
Context Model Sharing in the FIPER Environment

Zhao, Shuo
GE Corporate Research and Development Center, Niskayuna, NY 12309

Sobolewski, Michael

GE Corporate Research and Development Center, Niskayuna, NY 12309

Abstract

The goal of the FIPER environment [1] is to form a
federation of distributed services that provide engineering
applications and tools on a network. A highly flexible
software architecture has been developed, in which
engineering tools like computer-aided design (CAD),
computer-aided engineering (CAE), product data
management (PDM), optimization, cost modeling, etc.,
act as distributed service providers and service requestors.
Service providers can enter the federation by registering
with a service broker and publish the services through a
process of discovery and join. The individual services
communicate via so-called context models, which are
abstractions of the master model of a particular product.
The context model represents a business object, which has
the ability to retain its state and integrity while being
concurrently accessed. Therefore, a data persistence para-
digm has been developed to ensure persistence across the
network. The framework for sharing context models in
the FIPER environment consists of a presentation layer,
along with a thin web client, business logic layer and
repository layer. It is implemented using Java, remote
method invocation (RMI), Jini, JavaSpaces, and servlet.

1. Introduction

The development of complex mechanical systems such
as turbine engines is a highly coupled multidisciplinary
process. In a market with ever increasing demands in terms
of life cycle cost, environmental aspects (noise, emissions,
and fuel consumption), and performance, the availability
of accurate analytical tools during the design process is a
given and ceases to be a discriminator between the various
competitors. It is, therefore, the application of these tools
and their automated interaction in a robust computational
environment, which may decide over success or failure of
a specific project through reduction of design cycle time
and avoidance of costly rework because of availability of

high-fidelity information earlier in the design process. At
the same time, especially in a multi-national company,
design increasingly takes place at spatially distributed
locations, potentially all over the world, where all
participants in the design process need constant real-time
access to all relevant up-to-date product information. In
light of these challenges, GE has teamed with Engineous
Software, BFGoodrich, Parker Hannifin, Ohio Aerospace
Institute, and Ohio and Stanford Universities in a four-year
effort to develop a "Federated Intelligent Product
EnviRonment" (FIPER) [1] under the sponsorship of the
National Institute for Standards and Technology-Advanced
Technology Program (NIST-ATPTM). FIPER strives to
drastically reduce design cycle time, and time-to-market
by intelligently automating elements of the design process
in a linked, associative environment, thereby providing
true concurrency between design and manufacturing. This
will enable distributed design of robust and optimized
products within an advanced integrated web-based
environment.

The FIPER architecture is simultaneously web-centric,
service-centric and network-centric. This architecture
houses a pool of federated services. The web-centricity
enables transparent web-based access to the globally
distributed data and the pool of services. The individual
services can act within this framework, both in the role of
providing services (server mode) and requesting services
(client mode). When requesting services, the FIPER
infrastructure also brokers the requests, delegating them to
the appropriate registered service.

Data persistence control is a critical element of the
FIPER environment, in which data from its context models
and distributed business logic are available globally. In this
model, the distributed clients might request services
concurrently for the same data. Without data persistence
control, data integrity would be compromised because
clients could use common data concurrently: clients could
modify the same data at the same time. Data persistence
can also provide database independence, so that multiple
database vendors can be adopted.

A context model is the basic element of FIPER data
structures; it forms the essential structure of the data being
processed. A context model in the FIPER system is
represented as a tree-like structure of context nodes. A data
node is where the actual data resides. The context denotes
an application domain, and a context model is its context
with data nodes as leaf nodes appended to its context paths.
A partial context model structured for a turbine airfoil me-
chanical analysis is depicted in Figure 1.

Ovals in the figure represent context nodes, which in
turn form the paths of this model. The rectangle shape
indicates the data node, which is located at the leaf.

The framework for the data persistence service is
shown in Figure 2. Since the FIPER environment is a
federation of distributed services, the ability to share and
access context models is itself one of the FIPER services.
The first step for clients sharing a context model in a
persistent and concurrent manner is finding the service
provider, as they would for any other services. The details
for locating a service provider are presented later.

The three centricities of the FIPER system are clearly
identified in Figure 2. The client accesses the application
server through an HTTP portal that indicates the web-
centric approach. The network-centric concept is shown
(middle) by the network representation (large oval) that
contains various service providers (small ovals). Since all
the providers form a network-centric environment, the

application server discovers and communicates with a
particular provider via its catalog of services or drops a
task into a JavaSpace. Within the network, all FIPER
services are connected to multiple spaces and execute
relevant tasks by taking a task and returning results to the
space. An example of the service-centric concept is shown
by the small highlighted circle at the right of the larger
oval, which represents the data persistence service. The
persistence service uses JDBC (Java Database Connectity)

to talk with the underlying database (shown on
the right). As far as the client is concerned from
the service-centric perspective, getting a service
from the desired provider is the ultimate goal.

The three-tiered FIPER approach creates a
layered software architecture in which there is
complete separation of the data storage
(Repository Layer) and the service-based
business logic (Business Logic Layer), from the
web user interfaces (Presentation Layer). In this
architectural model, the business rules are
mapped into federated services.

2. Presentation Layer

As mentioned above, FIPER is based upon a web-
centric and web-aware architecture. Data access and
sharing are initiated from thin web clients. The model-
view-controller (MVC) design pattern is used to design
modular and interactive user interfaces. Each of the three
components of the MVC design is explained in more detail
below.

Models are those components of the system application
that hold application data. They are the domain-specific
software simulation or implementation of the application�s

central structure. Models implement
application functions that handle data-flow
computation in response to user interaction
sent from the controller component [7,8].

Views deal with everything graphical.
They request data from the model and
display data. They may also contain
subviews and may be contained within
superviews. Views are closely associated
with a controller. Each controller-view pair
has one model, whereas each model may
have many controller-view pairs.

Controllers contain the interface between the associated
model and the views and input devices. They also deal with
scheduling interactions with other controller-view pairs.
The controller tracks mouse movement between
application views, implements messages and button
activity, and implements input from input sensors.

Figure 1: Example context model for turbine
analysis showing the tree-like node structure

Figure 2: The three-tier architecture for FIPER context
sharing allows full separation of data storage from

The relationship between these three components and
their interaction is depicted in Figure 3. As illustrated in
Figure 3, an MVC triad is intimately connected. In
particular, the view knows explicitly about the model and
the controller. The controller knows explicitly about the
model and the view. However, there is no explicit
connection from the model to the other two. This implicit
connection between models and view/controllers allows the

model to be separated from the application. Therefore,
different controller-view pairs can use the same model.

The architecture diagram for the presentation layer is
presented in Figure 4. The MVC approach is used
throughout this design.

The class FiperLauncherModel, which is extended from
Java object Observable, represents the model here. The
Observable class represents an observable object, or data in

the MVC paradigm. An observable object can have one or
more observers. An observer may be any object that
implements the interface Observer. After an observable
instance changes, an application calling the Observable�s
notifyObservers method causes all of its observers to be
notified of the change by calling their update method.

A view class is extended from the Java Panel object,
and implements the Observer interface. The name of each
view object can be self-explanatory for one�s purpose. The
class ContextModelView is to display the context model as
a tree structure. Control buttons are provided for the user to
manipulate the context model view. Detailed information
on the usage of each button is described in the next section.
To display a tree structure, a TeaSet widget called Forest is
used. TeaSet Widgets [11] are a large collection of high-
performance, low-resource-consuming Java GUI
components that help Java developers to create
sophisticated user interfaces within resource-limiting
environments. The classes FinderView and BrowseView
support search and browse functions. In FIPER, a context
is grouped into domains and subdomains. Each domain
contains several subdomains. Each subdomain contains
contexts. The action flow is as follows:

Step 1: A domain is selected; a change notice is sent to
the model by calling notifyObservers

Step 2: The model sends an update back via the update
method; a list of subdomains is displayed

Step 3: A subdomain is selected; a change notice
is sent to the model by calling notifyObservers

Step 4: The model sends an update back via the
update method; a list of the context is displayed

Step 5: A context is selected; a change notice is
sent to Model by calling notifyObservers

Step 6: The model sends an update back via the
update method; the context model is displayed as a
tree structure

Each view object has a model field that points to
FiperLauncherModel. Since FiperLauncherModel is
an Observable object, each view object has to add it-
self as the model�s observer by calling the addOb-
server method.

After adding itself to observers of the model, each
view object needs to implement the update method in
the Observer interface in order to process updates.
The actual implementation of the update method
depends on the functionality of each view object. For
instance, class FinderView should implement a list
structure to contain and display the list of context
model names. This list should be updated in the

update method to contain the updated data from the model.
Meanwhile, class ContextModelView should have its
Forest object updated, to contain the changed data.

Figure 3: The model-view-controller
(MVC) triad, allowing modular
component plugin

Figure 4: Example showing how the MVC
paradigm is applied in the modular FIPER
presentation architecture

Class FiperMediator is the Controller here. It controls
the data change request from a view and transfers it to the
model. Moreover, it invokes user commands by
instantiating the ContextProviderCmd object. Class
ContextProviderCmd is responsible for executing user
commands and assembly of parameters for database
persistence operations. It uses ServletProtocol to establish
an HTTP connection with the Persistence layer as
described in section III.

Each time the model notifies a change, it processes the
data according to the user request. This notification sends
an update to all observers. The observers will update for
the change, but only for the observers that are interested in
the update event. Conditions will be passed on to the
observers to determine if the data are needed; if so, the
change will be reflected in their views.

3. Business Logic Layer

FIPER supports three centricities and deploys three
neutralities [2]. FIPER�s three centricities are network
centricity, service centricity, and web centricity. A FIPER
federation is composed of various service providers; any of
these can come and go, and the system can respond to
changes in its environment in a reliable way (network
centricity). Services in the FIPER environment can
discover lookup services and join the federation or lookup
for relevant services in order to cooperate in a distributed
environment (service centricity). Users can request to use
multiple services and check the status of their submissions
in different locations through an HTTP portal with thin
web clients (web centricity).

The three neutralities FIPER deploys are location
neutrality, protocol neutrality, and implementation
neutrality (see Figure 5).

Services need not be co-located; lookup services are
discovered and used to find a particular service, which
simplifies management of the entire software environment
(location neutrality). In addition, the way in which clients
communicate with a service provider is not important.
Clients are not aware of what protocols are used or where
the implementations reside (protocol neutrality).
Furthermore, the clients who use the FIPER services do not
need to know what languages are used or how a service is
implemented (implementation neutrality). In all, FIPER
provides accessibility through web-centric architecture,
self-manageability using federated services, scalability via
network centricity, and adaptability with the power of
mobile code inserted for execution through service
providers.

To be able to achieve the network-centricity and
service-centricity requirements, we choose to use the Jini
Network technology from Sun Microsystems [4, 5, 9]. Jini
is a set of specifications allowing federations of services on
a network and providing a framework that allows those
services to participate in certain types of operations. As
opposed to server-centricity, where all the data and
services are located in a specific or predefined server,
network-centricity can allow many services at unknown
locations to be found and then executed. Service providers
are found and resolved through a lookup service provider
(Registrar). New service providers are added to the
Registrar by discovery and join. To publish a service, its
service provider first uses a discovery protocol to locate an
appropriate lookup service and then joins, or registers, with
the lookup service. Services can communicate with each
other in the entire federation creating communities of
services.

Each service in the network is an autonomous business
logic unit that can serve other units and also be served by
them. Data persistence functionality is provided by one of
the services that exists in the network. This persistence
service handles client requests and communicates with the
product data repository. It provides concurrent sharing and
data access.

The lookup service is similar in principle to the naming
and directory server used in server-centric distributed
network environments. For each service it holds service
attributes along with its proxy. An application that wants to
use a Jini service finds the desired service by matching the
service�s attributes within the lookup service. A Jini
service provider must register itself with a Jini lookup
service and maintain an active registration in order for
applications to find its service.

To locate a Jini lookup service, which itself is also a
Jini service, Jini provides three discovery protocols. When
a FIPER service provider starts, it discovers all relevant
lookup services on the network through discovery. Then it

Figure 5: FIPER�s three neutralities,
providing a simplified, highly
flexible software environment

registers with a discovered lookup service by using Jini�s
join protocol. In addition, the service provider may listen
for new lookup services that start on the network and join
them if desired. After the service is registered, its provider
has to actively manage its relationship with the lookup
service. By managing the relationship, service providers
have to renew the lease they received when they registered
with the lookup service. Otherwise, the lookup service will
assume this service provider has gone away and free the
resource allocated. Figure 6 illustrates such a service.

For a client to be able to use services registered with a
Jini lookup service, the client needs to discover the Jini
lookup service as well. After the lookup service is located,
the client will perform lookup for the perspective service
according to its required attributes. The lookup service will
pass back a copy of the service proxy to the client, and then
the client will communicate with the service provider via
the proxy, as illustrated in Figure 7.

4. Repository Layer

Data persistence is the ability to have information from
an application instance exist for later instances of that
application or even other applications to use. More often,
we represent data that need to be persistent as a business
object, which can retain its state and integrity while being
concurrently accessed. A business object often uses data
that needs to be persistent, and encapsulates the business
rules the data obey. One of the major problems for the
development and usage of business objects is their need for
persistency. Moreover, services that constitute application
business logic also need to store their data. The data along
with the objects have to be available for concurrent access,
while the integrity of their state is maintained. The
persistency has to be provided in a way that supports
efficient programming and the development of
maintainable systems.

Many factors can affect the data persistence ability. The
three most important factors are transparency of
persistence, data integrity, and service availability [6].

The transparency of persistence means that the
environment has to take care of the externalization process.
In case of failure, a consistent state has to be reconditioned
by this environment. Many occasions require a decision
about whether the business object data really has to be
made persistent or if temporary changes could be thrown
away. Furthermore, users have to be informed about the
persistency status. All issues on the transparency of data
persistence have a strong impact on the presentation
component of a business object capsule, which can follow
various models to represent the changes in persistent and
temporary object data.

Data integrity is also a big concern in data persistence.
In a distributed environment where several users
concurrently access multiple persistent objects, a
synchronization mechanism must be provided to ensure
database integrity, shareability and recovery. When
performing a database transaction, ACID (Atomicity,
Consistency, Isolation, Durability) properties have to be
satisfied.

In the FIPER environment, all services are published as
Jini services, including data persistence services. The last
factor concerning the availability of a persistence service is
that it is critical for other FIPER services sharing data
across engineering jobs.

To design the data persistence layer, we apply the Java
database persistence design pattern. In this design pattern,
all the objects that need to be saved into the database and
be persistent are identified as Persistent objects [3]. In the
FIPER sense, context models are represented as Persistent
objects. In this design pattern, there are five core elements

Figure 6: The discovery and join
protocols used for registering a Jini
service

Figure 7: The discovery lookup and
communicate protocols used by
clients of Jini services

that form the essence of any persistence paradigm, as de-
scribed below.

A Persistent object can construct itself based on the
data returned from the database, and be able to keep track
of its modification states. The Persistent object contains no
code specific to any data storage type, so those plug-in
modules can be provided for various data storage
technologies.

A PersistentPeer is designed as a Java interface, which
contains various database operation prototypes. A
PersistentPeer is used to determine how an object becomes
persistent. The actual implementation of PersistentPeer
interface will be according to the underlying database
technology. Thus, when a persistent object wants to make
itself persistent, it only needs to call the assigned
PersistentPeer implementation to perform the storage task.
This design approach makes the persistent object flexible
for any storage technology given that the PersistentPeer
implementation of that technology is provided. For
example, if JDBC is used, then a DatabasePeer object is
used for relational databases.

In order to share data in a concurrent manner, while
preserving the integrity of the data, a Lock object is
responsible for providing a locking mechanism to prevent
data corruption from concurrent modifications.

There is an abstract class called Transaction. The class
Transaction is implemented by different persistence
packages for managing persistence operations on groups of
objects. A Transaction gets created based on a data store
URL that tells the Transaction object what type of data
store it is dealing with, as well as where that data store is.
The DatabaseTransaction class implements the Trans-
action interface and serves as a wrapper around the JDBC
Connection class. It allows peers access to the JDBC
Connection in addition to triggering commits and rollbacks
as needed by the persistence package. All Peer
implementation objects should use the
DatabaseTransaction class to perform database operations.

In case of adopting new database technology, the
PersistentPeer implementation class and Database-
Transaction class need to be altered accordingly. In Figure
8 the UML class diagram depicts the design for the
persistence layer.

 The persistence design pattern lays out the fundamental
structure for building a persistence layer. For the specific
needs of the FIPER context model, this basic framework
needs to be extended. The complete FIPER persistence
layer design is presented in Figure 9.

Following is the description and purpose of each of the
new introduced classes in this persistence paradigm.

The class Mandate is responsible for carrying the user
command for invoking database transactions from client to
the FIPER Cache. FiperLauncher is one of the view objects
in the MVC paradigm. The Mandate contains variables to
distinguish different database operations. A database
operation result is also carried back via the Mandate to the
client. Thus, the Mandate serves as a messenger between
the web client and CacheServer. For each database transac-
tion, an instance of the Mandate object is created at the
client side. This Mandate instance is passed to the
CacheServer via ServiceServlet through HTTP protocol.
After the transaction is completed, the same Mandate
instance will be passed via ServiceServlet with the
transaction result. The client then will retrieve the result
from the Mandate instance for further operations.

ServiceServlet receives a Mandate object from the
client over HTTP then locates the CacheServer, which is
the data persistence service provider. ServiceServlet can
locate the CacheServer object either through remote
method invocation (RMI) or Jini discovery.

The class CacheServer handles all persistence layer
operations. Before starting a persistence operation, a
Mandate object will be passed to the CacheServer via
ServiceServlet. At this stage, the CacheServer will decode
the properties of the Mandate object to get the respective
user command and arguments. Depending on the user�s
command, the CacheServer performs preparation
procedures to start the persistence operation. After a
persistence operation is completed, the CacheServer
retrieves the result from respective Persistence objects,
assembles the result to the Mandate object, and then sends
the Mandate object back to the client via the
ServiceServlet. To ensure isolation and atomicity
properties for keeping data integrity, a Transaction is
always invoked from the CacheServer, so that each
Transaction is independent from others, preventing
interactions from occurring. The CacheServer is
implemented as an RMI object that can be used as an RMI
server. Also the CacheServer can be published as a Jini
service using the FiperJoiner utility class.

Figure 8: Core persistence architecture
(compare to the extended FIPER
design, Figure 9)

The CacheStore class is a repository for storing
Persistent FIPER objects that are restored by previous
transactions. Its purpose is to reduce the traffic of accessing
a database by web clients, and to reduce the overhead of
retrieving the same data over and over again. It serves as
the middle object repository from web client to the
backend database repository. After the CacheServer
invokes a transaction, it will first send the Transaction
object to CacheStore to see if the Persistent object is
already there. If so, that Persistent object is retrieved and
processed. Otherwise, the backend database transaction
will begin. Every new Persistent object that�s retrieved
from the database is added to the CacheStore. Persistent
objects stored in CacheStore are synchronized with the
database, so that a change to a Persistent object will result
in a change to the corresponding data in the database.

The classes PersistentContext, PersistentDomain,
PersistentHashtable, and PersistentDatanode are all
subclasses of the Persistent class. As mentioned above,
they all inherit the persistent behavior defined in the
Persistent class. Additional code is added to implement
various features for each individual Persistent object. The
corresponding Peer classes provide the implementation
details using JDBC to perform the actual database
operations. They all inherit from the DatabasePeer class
and implement the PersistentPeer interface as defined in
the persistence design framework.

5. Conclusion

Users of the FIPER environment can effectively create,
edit, and share context models through thin web clients.
After the user action is invoked, it will be passed on to the

Figure 9: FIPER persistence layer architecture, providing the flexible, robust
services required for web-enabled network applications

business logic layer, where the concurrent data sharing
mechanism resides. Through discovery/lookup, the service
provider for data persistence can be located and used for
concurrent access. In order to preserve the data integrity
and persistency, the backend database is accessed through
a data persistence layer, which is responsible for
maintaining FIPER business objects independently of the
database used. At this stage, a business object is returned to
the business logic layer to perform other services or
presented to the user for further modifications or to
perform engineering tasks.

6. Acknowledgments

This research is jointly funded through the National
Institute for Standards and Technology�Advanced
Technology Program (NIST-ATP) and the General Electric
Company. The authors would like to acknowledge this
support, as well as the valuable input from the entire
FIPER team.

References

[1] FIPER project information:
http://www.oai.org/FIPER.html
http://www.crd.ge.com/eml/whatwedo/fiper/index.hml
http://www.atp.nist.gov/www/comps/briefs/99013079.htm
l

[2] Röhl, P.J., Kolonay, R.M., et al., A Federated Intelligent
Product EnviRonment, AIAA-2000-4902, 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, Long Beach, CA, Sep-
tember 6-8, 2000.

[3] George Reese (1997), JDBC and Java, O�Reilly & Associ-
ates, ISBN 1-56592-270-0.

[4] Scott Oaks, Henry Wong (2000) JINI in a Nutshell,
O�Reilly & Associates, ISBN 1-56592-759-1.

[5] W. Keith Edwards (1999), Core JINI, Prentice Hall, ISBN
0-13-014469-X.

[6] AdvancedConcent, Inc. (1999), �White Paper Java Persis-
tency Framework,� http://www.advanced.ch/Resources/
White_Papers/Java_Persistency/body_java_persistency.ht
ml

[7] Cristobal Baray (1999), �The Model-View-Controller
(MVC) Design Pattern,�
http://www.cs.indiana.edu/~cbaray/projects/mvc.html

[8] Steve Burbeck (1997), �How to Use Model-View-Control-
ler (MVC),�
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[9] Bill Vernners (1999), �Jini: New Technology for a Net-
worked World,�
http://www.sunworld.com/swol-06-1999/swol-06-
jiniology.html

[10] Wilf R. LaLonde, John R. Pugh (1991), Inside Smalltalk,
Prentice Hall, ISBN 0-13-465964-3.

[11] �TeaSet Widget,� InetSoft Technology,
http://inetsoftcorp.com

[12] M. A. Rosenman, J. S. Gero, �Purpose and function in a
collaborative CAD environment�, Reliability Engineering
& System safety, Vol. 64, pp. 167-179, Elsevier Science
Ltd

[13] M. A. Rosenman, J. S. Gero, �CAD Modeling in
multidisciplinary Design Domains�, Key center of Design
Computing, University of Sydney (internal report), 1999,
pp. 335-347

[14] M. A. Rosenman, J. S. Gero, �Modeling multiple views of
design objects in a collaborative CAD environment�,
Computer-aided design. 1996, Vol. 28, No. 3, pp. 193-205,
Elsevier Science Ltd.

[15] R. W. Amor and J. G. Hosking, �Multi-Disciplinary Views
for integrated and Concurrent design�, Department of
Computer Science, University of Auckland, Private Bag
92019, Auckland, New Zealand.

[16] Teresa De Martino, Bianca Falcidieno and Stefan
Habinger, �Design and engineering process integration
through a multiple view intermediate modeler in a
distributed object-oriented system environment�,
Computer-Aided Design, vol. 30, No. 6, pp. 437-452,
1998 Elsevier Science Ltd.

