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Abstract  
Six generations of RPC systems can be distinguished in-
cluding Federated Method Invocation (FMI) presented in 
this paper. Some of them—CORBA, Java RMI, and 
Web/Globus services—support distributed objects. How-
ever, creating object wrappers implementing remote inter-
faces doesn’t have a great deal to do with object-oriented 
distributed programming. Distributed objects developed 
that way are usually ill-structured with missing core object-
oriented traits: encapsulation, instantiation, inheritance, and 
network-centric messaging by ignoring the real nature of 
networking. A distributed system is not just a collection of 
distributed objects—it’s the network of objects. In particu-
lar, the object wrapping approach does not help to cope 
with network-centric messaging, invocation latency, object 
discovery, dynamic object federation, fault detection, re-
covery, partial failure, etc. The Jini™ architecture does not 
hide the network; it allows the programmer to deal with the 
network reality: leases for network resources, distributed 
events, transactions, and discovery/join protocols to form 
federations. A service-oriented architecture presented in 
this paper implements FMI to support metaprogramming. 
The triple Command pattern implantation uses Jini service 
management and Rio dynamic provisioning for managing 
the network of FMI objects. 

Categories and Subject Descriptors C.2.4 [Distributed 
Systems]: Distributed Applications, D.1.3 [Concurrent 
Programming]: Distributed Programming, D.2.11 [Soft-
ware Architectures]: Domain Specific Architectures, 
D.2.2 [Design Tools and Techniques]: Object-oriented 
design methods. 

General Terms Design, Experimentation, Languages. 

Keywords  object oriented distributed programming; serv-
ice oriented architectures; federated service object pro-
gramming, metacomputing;  

1. Introduction 
Socket-based communication forces us to design distrib-
uted applications using a read/write (input/output) inter-
face, which is not how we generally design non-distributed 
applications based on procedure call (request/response) 
communication. In 1983, Birrell and Nelson devised re-
mote procedure call (RPC) [2], a mechanism to allow pro-
grams to call procedures on other hosts. So far, six RPC 
generations can be distinguished: 
1. First generation RPCs – Sun RPC (ONC RPC) [24] and 

DCE RPC, which are language, architecture, and OS in-
dependent; 

2. Second generation RPCs – CORBA [25] and Microsoft 
DCOM-ORPC, which add distributed object support; 

3. Third generation RPC – Java RMI [21] is conceptually 
similar to the second generation but supports the seman-
tics of object invocation in different address spaces that 
are built for Java only. RMI fits cleanly into the lan-
guage with no need for standardized data representation, 
external interface definition language, and with behav-
ioral transfer that allows remote objects to perform 
operations that are determined at runtime; 

4. Fourth generation RPCs – Jini Extensible Remote Invo-
cation (Jini ERI) [20] with dynamic proxies, smart prox-
ies, network security, and with dependency injection 
defining exporters, end points, and security; 

5. Fifth generation RPCs – Web/Globus Services RPC 
[18,35] and the XML movement; 

6. Sixth generation RPC – Federated Method Invocation 
(FMI), presented in this paper, allows for network invo-
cations on multiple federating hosts (virtual metacom-
puter) in the SORCER environment [33]. 

 
All the RPC generations are based on a form of service-
oriented architecture (SOA) discussed in Section 2. How-
ever, CORBA, RMI, and Web/Globus services are in fact 
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object-oriented wrappers of network interfaces that hide 
distribution and ignore the real nature of network through 
classical abstractions of object-oriented programming using 
existing network technologies. The fact that object-oriented 
languages are used to create these object wrappers doesn’t 
mean that developed distributed objects have a great deal to 
do with object-oriented distributed programming. For ex-
ample, CORBA defines many services, and implementing 
them using distributed objects does not make them well 
structured with core object-oriented traits: encapsulation, 
instantiation, inheritance, and network-centric messaging. 
Similarly in RMI, marking objects with the Remote inter-
face does not help to cope with network-centric messaging, 
object discovery, dynamic federation, fault detection, re-
covery, partial failure, etc.  

Building on the object-oriented distributed paradigm is 
the Federated Service Object-Oriented (FSOO) paradigm 
exemplified by the Jini architecture [13] in which the net-
work objects come together on the fly to play their prede-
fined roles. In the Service-ORiented Computing 
EnviRonmet (SORCER) developed at Texas Tech Univer-
sity [33], a service provider is a remote object that accepts 
network requests—called exertions—from service request-
ors to execute an elementary item of work called a service 
task or a composite item of work called a service job. An 
exertion, either a task or job, can federate on multiple hosts 
according to its encapsulated data, operations, and control 
strategy. 

An exertion submitted to any provider in SORCER be-
comes an executing FSOO program that is dynamically 
bound to all relevant and currently available service pro-
viders on the network. The providers that dynamically par-
ticipate in this invocation are collectively called an exertion 
federation. This federation is also called a virtual meta-
computer since federating services are located on multiple 
physical compute nodes held together by the FSOO infra-
structure so that, to the individual exertion requestor, it 
looks and acts like a single computer. 

The SORCER environment provides the means to create 
interactive FSOO programs [29] and execute them using 
the SORCER runtime infrastructure presented in Section 3. 
Exertions can be created using interactive user interfaces 
downloaded on the fly from service providers. Using these 
interfaces, the user can execute and monitor the execution 
of exertions within the FSOO metacomputer. The exertions 
can be persisted for later reuse, allowing the user to quickly 
create new applications or programs on the fly in terms of 
existing exertions. 

SORCER is based on the evolution of concepts and les-
sons learned in the FIPER project [5,26,27], a $21.5 million 
program founded by NIST (National Institute of Standards 
and Technology). Initial exertion-based programming con-
cepts introduced in FIPER have been practically used in 
many concurrent engineering applications [29,8,9,16,23]. 

Academic research on exertion-oriented programming has 
been established at the SORCER Laboratory, TTU, [33] 
where twenty SORCER related research studies have been 
investigated so far [34]. The current version of FMI used in 
SORCER is described in this paper. 

The paper is organized as follows. Section 2 provides a 
brief description of a service oriented architecture with a 
related discussion of distribution transparency; Section 3 
describes the SORCER methodology; Section 4 presents 
federated method invocation; Section 5 provides conclud-
ing remarks. 

2. SOA and Distribution Transparency 
Various definitions of a Service-Oriented Architecture 

(SOA) leave a lot of room for interpretation. In general 
terms, SOA is a software architecture using loosely coupled 
software services that integrates them into a distributed 
computing system by means of service-oriented program-
ming. Service providers in the SOA environment are made 
available as independent service components that can be 
accessed without a priori knowledge of their underlying 
platform or implementation. While the client-server archi-
tecture separates a client from a server, SOA introduces a 
third component, a service registry, as illustrated in Figure 
1. In SOA, the client is referred to as a service requestor 
and the server as a service provider. The provider is re-
sponsible for deploying a service on the network, publish-
ing its service to one or more registries, and allowing 
requestors to bind and execute the service. Providers adver-
tise their availability on the network; registries intercept 
these announcements and add published services. The re-
questor looks up a service by sending queries to registries 
and making selections from the available services. Queries 
generally contain search criteria related to the service 
name/type and quality of service. Registries facilitate 
searching by storing the service representation and making 
it available to requestors. Requestors and providers can use 
discovery and join protocols to locate registries and then 
publish or acquire services on the network. We can distin-
guish the service object-oriented architectures (SOOA), 
where providers, requestors, and proxies are network ob-

Figure 1. Service oriented architecture. 



This is a DRAFT document and work in progress. Version: 03/31/2007 

jects, from service protocol oriented architectures (SPOA), 
where a communication protocol is fixed and known be-
forehand by the provider and requestor. Based on that pro-
tocol and a service description obtained from the service 
registry, the requestor can bind to the service provider by 
creating a proxy used for remote communication over the 
fixed protocol.  In SPOA a service is usually identified by a 
name. If a service provider registers its service description 
by name, the requestors have to know the name of the serv-
ice beforehand. 

In SOOA, a proxy—an object implementing the same 
service interfaces as its service provider—is registered with 
the registries and it is always ready for use by requestors. 
Thus, in SOOA, the service provider publishes the proxy as 
the active surrogate object with a codebase annotation, e.g., 
URLs to the code defining proxy behavior (RMI and Jini 
ERI). In SPOA, by contrast, a passive service description is 
registered (e.g., an XML document in WSDL for 
Web/Globus services, or an interface description in IDL for 
CORBA); the requestor then has to generate the proxy (a 
stub forwarding calls to a provider) based on a service de-
scription and the fixed communication protocol (e.g., 
SOAP in Web/Globus services, IIOP in Corba). This is 
referred to as a bind operation. The binding operation is not 
needed in SOOA since the requestor holds the active surro-
gate object obtained from the registry. 

Web services and Globus services cannot change the 
communication protocol between requestors and providers 
while the SOOA approach is protocol neutral [38]. In 
SOOA, how an object proxy communicates with a provider 
is established by the contract between the provider and its 
published proxy and defined by the provider implementa-
tion. The proxy’s requestor does not need to know who 
implements the interface or how it is implemented. So-
called smart proxies (Jini ERI) grant access to local and 
remote resources; they can also communicate with multiple 
providers on the network regardless of who originally reg-
istered the proxy. Thus, separate providers on the network 
can implement different parts of the smart proxy interface. 
Communication protocols may also vary, and a single 
smart proxy can also talk over multiple protocols including 
application specific protocols.  

SPOA and SOOA differ in their method of discovering 
the service registry (see Figure 1 and 2). SORCER uses 
dynamic discovery protocols to locate available registries 
(lookup services) as defined in the Jini architecture [12]. 
Neither the requestor who is looking up a proxy by its in-
terfaces nor the provider registering a proxy needs to know 
specific locations. In SPOA, however, the requestor and 
provider usually do need to know the explicit location of 
the service registry—e.g., the IP address of an ONC/RPC 
portmapper, a URL for RMI registry, a URL for UDDI 
registry, an IP address of a COS Name Server—to open a 
static connection and find or register a service. In deploy-

ment of Web and Globus services, a UDDI registry is 
sometimes even omitted (WSDL descriptions are shared 
via files outside of the system); in SOOA, lookup services 
are mandatory due to the dynamic nature of objects identi-
fied by service types. Interactions in SPOA are more like 
client-server connections (e.g., HTTP, SOAP, IIOP), in 
many cases with no need to use service registries at all. 

Crucial to the success of SOOA is interface standardiza-
tion. Services are identified by interfaces (service types); 
the exact identity of the service provider is not crucial to 
the architecture. As long as services adhere to a given set of 
rules (common interfaces), they can collaborate to execute 
published operations, provided the requestor is authorized 
to do so.  

Let’s emphasize the major distinction between SOOA 
and SPOA: in SOOA, a proxy is created and always owned 
by the service provider, but in SPOA, the requestor creates 
and owns a proxy which has to meet the requirements of 
the protocol that the provider and requestor agreed upon a 
priori. Thus, in SPOA the protocol is always a generic one, 
reduced to a common denominator—one size fits all—that 
leads to inefficient network communication in some cases. 
In SOOA, each provider can decide on the most efficient 
protocol(s) needed for a particular distributed application. 

Service providers in SOOA can be considered as inde-
pendent network objects finding each other via a service 
registry and communicating through message passing. A 
collection of these object sending and receiving mes-
sages—the only way these objects communicate with one 
another—looks very much like a service object-oriented 
distributed system.  

Do you remember the eight fallacies of network comput-
ing? [4] We cannot just take an object-oriented program 
developed without distribution in mind and make it a dis-
tributed system, ignoring the unpredictable network behav-

Figure 2. Service object-oriented architecture. 
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ior. Most RPC systems, except Jini [3], hide the network 
behavior and try to transform local communication into 
remote communication by creating distribution transpar-
ency based on a local assumption of what the network 
might be. However every single distributed object cannot 
do that in a uniform way as the network is a distributed 
system and cannot be represented completely within a sin-
gle entity.  

The network is dynamic, can’t be constant, and intro-
duces latency for remote invocations. Network latency also 
depends on potential failure handling and recovery mecha-
nisms so we cannot assume that a local invocation is simi-
lar to remote invocation. Thus complete transparency 
distribution—by making calls on distributed objects as 
though they were local—is impossible to achieve in prac-
tice. The distribution is not just an object-oriented imple-
mentation of a single distributed object; it’s a metasystemic 
issue in object-oriented distributed programming. 

Exertion-based programming was introduced [27] to 
handle the metasystemic distribution in SORCER by using 
indirect remote method invocation with no service provider 
explicitly specified in the network request (exertion). Spe-
cific infrastructure objects support exertion-oriented pro-
gramming combined with FMI. That infrastructure defines 
SORCER’s distributed object modularity, extensibility, and 
reuse of service-oriented components consistent with the 
relevant metacomputing granularity and dependency injec-
tion—key features of object-oriented distributed program-
ming that are usually missing in SPOA programming 
environments. 

3. Federated Service Object-oriented 
Computing Environmet: SORCER 
SORCER is a federated service-to-service (S2S) metacom-
puting environment that treats service providers as network 
objects with well-defined semantics of a federated service 
object-oriented architecture (FSOOA).  It is based on Jini 
semantics of services [12] in the network and Jini pro-
gramming model with explicit leases, distributed events, 
transactions, and discovery/join protocols. While Jini fo-
cuses on service management in a networked environment, 
SORCR is focused on exertion-oriented programming and 
the execution environment for exertions.  

As described in Section 2, SOOA consists of three major 
types of network objects: providers, requestors, and regis-
tries. The provider is responsible for deploying the service 
on the network, publishing its service to one or more regis-
tries, and allowing requestors to access its service. Provid-
ers advertise their availability on the network; registries 
intercept these announcements and cache proxy objects to 
the provider services. The requestor looks up proxies by 
sending queries to registries and making selections from the 
available service types. Queries generally contain search 

criteria related to the type and quality of service. Registries 
facilitate searching by storing proxy objects of services and 
making them available to requestors. Providers use discov-
ery/join protocols to publish services on the network, re-
questors use discovery/join protocols to obtain service 
proxies on the network. SORCER uses Jini discovery/join 
protocols to implement its FSOOA and FMI.  

In SOOA, a service provider is an object that accepts 
remote messages from service requestors to execute an item 
of work. These messages are called service exertions. A 
task exertion is an elementary service request, a kind of 
elementary remote instruction (elementary statement) exe-
cuted by a single service provider or a small-scale federa-
tion. A composite exertion called a job exertion is defined 
hierarchically in terms of tasks and other jobs, a kind of 
network procedure executed by a large-scale federation. 
The executing exertion is a service-oriented program that is 
dynamically bound to all needed and currently available 
service providers on the network. This collection of provid-
ers identified in runtime is called an exertion federation. 
This federation is also called an exertion space. While this 
sounds similar to the object-oriented paradigm, it really 
isn’t. In the object-oriented paradigm, the object space is a 
program itself; here the exertion space is the execution en-
vironment for the exertion that is a service-oriented distrib-
uted program. This changes the programming paradigm 
completely. In the former case the object space is hosted by 
a single computer, but in the latter case the service provid-
ers are hosted by the network of computers. 

The overlay network of service providers is called the 
service provider grid and an exertion federation is called a 
virtual metacomputer. The metainstruction set of the meta-
computer consists of all operations offered by all service 
providers in the grid. Thus, a service-oriented program is 
composed of metainstructions with its own service-oriented 
control strategy and service context representing the metap-
rogram parameters [39]. The service context describes the 
data that tasks and jobs work on. Exertion-oriented pro-
grams (metaprograms) can be created interactively [29] and 
allow for a dynamic federation to transparently coordinate 
their execution within the grid. Please note that these meta-

Figure 3. SORCER layered functional architecture. 
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computing concepts are defined differently in classical grid 
computing where a job is just an executing process for a 
submitted executable code with no federation being 
formed. 

In a federated service environment, the system is not 
made up of just a single service, but the cooperation of 
many services. A service exertion may consist of hierarchi-
cally nested exertions that require different service types. A 
service can be broken down into small component services 
instead of being one monolithic all-in-one service. These 
smaller component services—treated as virtual metacom-
puter instructions—can then be distributed among different 
hosts to allow for reusability, scalability, reliability, and 
load balancing. 

Each SORCER provider offers services to other peers 
[19] on the object-oriented overlay network. These services 
are exposed indirectly by methods in well-known public 
remote interfaces and considered as elementary (tasks) or 
compound (jobs) statements of the FSOOA [26,27]. Re-
questors do not need to know the exact location of a pro-
vider beforehand; they can find it dynamically by 
discovering service registries (lookup services) and then 
looking up a needed service implementing required service 
types. 

An exertion can be created interactively [29] or pro-
grammatically (using SORCER APIs) and their execution 
can be monitored and debugged in the overlay service net-
work [32]. Service providers do not have mutual associa-
tions prior to the execution of an exertion; they come 
together dynamically (federate) for all nested tasks and jobs 
in the exertion. Specialized providers within the federation, 
or task peers, execute service tasks. Jobs are coordinated by 
a rendezvous or job peer called a Jobber, one of SORCER 
infrastructure services [26]. However, a job can be sent to 
any service provider (peer). A peer that is not a Jobber type 
is responsible for forwarding the job to one of available job 
peers in the SORCER grid and returning results to the re-
questor. 

Thus implicitly, any peer can handle any job or task. 
Once the job execution is complete, the federation dis-
solves and the providers disperse to seek other exertions to 
join. Also, SORCER supports a traditional approach to grid 
computing similar to those found in Condor [36] and 
Globus [35]. Here, instead of exertions being executed by 
services providing business logic for requested exertions, 
the business logic comes from the service requestor's ex-
ecutable programs that seek compute resources on the net-
work.  

Grid-based services in the SORCER environment in-
clude Grider services collaborating with Jobber services for 
traditional grid job submission, and Caller and Methoder 
services for task execution [15]. Callers execute conven-
tional programs via a system call as described in the service 
context of a submitted task. Methoders download required 

Java code (task method) from requestors to process any 
submitted context accordingly with the downloaded code. 
In either case, the business logic comes from requestors; it 
is conventional executable code invoked by Callers with 
the standard Caller’s service context or mobile Java code 
executed by Methoders with any service context provided 
by the requestor. A functional layered SORCER architec-
ture is presented in Figure 3. 

4. Federated Method Invocation (FMI) 
Each programming language provides a specific computing 
abstraction. Procedural languages are abstractions of as-
sembly languages. Object-oriented languages abstract ele-
ments in the application domain that refer to “objects” as 
their representation in the corresponding solution space. 
The object-oriented distributed programming should allow 
us to describe the distributed problem in terms of the intrin-
sic unpredictable network problem instead of in terms of 
distributed objects that hide the notion of the network. 

What intrinsic distributed abstractions are defined in 
SORCER? Well, service providers are “objects”, but they 
are specific objects—they are network objects with a net-
work state, network behavior, and network type(s). There is 
still a connection to distributed objects: each service pro-
vider looks like a distribute object (compute node) in that it 
has a network state, network behavior, and network 
types(s).  Service providers act also as network peers[19]; 
they are replicated and dynamically provisioned for reli-
ability to compensate for network failures [22]. They can 
be found dynamically in runtime by type(s) they imple-
ment. They can federate for executing a specific network 
request called an exertion and perform hierarchically nested 
(component) exertions. An exertion encapsulates service 
data, operations, and control strategy. Once the exertion’s 
invocation is complete, the federation dissolves and the 
providers disperse to seek other exertions. The exertion can 
incorporate multiple nested exertions where a precedence 
relation is defined by a parent-child relationship. The same 
provider can perform multiple exertions concurrently and 
any provider that implements the matching service type can 
be selected for performing the exertion associated with this 
type. The component exertions may need to share context 
data of ancestor exertions, and the top-level exertion is 
complete only if all nested exertions are successful. 

With that very concise introduction to the abstractions of 
exertion-based programming, let’s look in detail at how 
Federated Method Invocation (FMI) is structured and how 
it works with exertions. 

4.1 Service Messaging and Exertions 

In object-oriented terminology, a message is the single 
means of passing control to an object. If the object re-
sponds to the message, it has an operation and its 
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implementation (method) for that message. The equivalent 
in procedural programming languages to a message is the 
function call. The message means neither the function as it 
is nor the signature of the function, but to send the message 
means roughly to call the function. Because object data is 
encapsulated and not directly accessible, a message is the 

only way to send data from one object to another. Each 
message specifies the name of the receiving object, the 
name (selector) of operation to be invoked, and any paever, 
in the unreliable network of objects, the receiving object 
might not be present or can go away at any time. Thus, we 
should postpone receiving object identification as late as 

Figure 4. The Exertion interface and related subset of FMI interfaces/classes: the abstract class ServiceExertion with two 
abstract subclasses: Task and Job along with FMI parameters defined by the Context interface and signatures defined by the 
Signature interface. 
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possible. Grouping related messages per one request for the 
same data set makes a lot of sense due to network invoca-
tion latency and common errors in handling. These obser-
vations lead us to service-oriented messages called 
exertions that encapsulate both multiple service signatures 
and data as a service context. In other words, an exertion 
primarily consists of one or more operations and the data 
upon which the operations should be performed. Two exer-
tion types are distinguished: elementary and composite 
exertion called service task and service job respectively 
(see Figure 4). There are two ways of invoking exertions. 
In the first case, an Exertion can be invoked by calling Exer-
tion.exert(Transaction). The second way is explained in Sub-
section 4.6.  

4.2 Service Signatures 

An exertion initiates the dynamic federation of all 
needed service providers dynamically—as late as possi-
ble—as specified by signatures of top-level and nested ex-
ertions. Thus, FMI is defined as exerting an exertion, which 
is essentially an indirect invocation of network methods 
specified by the exertion signatures and service context. 
SORCER service providers and requestors usually commu-
nicate via FMI. 

A service Signature is defined by: 
• signature name 
• service type – Java interface name 
• selector of the service operation – operation name of the 

service type (Java interface) 

• operation type –  Signature.Type: PROCESS (default), 
PREPROCESS, POSTPROCESS 

• service access type – Signature.Access; PUSH (default) 
direct binding to Jobbers or Taksers, or DROP using 
Spacer (see Figure 4) 

• priority 
• execution time flag – if  true, the execution time is re-

turned in the service context 
• notifyees – list of email addresses to notify upon com-

pleted) 
• service attributes – requestor’s attributes matching pro-

vider’s registration attributes 
An exertion can comprise of a collection of PREPRROC-
ESS and POSTPROCESS signatures, but only one PROC-
ESS signature. The PROCESS signature defines the 
binding provider for the exertion. 

4.3 Exertion Types 

A Task is the analog of a statement in conventional pro-
gramming languages—here an elementary step of the exer-
tion-oriented program. Thus, it is a minimal unit of 
structuring in exertion-oriented programming. If the pro-
vider responds to a Task, it has a method for the task's 
PROCESS signature. Other signatures associated with the 
Task provide for preprocessing and postprocessing by the 
same or federating providers. An APPEND signature pro-
vides for the context received from the provider identified 
by this signature to be appended in runtime to the task’s 
currently processed service context. Appending a service 

Figure 5. Flow control exertions, conditional IfExertion and looping WhileExertion, used in SORCER. 
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context allows a requestor to use actual data in runtime not 
available to the requestor when a task is submitted. A Task 
is the single means of passing control to a PROCESS pro-
vider. Note that a task is a batch of operations that operate 
on the same service context—a Task shared execution 
state—and all operations of the Task, as defined by signa-
tures, can be executed by the same provider or a group of 
federating providers coordinated by the PROCESS pro-
vider—the provider identified by the PROCESS signature 
of the Exertion. 

A Job is the analog of a procedure in conventional pro-
gramming languages—here a federated procedure in an 
exertion-oriented program. It is a composite of exertions 
(see Figure 4) that makeup the federated procedure. The 
following flow control exertion types define algorithmic 
logic of exertion-oriented programming: 
• Exertion 

• NullExertion 
• AsyncExertion 

• AsyncServiceExertion 
• ServiceExertion 

• ServiceTask 
• ServiceJob 
• IfExertion 
• WhileExertion 
• ForExertion 
• DoExertion 
• ThrowExertion 
• TryExertion 
• BreakExertion 

• ContinueExertion 
Currently implemented flow control Exertion types in 

SORCER are depicted in Figure 5.  

4.4 Knowledge Representation and Service Context 

The implementation of natural language knowledge defini-
tion and editing critically depends on the intricacy of trans-
lation between natural language constructs and internal 
knowledge representation structures. This is a function of 
the chosen knowledge representation method. In the per-
cept formalism, an entity of the world is treated as the im-
age given by perception, and that image is called a percept. 
A percept conceptualization is the semantic counterpart of 
the syntactic level of the knowledge description theory 
called percept calculus [30]. A service context, based on 
the percept conceptualization, is a data structure that de-
scribes service provider ontology along with related data. A 
service ontology is controlled by provider vocabulary that 
describes objects and the relations between them in a pro-
vider's namespace within a specified service domain of 
interest. A requestor submitting an exertion to a provider 
has to comply with that ontology. In the percept conceptu-
alization, attributes and their values are used as atomic con-
ceptual primitives, and complements are used as molecular 
ones. A complement is an attribute sequence (path) with a 
value at the last position. An elementary percept property 
consists of a percept subject and a set of percept comple-
ments, and usually corresponds to a simple sentence of 
natural language. 

A service context is a tree-like structure described con-
ceptually in the EBNF conceptual syntax specification as 
follows:  
1. context = [ subject  ":" ] complement { complement }. 
2. subject = element. 
3. complement = element ";". 
4. element= path [ "=" value ]. 
5. path = attribute { "/" attribute }  [  {  "<" association ">"  

}  ] [ { "/" attribute } ]. 
6. value = object. 
7. attribute = identifier. 
8. relation = domain product. 
9. association = domain tuple. 

10. product = attribute { "|" attribute }. 
11. tuple = value { "|" value }. 
12. attribute  = identifier. 
13. domain = identifier. 
14. association = identifier. 
15. identifier = letter { letter | digit }. 

 
A relation with a single attribute is called a property and is 
denoted as  attribute | attribute.  

To illustrate the idea of context, lets consider the follow-
ing context example (graphically depicted in Figure 7): 

 
laboratory/name = SORCER: university=TTU; 
university/department/name=CS; 

Figure 6. A job federation. The red line (the first from the 
left) indicates the originating FMI invocation: Exer-
tion.exert(Transaction) or Servicer.service(Exertion, Transac-
tion). The root job with component exertions is depicted 
below the provider grid (a cloud). Late bindings of all sig-
natures are indicated by dashed lines that define the job’s 
initial federation (metcomputer).  
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university/department/room/number=20B; 
university/department/room/phone/number=806-742-
university/department/room/phone/ext=237; 
director <person | Mike | W | Sobolewski>  

/email=sobol@cs.ttu.edu; 
 

person | firstname | initial | lastname. 
A context leaf node, or data node is where the actual 

data resides. The service context—all context paths—
denotes an application domain namespace, and a context 
model [39] is its context with data nodes appended to its 
context paths. A context path is a hierarchical name for a 
data item in a leaf node. Note that Context can be repre-
sented as an XML document—what has been done in 
SORCER for interoperability—but the power of object 
Contexts comes from the fact that any Java object can be 
naturally used as a data node. In particular exertions them-
selves can be used as data nodes and then executed and 
controlled by providers to run complex iterative programs, 
e.g., nonlinear multidisciplinary optimization [16]. 

4.5 Service-to-Service (S2S) Computing 

Tasks are usually executed by providers of the Tasker type 
(task peer). A Job contains a service context called control 
context that describes the control strategy for the Job. Dedi-
cated service providers of the Jobber type (job peer also 
called rendezvous peer), interpret and execute a job's con-
trol context in terms of the job's nested exertions accord-
ingly. A Jobber manages a shared context (shared execution 
state) for the job federation and provides a substitution for 
input context parameter mappings. A Jobber creates a fed-
eration of required service providers (Taskers and Jobbers) 
in runtime. A SORCER peer (Servicer) that is unable to 
execute an Exertion for any reason forwards the Exertion to 
any available Servicer matching the exertion’s PROCESS 
signature and returns the resulting exertion back to its re-
questor. In Figure 6, a job federation is illustrated with late 
bindings for all signatures in all component exertions. 

All SORCER service providers are service peers as they 
implement the top-level Servicer interface (see Figure 8). 
As a result, each Servicer can initiate a federation created in 
response to Servicer.service(Exertion, Transaction). Servicers 
come together to form a federation participating in execu-
tion of the same exertion. When the exertion is complete, 
Servicers leave the federation and seek a new exertion to 
join. Note that the same exertion can form a different fed-
eration for each execution due to the dynamic nature of 
looking up Servicers by their implemented custom inter-
faces. The hierarchy of SORCER Servicer types is defined 
as follows (see Figure 8, interfaces names in italic below): 
• Servicer (defines S2S) 

• Tasker  
• Jobber  
• Provider extends Remote and Monitorable 

• AdministrableProvider 
• ServiceProvider 

(implements discovery, join, and monitoring) 
• ServiceTasker 

(implements Tasker and Exerter) 
• ServiceJobber 

(implements Jobber and Exerter)) 
• Exerter (not Remote) 

ServiceAccessor uses DynamicAccessor as a naming service 
provider for FMI. The naming service provider furnishes a 
means to dynamically locate service providers on the net-
work. The SORCER ProviderAccessor implements Dynami-
cAccessor using the SORCER Cataloger service with the 
Jini Discovery and Lookup Services. 

Despite the fact that every Servicer can accept any exer-
tion, Servicers have well defined roles in SORCER S2S 
exertion-oriented programming (see Figure  3): 
a) Taskers – process service tasks  
b) Jobbers – process service jobs 
c) Contexters – provide service contexts for APPEND Sig-

natures Figure 7. Example of a service context. 

Figure 8.  FMI Servicers: Tasker and Jobber with the 
name service provider interface—DynamicAccessor. 
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d) FileStorers – provide access to federated file system 
providers [31,1] 

e) Catalogers – Servicer registries 
f) Persisters – persist service contexts, tasks, and jobs to be 

reused for interactive exertion-based programming 
g) Spacers – manage exertion spaces shared across 

Servicers for space-based computing [7] 
h) Relayers – gateway providers, transform exertions to na-

tive representation, for example integration with Web 
services and JXTA 

i) Autenticators, Authorizers, Policers, KeyStorers – pro-
vide support for service-oriented security 

j) Auditors, Reporters, Loggers – support for accountabil-
ity, reporting and logging 

k) Griders, Callers, Methoders – support conventional grid 
computing 

l) Generic ServiceTasker and ServiceJobber implementa-
tions are used to configure domain specific providers 
via dependency injection—configuration files for smart 
proxying and inserting business objects called service 
beans. 

4.6 FMI Triple Command Pattern 

Polymorphism lets us encapsulate a request—in FMI an 
exertion—then establish the signature of operation to call 
and vary the effect of calling the underlying operation by 
varying its implementation. The Command design pattern 
[10] establishes an operation signature as an interface and 
defines various implementations of the interface. In FMI, 
the following three operations are defined:  
1. Exertion.exert(Transaction):Exertion - join the federation 

2. Servicer.service(Exertion, Transaction):Exertion – request 
a service in the federation initiated by the receiver 

3. Exerter.exert(Exertion, Transaction):Exertion – execute the 
component exertion by the target provider in the federa-
tion 

The Triple Command pattern defines various implementa-
tions of these interfaces: Exertion, Servicer, and Exerter. This 
approach allows for the P2P environment [8] via the 
Servicer interface, extensive modularization of Exertions 
and Exerters, and extensibility from the triple design pattern 
so requestors can submit any service-oriented programs 
(exertions) they want with or without transactional seman-
tics. Note that both ServiceTasker and ServiceJobber are 
Servicers and Exerters (see Figure 8 for details); more pre-
cisely their proxies are remote objects of the Servicer type 
only while the provider itself (local object) is both of 
Servicer and Exerter type. 

FMI triple Command Pattern is used as follows: 
1. An exertion can be invoked by calling Exer-

tion.exert(Transaction). The Exertion.exert operation im-

plemented in ServiceExertion uses ServiceAccessor to 
locate in runtime the provider matching the exertion’s 
PROCESS signature (see Figure 8 for classes involved).  

2. If the matching provider is found, then on its access 
proxy (that can also be a smart proxy) the 
Servicer.service(Exertion, Transaction) method is invoked.  

3. When the requestor is authenticated and authorized by 
the provider to invoke the method defined by the exer-
tion’s PROCESS signature, then the provider calls its 
own exert operation: Exerter.exert(Exertion, Transaction).  

4. Exerter.exert method calls exert either of ServiceTasker or 
ServiceJobber (depending on the type of the exertion: ei-
ther Task or Job) that by reflection calls the method 
specified in the PROCES signature (interface and selec-
tor) of the exertion. All application domain methods of 
any application interface (custom Tasker interfaces) 
have the same signature: a single Context type parameter 
and a Context type return vale. Thus a custom interface 
looks like an RMI interface with the above simplifica-
tion on the common signature for all interface methods. 

In the FMI approach, a requestor can create any Exer-
tion, composed from any hierarchically nested Exertions, 
with any service provider supplied anthology. The context 
anthologies along with object proxies and their object at-
tributes are network-centric; they are part of the provider’s 
registration so can they be accessed via Cataloger or lookup 
services by any requestor on the network, e.g., service 
browsers [11] or custom service UI user agents [37] provid-
ing interactive exertion-oriented programming. In SOR-
CER, using these zero-install service UIs, the user can 
define data for downloaded ontology and create a task/job 
to be executed on the virtual metacomputer. 

Individual Providers, in particular Taskers and Jobbers, 
implement their own exert(Exertion, Transaction) methods 
according to their service semantics, in SORCER imple-
mented by ServiceTasker and ServiceJobber respectively. 
SORCER specific domain providers either subclass 
ServiceTasker or ServiceJobber, or by dependency injection 
(using Jini configuration methodology) configure either one 
with one of 12 proxying methods developed in SORCER. 
In general, many different types of taskers and jobbers  can 
be used in SORCER at the same time (currently one 
ServiceTasker and one ServiceJobber implementation exists) 
and exertions via their signatures will make appropriate 
choices as to what virtual metacomputer to run. 

Invoking an exertion, let’s say ext, is similar to invoking 
an executable program ext.exe at the command prompt. If 
we use the Tenex C shell (tcsh), invoking the program is 
equivalent to: tcsh ext.exe, i.e., passing the executable 
ext.exe to tcsh. Similarly, to invoke a metaprogram using 
FMI, in this case the exertion ext, we call ext.exert(null) if 
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no transactional semantics is required. Thus, the exertion is 
the metaprogram and the network shell at the same time, 
which might first come as a surprise, but close evaluation 
of this fact shows it to be consistent with the meaning of 
object-oriented federated programming. Here, the virtual 
metacomputer is a federation that does not exist when the 
exertion is created. Thus, the notion of the virtual meta-
computer is enclosed in the exertion exemplified by FMI. 

The observation concluding that the exertion is the 
metaprogram and the network shell at the same time brings 
us back to the distribution transparency issue discussed in 
Section 2. It might appear that Exertion objects are network 
wrappers as they hide network intrinsic unpredictable be-
havior. However, Exertions are not distributed objects, as 
do not implement any remote interfaces; they are local ob-
jects. Servicers are distributed objects and there are many 
types of Servicers addressing different aspects of network-
ing. The network intrinsic unpredictable network behavior 
is addressed by the SORCER object-oriented distributed 
infrastructure: Taskers, Jobbers, Catalogers, Spacers, File-
Storers, Authenticators, Authorizers, Policers, etc. The 
Servicer-based infrastructure facilitates exertion-oriented 
programming and metaprograms execution using presented 
FMI and allows for constructing reliable object oriented 
distributed systems from unreliable distribute components - 
Servicers. 

5. Conclusions 
A distributed system is not just a collection of distributed 
objects—it’s the network of objects. From an object-
oriented point of view, the network of objects is the prob-
lem domain of object-oriented distributed programming 
that requires relevant abstractions in the solution space. The 
exertion-based programming introduces new network ab-
stractions with federated method invocation in SOOA. 
Service providers register proxies, including smart proxies, 
via dependency injection using twelve methods investi-
gated in SORCER. Executing a top-level exertion means a 
dynamic federation of currently available providers in the 
network collaboratively process service contexts of all 
nested exertions. Services are invoked by passing exertions 
on to providers indirectly via object proxies that are access 
proxies allowing for service providers to enforce a security 
policy on access to services. When permission is granted, 
then the operation defined by a signature is invoked by 
reflection. FMI allows for the P2P environment via the 
Service interface, extensive modularization of Exertions and 
Exerters, and extensibility from the triple command design 
pattern. The presented FMI has been successfully tested in 
multiple concurrent engineering, large-scale distributed 
applications. 
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