertion)

All service providers in SORCER extend the Ser-
viceProvider, class which is a system level ab-
stract class, implementing Servicer. The default
implementation of the service method in Service-
Provider looks into the service method of the ex-
ertion and checks if the service provider itself im-
plements the interface defined in exertion. If it does,
then via reflection the method defined by the selec-
tor is invoked with the exertion’s service context as
the argument. Hence all providers can implement
any number of custom interfaces with methods ac-
cepting ServiceContext as argument. If the in-
terface defined by the service method is not imple-
mented by the service provider, the called provider
dynamically finds the right provider with the aid of
object registry and forwards its exertion to the right
peer in the network to be bound for execution.
The clear separation of method, data and control
strategy, and having the global Servicer interface
helps us to build dynamic federation of services in
the service grid. Also, no service requires any prior
knowledge of another service and there’s no hassle
of finding on-the-fly a provider for a particular inter-
face in the grid. All service providers in SORCER
act as true service peers.

2.2 Job Execution
Specialized service providers that are called Jobbers
perform Job execution. A Jobber coordinates exe-
cution of a job using the job context model called a
control context. The control context defines a job’s
execution strategy. A strategy implements a mas-
ter/slave-computing model [13] with sequential or
parallel execution of slave exertions with the master
exertion executed as the last one.

Figure 2 Job execution in sorcer

 Jobbers use dispatchers to dispatch component
exertions to the right providers in the grid. In SOR-
CER there are four types of dispatchers that imple-
ment different type for control strategies. These in-
clude sequential and parallel dispatchers for Catalog
and Space. A relevant dispatcher is assigned to a
jobber by the dispatcher factory based on the job’s
control context. The UML diagram for job execution
is presented in Figure-2.

3 CONCEPTUAL ARCHITECTURE

During the bootstrap stage of a service provider, the
provider receives a unique identifier called provide-
rID, from the object registry that keeps a catalog of
all services in the local grid. This providerID is
globally unique and independent to location or plat-
form of the service.

When the jobber receives a request to execute a
job, it creates a runtime copy of the job, and then it
persists in a data store. The jobber now starts dis-
patching the runtime exertions to the right providers
in the grid. Before dispatching to the service provid-
ers, the jobber sets the providerID in the dispatched
runtime exertions of the runtime job and updates the
runtime database accordingly.

Each runtime exertion has a process state associ-
ated with it. All exertion process states are main-
tained by the Jobber, which updates them in the per-
sistent store. This helps us to determine the state of

distributed activities from one central location. Also,
this scheme allows the requestor to send remote
commands to control the execution of its running
job.

Figure 3 Conceptual architecture

Any requestor can monitor its exertions using the
persisted information regarding the corresponding
runtime exertions. Any request to sus-
pend/stop/resume can now go to the right provider
with the aid of the providerID set inside each run-
time exertion. When the provider receives a request
to alter the state of the running exertion, it checks a
set of rules and alters the state of the runtime exer-
tion and updates the runtime database. When a
monitoring call reaches the jobber, it propagates the
request to the right providers, as it keeps track of
which provider is executing what part of the distrib-
uted activity of the job.
 Once an exertion is suspended or failed, the user
would get to know the cause of the failure/error from
the persistent store of monitoring system and then
the user can make adequate corrections to the exer-
tion by debugging the underlying problem. Once the
corrections are made, the user can resubmit the exer-
tion by resuming the exertion from the failure point
and continue monitoring the distributed execution
again. Thus any failure can be inspected, debugged,
and recovered. Figure-3 illustrates the behavior of
the monitoring system.

4 IMPLEMENTATION OF THE MONITORING
SYSTEM

SORCER treats monitoring also as a service, which
is provided by all the peers in the federation. A
Monitor interface is presented in Figure-4. All
providers in the system extend the Service-
Provider class and ServiceProvider imple-
ments both Servicer and Monitorable inter-
faces.

Figure 4 All providers are Monitorable

As mentioned above, each provider has its own
unique identifier. This unique identifier is the ser-
viceID provided by the Jini lookup service (object
registry) [10, 11] when a provider joins the SOR-
CER grid. Peers forward a service-oriented program
(exertion) submitted by a requestor to the right pro-
vider. Each peer would check if the service re-
quested matches the service provided by it. If not, it
forwards to the right provider defined by the exer-
tion’s method.

A runtime data store is maintained for all exer-
tions being executed in the grid. This way the user
can monitor all the runtime jobs from the data store
and can keep track of the distributed activities. The
provider while executing a task of job may update
the results intermittently in the runtime data sore.
The user may also check the results periodically. All
runtime interactions with the data store are main-
tained by a specialized persisting service called the
Persister.

Figure 5 Exertion States

When a provider receives an exertion for execu-
tion, it initially does the following
1) Sets its providerID in the exertion.
2) Then it checks if the exertion is already a runtime
exertion. If so it updates the exertion. Otherwise, via
the persister service, it creates a new runtime exer-
tion for the exertion it’s about to execute.
 All providers are remote objects and they store in-
formation about the current running exertions and
their statuses in different formats. All service pro-
viders maintain a static map of the currently execut-
ing exertionIDs and the statuses of the correspond-

ing exertions. This is called the Exertion Status Map
(ESM). A jobber is a specialized provider that spe-
cializes in execution and coordination of jobs. Job-
bers spawn a separate dispatcher thread for the exe-
cution and management of a runtime job. Each
Jobber maintains a static map of the currently exe-
cuting runtime exertionIDs and the corresponding
dispatcher’s threads that it executes. This map is
called the Dispatcher Thread Map (DTM). Every
dispatcher before executing the individual exertion
of the job sets the providerID of the provider to
which it dispatches the individual exertion of the job
to and updates accordingly the runtime data store.
Once the exertion is dispatched to the individual
providers, it is the responsibility of the providers to
maintain the ESM and intermittently update the cur-
rent state of the data of the running exertion in the
data store. This way, the user can gather useful in-
formation about the running job and its distributed
components.

Any exertion that starts executing on the individ-
ual provider side may complete successfully or fail.
An exertion might also fail due to some input error,
in which case, its state is marked as ERROR. Once
the exertion is completed successfully or fails, the
providers return to the Jobber, which marks the run-
ning exertion as DONE/FAILED/ERROR and saves
it in the data store. In the case of any failure or error,
the jobber marks the exertion as FAILED and waits
for the other dispatched exertions to finish. Once
finished, the dispatcher would mark the runtime job
as FAILED/ERROR and persist it in the data store.
The state diagram of exertion execution is depicted
in Figure 5.

All providers capture not only the runtime results
in the exertion context model, but also they can cap-
ture any exceptions or errors that are encountered
during the execution. In case of any FAIL-
URE/ERROR of the executing exertion, the message
associated and the exception is added to the context
model of the exertion. This way the causes of failure
or exceptions are carried back to the user via the
context model. Once the exertion encounters any ex-
ception, the providers remove the entry from DTM
and ESM and return the exertion to the calling
method. The client receives notification through the
Notification Manager [4]. The user can see the run-
time job from the Job Monitor (web-based user
agent) and check the status of job, component exer-
tions, results of still running exertions, any excep-
tions encountered while running etc. Using the Job
Editor (user agent), the user can make necessary
modifications/corrections on a FAILED/SUS-
PENDED runtime job and rerun the job from any
point. This is the central idea of the debugging capa-
bility of the job monitoring framework.

One of the main features of the Job Monitor is that
users can issue commands to suspend/stop a running
job and resume a suspended job. When the client is-

sues a command to suspend/stop a job, with the help
of the providerID saved in the job, the request is
forwarded to the right Jobber. Once the request
reaches the jobber, the jobber pulls out the right
DTM entry and issues command to suspend/stop to
the dispatcher thread. The Dispatcher thread now is-
sues command to all the running exertions inside the
dispatcher to stop/suspend, again with the help of
the providerID which is set inside the running exer-
tions. Once the command reaches the respective
providers, each provider now has a chance to
cleanup and marks the exertion as SU-
PENDED/STOPED and returns the exertion with the
current state of data which is preserved inside the
context. If the provider is not smart enough to main-
tain the state of the atomic activities like task, then

Figure 6 Monitoring - System View

the provider can choose to return back the initial
state of the context model. Once the jobber receives
all the exertions from all federated providers, it
marks the job as SUSPENDED/STOPPED and per-
sists in the data store. If the user has requested to
stop the running job instead of suspend, then the cor-
responding runtime job is removed from the data
store. (see Figure 6)

A FAILED/SUSPENDED job can be resumed or
stepped by the user. Once requested to resume, it’s
the same as the execution of a job from INITIAL
state, except for the following differences: 1) A new
runtime copy is not made, as the job is already a run-
time job 2) The job can be resumed from any previ-
ous point the user specifies. If the user does not
specify anything, the job is resumed from the sus-
pended or failed point. If the user chooses to step a
job instead of resuming/running, then the exertions
inside the job are run step by step. After each step,
the job gets suspended automatically and the notifi-
cation is sent to the user to review and resume the
job.

The user has the option of setting a review flag
for a component exertion at any point in the job be-
fore the job is submitted for execution. The jobber
automatically would suspend the execution of the

job at that point and wait for the review from the
user. The user can review the execution and then re-
sume the job from that point. Other than setting re-
view on exertions, the user can also mention the
point from which any exertion is to rerun and men-
tion if any exertion needs to be skipped. All these
functionalities would be handled by the Jobber ser-
vice.

5 IMPLEMENTATION OF THE USER AGENT

Figure 7 Monitoring GUI

The SORCER Launcher is the main menu for all
of the GUI tools that are needed to build contexts,
tasks, jobs, and run and monitor SORCER jobs.
Once a user has been authenticated the launcher
menu is displayed in the left-hand frame of the user
agent (Figure-7) and the right hand frame is initially
empty. The user is then free to begin accessing the
environment. The user selects the Monitor item from
the launcher menu to get the Monitor GUI, to the
right of the launcher as shown in Figure 7.
 The Job Monitor displays a list of jobs submitted
by the user and now the user is authorized to moni-
tor all his/her runtime jobs persisted in the data
store. On selection of any runtime job in the list, the
job worksheet displays multiple rows, each row rep-
resenting a component exertion of the selected job.
Every exertion of the Job in the GUI has a colored
indicator which shows the current status of the se-
lected job. Any SUSPENDED, FAILED, or DONE
job could be edited and resubmitted for execution.
Also the job control-context can be edited to change
the execution strategy of the job (see Figure 8). The
job context can also be viewed for the job and all the
information regarding exceptions can be seen in the
Job Context user agent. Once the cause of the failure
is found out, problems can be fixed and the job can
be resubmitted for execution. Figure-7 shows the ed-
iting capabilities of Job Monitor.
 The monitor worksheet has a check box corre-
sponding to every exertion in the Job. This is used to
mark the point from which a FAILED/SUSPENDED
job is to be executed. If no check box is checked in,

the job is resumed from the point where it failed or
was suspended. If the job is a sequential, only one
check box can be selected. If the Job is parallel, mul-
tiple check boxes can be selected. The Job Monitor
inherits all the functionality of a Job-Editor user
agent. In the worksheet the three columns indicate
the name of the exertion, the type of service re-
quested and the description of the exertion. The pro-
vider column is the name of the SORCER service
provider that was executing a given exertion. The
info button in the popup menu gives additional in-
formation like the time of execution, when the job
started to run, when it completed, which host it ran,
etc. In the Job Editor, the exertions can be edited and
changes saved when the job is not running.
 The control-context shown in Figure-8 is used to
define the execution strategy of a job. A job can be
marked for execution as sequential or parallel; can
build a federation using catalog, exertion space, or
direct access to object registries. Also some exer-
tions can be marked as skipped in the job. The dis-
patcher associated with the job would disregard
those marked as skipped.
When the job is running, Job Monitor starts a moni-
toring thread that refreshes the job worksheet for
every 30 seconds. This way the user can view the
current status in the worksheet. The user can also re-
fresh manually the jobs by clicking on the refresh
button shown in the GUI.
The Notification button would bring up the Notifica-
tion GUI which would display all the notifications
submitted by the federated providers for the selected
job. Thus the client can see the status and notifica-
tions for the job at the same time.

The Pause and Stop buttons are selectable only
for jobs that are running. Pause would suspend the
job. The client can choose to suspend the job at any
particular point once the job starts executing. Click-
ing Pause would send the message to the providers
to suspend the execution of the job. The providers
would suspend the job and return the suspended job
to the user. The Stop button would completely halt
the job and delete the job from the Job Monitor as
well as from the runtime data store
The Resume and Step buttons are selectable only
when the job is in SUSPENDED/FAILED state. The
reason for this is that any job which is currently run-
ning can not be resumed or stepped. Resume would
resume from the point at which the job was sus-
pended or failed unless any check box is selected in
the Monitor Worksheet indicating from what point
to start. The Step button would flag all component
exertions to be reviewed. This will cause the job to
suspend after execution of every exertion in the job.
All interactions with the SORCER.grid are made by
the user agent via an application servlet which is run
in by a SORCER portal.

The Resume and Step buttons are selectable only
when the job is in SUSPENDED/FAILED state. The

reason for this is that any job which is currently run-
ning can not be resumed or stepped. Resume would
resume from the point at which the job was sus-
pended or failed unless any check box is selected in
the Monitor Worksheet indicating from what point
to start. The Step button would flag all component
exertions to be reviewed. This will cause the job to
suspend after execution of every exertion in the job.
All interactions with the SORCER.grid are made by
the user agent via an application servlet which is run
in by a SORCER portal.

Figure 8 Control Context

6 CONCLUSION

The paper describes a versatile architecture to sup-
port monitoring CE grids. The SORCER monitoring
architecture uses ubiquitous services that reside on
the network and federate dynamically to map into a
specific engineering process. The services have
standardized interfaces allowing one service to be
seamlessly replaced by another service in the CE
grid. The service based computing model requires
registries where services can register themselves and
allow them to be discovered in real time for a fed-
eration. The conceptual model is the CME generic
paradigm. This federated approach reduces the brit-
tleness in existing systems that break when the proc-
esses and tasks in the processes evolve over time.
Several applications have been created in the do-
main of engineering at GE Aircraft Engines to dem-
onstrate the concepts of this architecture. The feder-
ated service-oriented programming has reduced the
design cycle time for preliminary aerodynamic
analysis at GE by a factor of 10. It has also reduced
the nozzle combustor development time from a few

days to a few minutes. The service monitoring solu-
tions that have been developed as a part of this work
proved to be user friendly and efficient to monitor
and debug CE job federations.

REFERENCES

[1] The Federated Intelligent Product Environment

(FIPER) – Project Brief (1999), Available at
http://jazz.nist.gov/atpcf/prjbriefs/prjbrief.cfm?P
rojectNumber=99-01-3079

[2] Sanjay G., Sobolewski M., 2003, Trust and Se-
curity in Enterprise Grid Computing Environ-
ment, Proceedings of the IASTED Intl., Confer-
ence on Communication, Network, and
Information Security, Dec 10-12, 2003, New
York, NY.

[3] Sobolewski M., Soorianarayanan S, Malladi-
Venkata R-K., 2003, Service-Oriented File Shar-
ing, Proceedings of the IASTED Intl., Confer-
ence on Communications, Internet, and Informa-
tion technology, pp. 633-639, Nov 17-19, 2003,
Scottsdale, AZ.

[4] Lapinski M., Sobolewski M., 2002, Managing
Notifications in a Federated S2S Environment,
International Journal of Concurrent Engineering:
Research & Applications, Dec 2002.

[5] Sobolewski, 2002. Federated P2P Services in CE
Environments, Advances in Concurrent Engi-
neering, A.A. Balkema Publishers, 2002, ISBN
90 5809 502 9, pp. 13-22.

[6] Sobolewski, 2002. FIPER: The Federated S2S
Environment, JavaOne, Sun’s 2002 Worldwide
Java Developer Conference,
(http://servlet.java.sun.com/javaone/sf2002/conf/
sessions/display-2420.en.jsp).

[7] Zhao, Shuo, and Michael Sobolewski, 2001,
Context Model Sharing in the FIPER Environ-
ment, Proc. of the 8th Int. Conference on Con-
current Engineering: Research and Applica-
tions, Anaheim, CA.

[8] Röhl, P.J. & Kolonay, R.M., et al. (2000). Feder-
ated Intelligent Product Environment, American
Institute of Aeronautics and Astronautics Inc.

[9] Sobolewski, M. 1991. Percept Conceptualiza-
tions and Their Knowledge Representation
Schemes. Z.W. Ras and M. Zemankova (Eds.)
Methodologies for Intelligent Systems, Lecture
Notes in AI 542, Berlin: Springe-Verlag, pp.
236-245.

[10] Edwards, W.K. (2000). Core Jini, 2nd ed., Pren-
tice Hall, ISBN: 0-13-089408.

[11] Jini Architecture Specification. Available at
URL: http://www.sun.com/jini/specs/jini1_1.pdf.

[12] Freeman, E., Hopfer, S., & Arnold, K.(1999),
Javaspaces™ Principles, Patterns, and Practice,
Addison-Wesley, ISBN: 0-201-30955-6.

[13] Grand, M. (1999). Patterns in Java, Volume 1,
Wiley, ISBN: 0-471-25841-5

