
This is a DRAFT document and continues to be revised. The latest version can be found at
http://sorcer.cs.ttu.edu/publications/papers/FMI.pdf. Please send comments and remarks to

sobol@cs.tt.edu.

Metacomputing with Federated Method Invocation

Michael Sobolewski
Texas Tech University

SORCER Research Group
http://sorcer.cs.ttu.edu

sobol@cs.ttu.edu

Abstract
Six generations of RPC systems can be distinguished in-
cluding Federated Method Invocation (FMI) presented in
this paper. Some of them—CORBA, Java RMI, and
Web/Globus services—support distributed objects. How-
ever, creating object wrappers implementing remote inter-
faces doesn’t have a great deal to do with object-oriented
distributed programming. Distributed objects developed
that way are usually ill-structured with missing core object-
oriented traits: encapsulation, instantiation, inheritance, and
network-centric messaging by ignoring the real nature of
networking. A distributed system is not just a collection of
distributed objects—it’s the network of objects. In particu-
lar, the object wrapping approach does not help to cope
with network-centric messaging, invocation latency, object
discovery, dynamic object federation, fault detection, re-
covery, partial failure, etc. The Jini™ architecture does not
hide the network; it allows the programmer to deal with the
network reality: leases for network resources, distributed
events, transactions, and discovery/join protocols to form
federations. A service-oriented architecture presented in
this paper implements FMI to support metaprogramming.
The triple Command pattern implantation uses Jini service
management and Rio dynamic provisioning for managing
the network of FMI objects.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed Applications, D.1.3 [Concurrent
Programming]: Distributed Programming, D.2.11 [Soft-
ware Architectures]: Domain Specific Architectures,
D.2.2 [Design Tools and Techniques]: Object-oriented
design methods.

General Terms Design, Experimentation, Languages.

Keywords object oriented distributed programming; serv-
ice oriented architectures; federated service object pro-
gramming, metacomputing;

1. Introduction
Socket-based communication forces us to design distrib-
uted applications using a read/write (input/output) inter-
face, which is not how we generally design non-distributed
applications based on procedure call (request/response)
communication. In 1983, Birrell and Nelson devised re-
mote procedure call (RPC) [2], a mechanism to allow pro-
grams to call procedures on other hosts. So far, six RPC
generations can be distinguished:
1. First generation RPCs – Sun RPC (ONC RPC) [24] and

DCE RPC, which are language, architecture, and OS in-
dependent;

2. Second generation RPCs – CORBA [25] and Microsoft
DCOM-ORPC, which add distributed object support;

3. Third generation RPC – Java RMI [21] is conceptually
similar to the second generation but supports the seman-
tics of object invocation in different address spaces that
are built for Java only. RMI fits cleanly into the lan-
guage with no need for standardized data representation,
external interface definition language, and with behav-
ioral transfer that allows remote objects to perform
operations that are determined at runtime;

4. Fourth generation RPCs – Jini Extensible Remote Invo-
cation (Jini ERI) [20] with dynamic proxies, smart prox-
ies, network security, and with dependency injection
defining exporters, end points, and security;

5. Fifth generation RPCs – Web/Globus Services RPC
[18,35] and the XML movement;

6. Sixth generation RPC – Federated Method Invocation
(FMI), presented in this paper, allows for network invo-
cations on multiple federating hosts (virtual metacom-
puter) in the SORCER environment [33].

All the RPC generations are based on a form of service-
oriented architecture (SOA) discussed in Section 2. How-
ever, CORBA, RMI, and Web/Globus services are in fact

This is a DRAFT document and work in progress. Version: 03/31/2007

object-oriented wrappers of network interfaces that hide
distribution and ignore the real nature of network through
classical abstractions of object-oriented programming using
existing network technologies. The fact that object-oriented
languages are used to create these object wrappers doesn’t
mean that developed distributed objects have a great deal to
do with object-oriented distributed programming. For ex-
ample, CORBA defines many services, and implementing
them using distributed objects does not make them well
structured with core object-oriented traits: encapsulation,
instantiation, inheritance, and network-centric messaging.
Similarly in RMI, marking objects with the Remote inter-
face does not help to cope with network-centric messaging,
object discovery, dynamic federation, fault detection, re-
covery, partial failure, etc.

Building on the object-oriented distributed paradigm is
the Federated Service Object-Oriented (FSOO) paradigm
exemplified by the Jini architecture [13] in which the net-
work objects come together on the fly to play their prede-
fined roles. In the Service-ORiented Computing
EnviRonmet (SORCER) developed at Texas Tech Univer-
sity [33], a service provider is a remote object that accepts
network requests—called exertions—from service request-
ors to execute an elementary item of work called a service
task or a composite item of work called a service job. An
exertion, either a task or job, can federate on multiple hosts
according to its encapsulated data, operations, and control
strategy.

An exertion submitted to any provider in SORCER be-
comes an executing FSOO program that is dynamically
bound to all relevant and currently available service pro-
viders on the network. The providers that dynamically par-
ticipate in this invocation are collectively called an exertion
federation. This federation is also called a virtual meta-
computer since federating services are located on multiple
physical compute nodes held together by the FSOO infra-
structure so that, to the individual exertion requestor, it
looks and acts like a single computer.

The SORCER environment provides the means to create
interactive FSOO programs [29] and execute them using
the SORCER runtime infrastructure presented in Section 3.
Exertions can be created using interactive user interfaces
downloaded on the fly from service providers. Using these
interfaces, the user can execute and monitor the execution
of exertions within the FSOO metacomputer. The exertions
can be persisted for later reuse, allowing the user to quickly
create new applications or programs on the fly in terms of
existing exertions.

SORCER is based on the evolution of concepts and les-
sons learned in the FIPER project [5,26,27], a $21.5 million
program founded by NIST (National Institute of Standards
and Technology). Initial exertion-based programming con-
cepts introduced in FIPER have been practically used in
many concurrent engineering applications [29,8,9,16,23].

Academic research on exertion-oriented programming has
been established at the SORCER Laboratory, TTU, [33]
where twenty SORCER related research studies have been
investigated so far [34]. The current version of FMI used in
SORCER is described in this paper.

The paper is organized as follows. Section 2 provides a
brief description of a service oriented architecture with a
related discussion of distribution transparency; Section 3
describes the SORCER methodology; Section 4 presents
federated method invocation; Section 5 provides conclud-
ing remarks.

2. SOA and Distribution Transparency
Various definitions of a Service-Oriented Architecture

(SOA) leave a lot of room for interpretation. In general
terms, SOA is a software architecture using loosely coupled
software services that integrates them into a distributed
computing system by means of service-oriented program-
ming. Service providers in the SOA environment are made
available as independent service components that can be
accessed without a priori knowledge of their underlying
platform or implementation. While the client-server archi-
tecture separates a client from a server, SOA introduces a
third component, a service registry, as illustrated in Figure
1. In SOA, the client is referred to as a service requestor
and the server as a service provider. The provider is re-
sponsible for deploying a service on the network, publish-
ing its service to one or more registries, and allowing
requestors to bind and execute the service. Providers adver-
tise their availability on the network; registries intercept
these announcements and add published services. The re-
questor looks up a service by sending queries to registries
and making selections from the available services. Queries
generally contain search criteria related to the service
name/type and quality of service. Registries facilitate
searching by storing the service representation and making
it available to requestors. Requestors and providers can use
discovery and join protocols to locate registries and then
publish or acquire services on the network. We can distin-
guish the service object-oriented architectures (SOOA),
where providers, requestors, and proxies are network ob-

Figure 1. Service oriented architecture.

This is a DRAFT document and work in progress. Version: 03/31/2007

jects, from service protocol oriented architectures (SPOA),
where a communication protocol is fixed and known be-
forehand by the provider and requestor. Based on that pro-
tocol and a service description obtained from the service
registry, the requestor can bind to the service provider by
creating a proxy used for remote communication over the
fixed protocol. In SPOA a service is usually identified by a
name. If a service provider registers its service description
by name, the requestors have to know the name of the serv-
ice beforehand.

In SOOA, a proxy—an object implementing the same
service interfaces as its service provider—is registered with
the registries and it is always ready for use by requestors.
Thus, in SOOA, the service provider publishes the proxy as
the active surrogate object with a codebase annotation, e.g.,
URLs to the code defining proxy behavior (RMI and Jini
ERI). In SPOA, by contrast, a passive service description is
registered (e.g., an XML document in WSDL for
Web/Globus services, or an interface description in IDL for
CORBA); the requestor then has to generate the proxy (a
stub forwarding calls to a provider) based on a service de-
scription and the fixed communication protocol (e.g.,
SOAP in Web/Globus services, IIOP in Corba). This is
referred to as a bind operation. The binding operation is not
needed in SOOA since the requestor holds the active surro-
gate object obtained from the registry.

Web services and Globus services cannot change the
communication protocol between requestors and providers
while the SOOA approach is protocol neutral [38]. In
SOOA, how an object proxy communicates with a provider
is established by the contract between the provider and its
published proxy and defined by the provider implementa-
tion. The proxy’s requestor does not need to know who
implements the interface or how it is implemented. So-
called smart proxies (Jini ERI) grant access to local and
remote resources; they can also communicate with multiple
providers on the network regardless of who originally reg-
istered the proxy. Thus, separate providers on the network
can implement different parts of the smart proxy interface.
Communication protocols may also vary, and a single
smart proxy can also talk over multiple protocols including
application specific protocols.

SPOA and SOOA differ in their method of discovering
the service registry (see Figure 1 and 2). SORCER uses
dynamic discovery protocols to locate available registries
(lookup services) as defined in the Jini architecture [12].
Neither the requestor who is looking up a proxy by its in-
terfaces nor the provider registering a proxy needs to know
specific locations. In SPOA, however, the requestor and
provider usually do need to know the explicit location of
the service registry—e.g., the IP address of an ONC/RPC
portmapper, a URL for RMI registry, a URL for UDDI
registry, an IP address of a COS Name Server—to open a
static connection and find or register a service. In deploy-

ment of Web and Globus services, a UDDI registry is
sometimes even omitted (WSDL descriptions are shared
via files outside of the system); in SOOA, lookup services
are mandatory due to the dynamic nature of objects identi-
fied by service types. Interactions in SPOA are more like
client-server connections (e.g., HTTP, SOAP, IIOP), in
many cases with no need to use service registries at all.

Crucial to the success of SOOA is interface standardiza-
tion. Services are identified by interfaces (service types);
the exact identity of the service provider is not crucial to
the architecture. As long as services adhere to a given set of
rules (common interfaces), they can collaborate to execute
published operations, provided the requestor is authorized
to do so.

Let’s emphasize the major distinction between SOOA
and SPOA: in SOOA, a proxy is created and always owned
by the service provider, but in SPOA, the requestor creates
and owns a proxy which has to meet the requirements of
the protocol that the provider and requestor agreed upon a
priori. Thus, in SPOA the protocol is always a generic one,
reduced to a common denominator—one size fits all—that
leads to inefficient network communication in some cases.
In SOOA, each provider can decide on the most efficient
protocol(s) needed for a particular distributed application.

Service providers in SOOA can be considered as inde-
pendent network objects finding each other via a service
registry and communicating through message passing. A
collection of these object sending and receiving mes-
sages—the only way these objects communicate with one
another—looks very much like a service object-oriented
distributed system.

Do you remember the eight fallacies of network comput-
ing? [4] We cannot just take an object-oriented program
developed without distribution in mind and make it a dis-
tributed system, ignoring the unpredictable network behav-

Figure 2. Service object-oriented architecture.

This is a DRAFT document and work in progress. Version: 03/31/2007

ior. Most RPC systems, except Jini [3], hide the network
behavior and try to transform local communication into
remote communication by creating distribution transpar-
ency based on a local assumption of what the network
might be. However every single distributed object cannot
do that in a uniform way as the network is a distributed
system and cannot be represented completely within a sin-
gle entity.

The network is dynamic, can’t be constant, and intro-
duces latency for remote invocations. Network latency also
depends on potential failure handling and recovery mecha-
nisms so we cannot assume that a local invocation is simi-
lar to remote invocation. Thus complete transparency
distribution—by making calls on distributed objects as
though they were local—is impossible to achieve in prac-
tice. The distribution is not just an object-oriented imple-
mentation of a single distributed object; it’s a metasystemic
issue in object-oriented distributed programming.

Exertion-based programming was introduced [27] to
handle the metasystemic distribution in SORCER by using
indirect remote method invocation with no service provider
explicitly specified in the network request (exertion). Spe-
cific infrastructure objects support exertion-oriented pro-
gramming combined with FMI. That infrastructure defines
SORCER’s distributed object modularity, extensibility, and
reuse of service-oriented components consistent with the
relevant metacomputing granularity and dependency injec-
tion—key features of object-oriented distributed program-
ming that are usually missing in SPOA programming
environments.

3. Federated Service Object-oriented
Computing Environmet: SORCER
SORCER is a federated service-to-service (S2S) metacom-
puting environment that treats service providers as network
objects with well-defined semantics of a federated service
object-oriented architecture (FSOOA). It is based on Jini
semantics of services [12] in the network and Jini pro-
gramming model with explicit leases, distributed events,
transactions, and discovery/join protocols. While Jini fo-
cuses on service management in a networked environment,
SORCR is focused on exertion-oriented programming and
the execution environment for exertions.

As described in Section 2, SOOA consists of three major
types of network objects: providers, requestors, and regis-
tries. The provider is responsible for deploying the service
on the network, publishing its service to one or more regis-
tries, and allowing requestors to access its service. Provid-
ers advertise their availability on the network; registries
intercept these announcements and cache proxy objects to
the provider services. The requestor looks up proxies by
sending queries to registries and making selections from the
available service types. Queries generally contain search

criteria related to the type and quality of service. Registries
facilitate searching by storing proxy objects of services and
making them available to requestors. Providers use discov-
ery/join protocols to publish services on the network, re-
questors use discovery/join protocols to obtain service
proxies on the network. SORCER uses Jini discovery/join
protocols to implement its FSOOA and FMI.

In SOOA, a service provider is an object that accepts
remote messages from service requestors to execute an item
of work. These messages are called service exertions. A
task exertion is an elementary service request, a kind of
elementary remote instruction (elementary statement) exe-
cuted by a single service provider or a small-scale federa-
tion. A composite exertion called a job exertion is defined
hierarchically in terms of tasks and other jobs, a kind of
network procedure executed by a large-scale federation.
The executing exertion is a service-oriented program that is
dynamically bound to all needed and currently available
service providers on the network. This collection of provid-
ers identified in runtime is called an exertion federation.
This federation is also called an exertion space. While this
sounds similar to the object-oriented paradigm, it really
isn’t. In the object-oriented paradigm, the object space is a
program itself; here the exertion space is the execution en-
vironment for the exertion that is a service-oriented distrib-
uted program. This changes the programming paradigm
completely. In the former case the object space is hosted by
a single computer, but in the latter case the service provid-
ers are hosted by the network of computers.

The overlay network of service providers is called the
service provider grid and an exertion federation is called a
virtual metacomputer. The metainstruction set of the meta-
computer consists of all operations offered by all service
providers in the grid. Thus, a service-oriented program is
composed of metainstructions with its own service-oriented
control strategy and service context representing the metap-
rogram parameters [39]. The service context describes the
data that tasks and jobs work on. Exertion-oriented pro-
grams (metaprograms) can be created interactively [29] and
allow for a dynamic federation to transparently coordinate
their execution within the grid. Please note that these meta-

Figure 3. SORCER layered functional architecture.

This is a DRAFT document and work in progress. Version: 03/31/2007

computing concepts are defined differently in classical grid
computing where a job is just an executing process for a
submitted executable code with no federation being
formed.

In a federated service environment, the system is not
made up of just a single service, but the cooperation of
many services. A service exertion may consist of hierarchi-
cally nested exertions that require different service types. A
service can be broken down into small component services
instead of being one monolithic all-in-one service. These
smaller component services—treated as virtual metacom-
puter instructions—can then be distributed among different
hosts to allow for reusability, scalability, reliability, and
load balancing.

Each SORCER provider offers services to other peers
[19] on the object-oriented overlay network. These services
are exposed indirectly by methods in well-known public
remote interfaces and considered as elementary (tasks) or
compound (jobs) statements of the FSOOA [26,27]. Re-
questors do not need to know the exact location of a pro-
vider beforehand; they can find it dynamically by
discovering service registries (lookup services) and then
looking up a needed service implementing required service
types.

An exertion can be created interactively [29] or pro-
grammatically (using SORCER APIs) and their execution
can be monitored and debugged in the overlay service net-
work [32]. Service providers do not have mutual associa-
tions prior to the execution of an exertion; they come
together dynamically (federate) for all nested tasks and jobs
in the exertion. Specialized providers within the federation,
or task peers, execute service tasks. Jobs are coordinated by
a rendezvous or job peer called a Jobber, one of SORCER
infrastructure services [26]. However, a job can be sent to
any service provider (peer). A peer that is not a Jobber type
is responsible for forwarding the job to one of available job
peers in the SORCER grid and returning results to the re-
questor.

Thus implicitly, any peer can handle any job or task.
Once the job execution is complete, the federation dis-
solves and the providers disperse to seek other exertions to
join. Also, SORCER supports a traditional approach to grid
computing similar to those found in Condor [36] and
Globus [35]. Here, instead of exertions being executed by
services providing business logic for requested exertions,
the business logic comes from the service requestor's ex-
ecutable programs that seek compute resources on the net-
work.

Grid-based services in the SORCER environment in-
clude Grider services collaborating with Jobber services for
traditional grid job submission, and Caller and Methoder
services for task execution [15]. Callers execute conven-
tional programs via a system call as described in the service
context of a submitted task. Methoders download required

Java code (task method) from requestors to process any
submitted context accordingly with the downloaded code.
In either case, the business logic comes from requestors; it
is conventional executable code invoked by Callers with
the standard Caller’s service context or mobile Java code
executed by Methoders with any service context provided
by the requestor. A functional layered SORCER architec-
ture is presented in Figure 3.

4. Federated Method Invocation (FMI)
Each programming language provides a specific computing
abstraction. Procedural languages are abstractions of as-
sembly languages. Object-oriented languages abstract ele-
ments in the application domain that refer to “objects” as
their representation in the corresponding solution space.
The object-oriented distributed programming should allow
us to describe the distributed problem in terms of the intrin-
sic unpredictable network problem instead of in terms of
distributed objects that hide the notion of the network.

What intrinsic distributed abstractions are defined in
SORCER? Well, service providers are “objects”, but they
are specific objects—they are network objects with a net-
work state, network behavior, and network type(s). There is
still a connection to distributed objects: each service pro-
vider looks like a distribute object (compute node) in that it
has a network state, network behavior, and network
types(s). Service providers act also as network peers[19];
they are replicated and dynamically provisioned for reli-
ability to compensate for network failures [22]. They can
be found dynamically in runtime by type(s) they imple-
ment. They can federate for executing a specific network
request called an exertion and perform hierarchically nested
(component) exertions. An exertion encapsulates service
data, operations, and control strategy. Once the exertion’s
invocation is complete, the federation dissolves and the
providers disperse to seek other exertions. The exertion can
incorporate multiple nested exertions where a precedence
relation is defined by a parent-child relationship. The same
provider can perform multiple exertions concurrently and
any provider that implements the matching service type can
be selected for performing the exertion associated with this
type. The component exertions may need to share context
data of ancestor exertions, and the top-level exertion is
complete only if all nested exertions are successful.

With that very concise introduction to the abstractions of
exertion-based programming, let’s look in detail at how
Federated Method Invocation (FMI) is structured and how
it works with exertions.

4.1 Service Messaging and Exertions

In object-oriented terminology, a message is the single
means of passing control to an object. If the object re-
sponds to the message, it has an operation and its

This is a DRAFT document and work in progress. Version: 03/31/2007

implementation (method) for that message. The equivalent
in procedural programming languages to a message is the
function call. The message means neither the function as it
is nor the signature of the function, but to send the message
means roughly to call the function. Because object data is
encapsulated and not directly accessible, a message is the

only way to send data from one object to another. Each
message specifies the name of the receiving object, the
name (selector) of operation to be invoked, and any paever,
in the unreliable network of objects, the receiving object
might not be present or can go away at any time. Thus, we
should postpone receiving object identification as late as

Figure 4. The Exertion interface and related subset of FMI interfaces/classes: the abstract class ServiceExertion with two
abstract subclasses: Task and Job along with FMI parameters defined by the Context interface and signatures defined by the
Signature interface.

This is a DRAFT document and work in progress. Version: 03/31/2007

possible. Grouping related messages per one request for the
same data set makes a lot of sense due to network invoca-
tion latency and common errors in handling. These obser-
vations lead us to service-oriented messages called
exertions that encapsulate both multiple service signatures
and data as a service context. In other words, an exertion
primarily consists of one or more operations and the data
upon which the operations should be performed. Two exer-
tion types are distinguished: elementary and composite
exertion called service task and service job respectively
(see Figure 4). There are two ways of invoking exertions.
In the first case, an Exertion can be invoked by calling Exer-
tion.exert(Transaction). The second way is explained in Sub-
section 4.6.

4.2 Service Signatures

An exertion initiates the dynamic federation of all
needed service providers dynamically—as late as possi-
ble—as specified by signatures of top-level and nested ex-
ertions. Thus, FMI is defined as exerting an exertion, which
is essentially an indirect invocation of network methods
specified by the exertion signatures and service context.
SORCER service providers and requestors usually commu-
nicate via FMI.

A service Signature is defined by:
• signature name
• service type – Java interface name
• selector of the service operation – operation name of the

service type (Java interface)

• operation type – Signature.Type: PROCESS (default),
PREPROCESS, POSTPROCESS

• service access type – Signature.Access; PUSH (default)
direct binding to Jobbers or Taksers, or DROP using
Spacer (see Figure 4)

• priority
• execution time flag – if true, the execution time is re-

turned in the service context
• notifyees – list of email addresses to notify upon com-

pleted)
• service attributes – requestor’s attributes matching pro-

vider’s registration attributes
An exertion can comprise of a collection of PREPRROC-
ESS and POSTPROCESS signatures, but only one PROC-
ESS signature. The PROCESS signature defines the
binding provider for the exertion.

4.3 Exertion Types

A Task is the analog of a statement in conventional pro-
gramming languages—here an elementary step of the exer-
tion-oriented program. Thus, it is a minimal unit of
structuring in exertion-oriented programming. If the pro-
vider responds to a Task, it has a method for the task's
PROCESS signature. Other signatures associated with the
Task provide for preprocessing and postprocessing by the
same or federating providers. An APPEND signature pro-
vides for the context received from the provider identified
by this signature to be appended in runtime to the task’s
currently processed service context. Appending a service

Figure 5. Flow control exertions, conditional IfExertion and looping WhileExertion, used in SORCER.

This is a DRAFT document and work in progress. Version: 03/31/2007

context allows a requestor to use actual data in runtime not
available to the requestor when a task is submitted. A Task
is the single means of passing control to a PROCESS pro-
vider. Note that a task is a batch of operations that operate
on the same service context—a Task shared execution
state—and all operations of the Task, as defined by signa-
tures, can be executed by the same provider or a group of
federating providers coordinated by the PROCESS pro-
vider—the provider identified by the PROCESS signature
of the Exertion.

A Job is the analog of a procedure in conventional pro-
gramming languages—here a federated procedure in an
exertion-oriented program. It is a composite of exertions
(see Figure 4) that makeup the federated procedure. The
following flow control exertion types define algorithmic
logic of exertion-oriented programming:
• Exertion

• NullExertion
• AsyncExertion

• AsyncServiceExertion
• ServiceExertion

• ServiceTask
• ServiceJob
• IfExertion
• WhileExertion
• ForExertion
• DoExertion
• ThrowExertion
• TryExertion
• BreakExertion

• ContinueExertion
Currently implemented flow control Exertion types in

SORCER are depicted in Figure 5.

4.4 Knowledge Representation and Service Context

The implementation of natural language knowledge defini-
tion and editing critically depends on the intricacy of trans-
lation between natural language constructs and internal
knowledge representation structures. This is a function of
the chosen knowledge representation method. In the per-
cept formalism, an entity of the world is treated as the im-
age given by perception, and that image is called a percept.
A percept conceptualization is the semantic counterpart of
the syntactic level of the knowledge description theory
called percept calculus [30]. A service context, based on
the percept conceptualization, is a data structure that de-
scribes service provider ontology along with related data. A
service ontology is controlled by provider vocabulary that
describes objects and the relations between them in a pro-
vider's namespace within a specified service domain of
interest. A requestor submitting an exertion to a provider
has to comply with that ontology. In the percept conceptu-
alization, attributes and their values are used as atomic con-
ceptual primitives, and complements are used as molecular
ones. A complement is an attribute sequence (path) with a
value at the last position. An elementary percept property
consists of a percept subject and a set of percept comple-
ments, and usually corresponds to a simple sentence of
natural language.

A service context is a tree-like structure described con-
ceptually in the EBNF conceptual syntax specification as
follows:
1. context = [subject ":"] complement { complement }.
2. subject = element.
3. complement = element ";".
4. element= path ["=" value].
5. path = attribute { "/" attribute } [{ "<" association ">"

}] [{ "/" attribute }].
6. value = object.
7. attribute = identifier.
8. relation = domain product.
9. association = domain tuple.

10. product = attribute { "|" attribute }.
11. tuple = value { "|" value }.
12. attribute = identifier.
13. domain = identifier.
14. association = identifier.
15. identifier = letter { letter | digit }.

A relation with a single attribute is called a property and is
denoted as attribute | attribute.

To illustrate the idea of context, lets consider the follow-
ing context example (graphically depicted in Figure 7):

laboratory/name = SORCER: university=TTU;
university/department/name=CS;

Figure 6. A job federation. The red line (the first from the
left) indicates the originating FMI invocation: Exer-
tion.exert(Transaction) or Servicer.service(Exertion, Transac-
tion). The root job with component exertions is depicted
below the provider grid (a cloud). Late bindings of all sig-
natures are indicated by dashed lines that define the job’s
initial federation (metcomputer).

This is a DRAFT document and work in progress. Version: 03/31/2007

university/department/room/number=20B;
university/department/room/phone/number=806-742-
university/department/room/phone/ext=237;
director <person | Mike | W | Sobolewski>

/email=sobol@cs.ttu.edu;

person | firstname | initial | lastname.
A context leaf node, or data node is where the actual

data resides. The service context—all context paths—
denotes an application domain namespace, and a context
model [39] is its context with data nodes appended to its
context paths. A context path is a hierarchical name for a
data item in a leaf node. Note that Context can be repre-
sented as an XML document—what has been done in
SORCER for interoperability—but the power of object
Contexts comes from the fact that any Java object can be
naturally used as a data node. In particular exertions them-
selves can be used as data nodes and then executed and
controlled by providers to run complex iterative programs,
e.g., nonlinear multidisciplinary optimization [16].

4.5 Service-to-Service (S2S) Computing

Tasks are usually executed by providers of the Tasker type
(task peer). A Job contains a service context called control
context that describes the control strategy for the Job. Dedi-
cated service providers of the Jobber type (job peer also
called rendezvous peer), interpret and execute a job's con-
trol context in terms of the job's nested exertions accord-
ingly. A Jobber manages a shared context (shared execution
state) for the job federation and provides a substitution for
input context parameter mappings. A Jobber creates a fed-
eration of required service providers (Taskers and Jobbers)
in runtime. A SORCER peer (Servicer) that is unable to
execute an Exertion for any reason forwards the Exertion to
any available Servicer matching the exertion’s PROCESS
signature and returns the resulting exertion back to its re-
questor. In Figure 6, a job federation is illustrated with late
bindings for all signatures in all component exertions.

All SORCER service providers are service peers as they
implement the top-level Servicer interface (see Figure 8).
As a result, each Servicer can initiate a federation created in
response to Servicer.service(Exertion, Transaction). Servicers
come together to form a federation participating in execu-
tion of the same exertion. When the exertion is complete,
Servicers leave the federation and seek a new exertion to
join. Note that the same exertion can form a different fed-
eration for each execution due to the dynamic nature of
looking up Servicers by their implemented custom inter-
faces. The hierarchy of SORCER Servicer types is defined
as follows (see Figure 8, interfaces names in italic below):
• Servicer (defines S2S)

• Tasker
• Jobber
• Provider extends Remote and Monitorable

• AdministrableProvider
• ServiceProvider

(implements discovery, join, and monitoring)
• ServiceTasker

(implements Tasker and Exerter)
• ServiceJobber

(implements Jobber and Exerter))
• Exerter (not Remote)

ServiceAccessor uses DynamicAccessor as a naming service
provider for FMI. The naming service provider furnishes a
means to dynamically locate service providers on the net-
work. The SORCER ProviderAccessor implements Dynami-
cAccessor using the SORCER Cataloger service with the
Jini Discovery and Lookup Services.

Despite the fact that every Servicer can accept any exer-
tion, Servicers have well defined roles in SORCER S2S
exertion-oriented programming (see Figure 3):
a) Taskers – process service tasks
b) Jobbers – process service jobs
c) Contexters – provide service contexts for APPEND Sig-

natures Figure 7. Example of a service context.

Figure 8. FMI Servicers: Tasker and Jobber with the
name service provider interface—DynamicAccessor.

This is a DRAFT document and work in progress. Version: 03/31/2007

d) FileStorers – provide access to federated file system
providers [31,1]

e) Catalogers – Servicer registries
f) Persisters – persist service contexts, tasks, and jobs to be

reused for interactive exertion-based programming
g) Spacers – manage exertion spaces shared across

Servicers for space-based computing [7]
h) Relayers – gateway providers, transform exertions to na-

tive representation, for example integration with Web
services and JXTA

i) Autenticators, Authorizers, Policers, KeyStorers – pro-
vide support for service-oriented security

j) Auditors, Reporters, Loggers – support for accountabil-
ity, reporting and logging

k) Griders, Callers, Methoders – support conventional grid
computing

l) Generic ServiceTasker and ServiceJobber implementa-
tions are used to configure domain specific providers
via dependency injection—configuration files for smart
proxying and inserting business objects called service
beans.

4.6 FMI Triple Command Pattern

Polymorphism lets us encapsulate a request—in FMI an
exertion—then establish the signature of operation to call
and vary the effect of calling the underlying operation by
varying its implementation. The Command design pattern
[10] establishes an operation signature as an interface and
defines various implementations of the interface. In FMI,
the following three operations are defined:
1. Exertion.exert(Transaction):Exertion - join the federation

2. Servicer.service(Exertion, Transaction):Exertion – request
a service in the federation initiated by the receiver

3. Exerter.exert(Exertion, Transaction):Exertion – execute the
component exertion by the target provider in the federa-
tion

The Triple Command pattern defines various implementa-
tions of these interfaces: Exertion, Servicer, and Exerter. This
approach allows for the P2P environment [8] via the
Servicer interface, extensive modularization of Exertions
and Exerters, and extensibility from the triple design pattern
so requestors can submit any service-oriented programs
(exertions) they want with or without transactional seman-
tics. Note that both ServiceTasker and ServiceJobber are
Servicers and Exerters (see Figure 8 for details); more pre-
cisely their proxies are remote objects of the Servicer type
only while the provider itself (local object) is both of
Servicer and Exerter type.

FMI triple Command Pattern is used as follows:
1. An exertion can be invoked by calling Exer-

tion.exert(Transaction). The Exertion.exert operation im-

plemented in ServiceExertion uses ServiceAccessor to
locate in runtime the provider matching the exertion’s
PROCESS signature (see Figure 8 for classes involved).

2. If the matching provider is found, then on its access
proxy (that can also be a smart proxy) the
Servicer.service(Exertion, Transaction) method is invoked.

3. When the requestor is authenticated and authorized by
the provider to invoke the method defined by the exer-
tion’s PROCESS signature, then the provider calls its
own exert operation: Exerter.exert(Exertion, Transaction).

4. Exerter.exert method calls exert either of ServiceTasker or
ServiceJobber (depending on the type of the exertion: ei-
ther Task or Job) that by reflection calls the method
specified in the PROCES signature (interface and selec-
tor) of the exertion. All application domain methods of
any application interface (custom Tasker interfaces)
have the same signature: a single Context type parameter
and a Context type return vale. Thus a custom interface
looks like an RMI interface with the above simplifica-
tion on the common signature for all interface methods.

In the FMI approach, a requestor can create any Exer-
tion, composed from any hierarchically nested Exertions,
with any service provider supplied anthology. The context
anthologies along with object proxies and their object at-
tributes are network-centric; they are part of the provider’s
registration so can they be accessed via Cataloger or lookup
services by any requestor on the network, e.g., service
browsers [11] or custom service UI user agents [37] provid-
ing interactive exertion-oriented programming. In SOR-
CER, using these zero-install service UIs, the user can
define data for downloaded ontology and create a task/job
to be executed on the virtual metacomputer.

Individual Providers, in particular Taskers and Jobbers,
implement their own exert(Exertion, Transaction) methods
according to their service semantics, in SORCER imple-
mented by ServiceTasker and ServiceJobber respectively.
SORCER specific domain providers either subclass
ServiceTasker or ServiceJobber, or by dependency injection
(using Jini configuration methodology) configure either one
with one of 12 proxying methods developed in SORCER.
In general, many different types of taskers and jobbers can
be used in SORCER at the same time (currently one
ServiceTasker and one ServiceJobber implementation exists)
and exertions via their signatures will make appropriate
choices as to what virtual metacomputer to run.

Invoking an exertion, let’s say ext, is similar to invoking
an executable program ext.exe at the command prompt. If
we use the Tenex C shell (tcsh), invoking the program is
equivalent to: tcsh ext.exe, i.e., passing the executable
ext.exe to tcsh. Similarly, to invoke a metaprogram using
FMI, in this case the exertion ext, we call ext.exert(null) if

This is a DRAFT document and work in progress. Version: 03/31/2007

no transactional semantics is required. Thus, the exertion is
the metaprogram and the network shell at the same time,
which might first come as a surprise, but close evaluation
of this fact shows it to be consistent with the meaning of
object-oriented federated programming. Here, the virtual
metacomputer is a federation that does not exist when the
exertion is created. Thus, the notion of the virtual meta-
computer is enclosed in the exertion exemplified by FMI.

The observation concluding that the exertion is the
metaprogram and the network shell at the same time brings
us back to the distribution transparency issue discussed in
Section 2. It might appear that Exertion objects are network
wrappers as they hide network intrinsic unpredictable be-
havior. However, Exertions are not distributed objects, as
do not implement any remote interfaces; they are local ob-
jects. Servicers are distributed objects and there are many
types of Servicers addressing different aspects of network-
ing. The network intrinsic unpredictable network behavior
is addressed by the SORCER object-oriented distributed
infrastructure: Taskers, Jobbers, Catalogers, Spacers, File-
Storers, Authenticators, Authorizers, Policers, etc. The
Servicer-based infrastructure facilitates exertion-oriented
programming and metaprograms execution using presented
FMI and allows for constructing reliable object oriented
distributed systems from unreliable distribute components -
Servicers.

5. Conclusions
A distributed system is not just a collection of distributed
objects—it’s the network of objects. From an object-
oriented point of view, the network of objects is the prob-
lem domain of object-oriented distributed programming
that requires relevant abstractions in the solution space. The
exertion-based programming introduces new network ab-
stractions with federated method invocation in SOOA.
Service providers register proxies, including smart proxies,
via dependency injection using twelve methods investi-
gated in SORCER. Executing a top-level exertion means a
dynamic federation of currently available providers in the
network collaboratively process service contexts of all
nested exertions. Services are invoked by passing exertions
on to providers indirectly via object proxies that are access
proxies allowing for service providers to enforce a security
policy on access to services. When permission is granted,
then the operation defined by a signature is invoked by
reflection. FMI allows for the P2P environment via the
Service interface, extensive modularization of Exertions and
Exerters, and extensibility from the triple command design
pattern. The presented FMI has been successfully tested in
multiple concurrent engineering, large-scale distributed
applications.

Acknowledgments
I would like to thank all my students in the SORCER Re-
search Group [34] for their motivation, innovation, and
excitement they generate when working with exertion-
based programming. Without their research efforts, it
would not be possible to integrate so many different views
of distributed programming and to validate so many diverse
and controversial opinions on distributed objects and ob-
ject-oriented distributed computing.

References
[1] Berger, M., and Sobolewski, M., SILENUS – A Federated

Service-oriented Approach to Distributed File Systems, In
Next Generation Concurrent Engineering [28]. pp. 89-96
(2005)

[2] Birrell, A. D. & Nelson, B. J., Implementing Remote Proce-
dure Calls, XEROX CSL-83-7, October 1983.

[3] Edwards W.K., Core Jini, 2nd ed., Prentice Hall, ISBN: 0-13-
089408 (2000)

[4] Fallcies of Distributed Computing. Available at:
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Compu
ting. Accessed on: March 15, 2007.

[5] FIPER: Federated Intelligent Product EnviRonmet. Available
at: http://sorcer.cs.ttu.edu/fiper/fiper.html. Accessed on:
March 15, 2007.

[6] Foster I., Kesselman C., Tuecke S., The Anatomy of the J.
Supercomputer Applications, 15(3) (2001)

[7] Freeman, E., Hupfer, S., & Arnold, K. JavaSpaces™ Princi-
ples, Patterns, and Practice, Addison-Wesley, ISBN: 0-201-
30955-6 (1999)

[8] Goel S., Shashishekara, Talya S.S., Sobolewski M., Service-
based P2P overlay network for collaborative problem solv-
ing, Decision Support Systems, Volume 43, Issue 2, March
2007, pp. 547-568 (2007)

[9] Goel, S, Talya S., and Sobolewski, M., Preliminary Design
Using Distributed Service-based Computing, Proceeding of
the 12th Conference on Concurrent Engineering: Research
and Applications, ISPE, Inc., pp. 113-120 (2005)

[10] Grand M., Patterns in Java, Volume 1, Wiley, ISBN: 0-471-
25841-5 (1999)

[11] Inca X™ Service Browser for Jini Technology. Available at:
http://www.incax.com/index.htm?http://www.incax.com/serv
ice-browser.htm. Accessed on: March 15, 2007.

[12] Jini architecture specification, Version 2.1. Available at:
http://www.sun.com/software/jini/specs/jini1.2html/jini-
title.html. Accessed on: March 15, 2007 (2001)

[13] Jini, Wikipedia. Available at:
http://en.wikipedia.org/wiki/Jini.
Accessed on: March 15, 2007.

[14] Jini.org, Available at: http://www.jini.org/.
Accessed on: March 15, 2007.

This is a DRAFT document and work in progress. Version: 03/31/2007

[15] Khurana V., Berger M., Sobolewski M., A Federated Grid
Environment with Replication Services. In Next Generation
Concurrent Engineering [28].

[16] Kolonay, R.M., Sobolewski, M., Tappeta, R., Paradis, M.,
Burton, S. 2002, Network-Centric MAO Environment. The
Society for Modeling and Simulation International, Westrn
Multiconference, San Antonio, TX (2002)

[17] Lapinski, M., Sobolewski, M., Managing Notifications in a
Federated S2S Environment, International Journal of Concur-
rent Engineering: Research & Applications, Vol. 11, pp. 17-
25 (2003)

[18] McGovern J., Tyagi S., Stevens M.E., Mathew S., Java Web
Services Architecture, Morgan Kaufmann (2003)

[19] Oram Andy, Editor, Peer-to-Peer: Harnessing the Benefits of
Disruptive Technology, O'Reilly (2001)

[20] Package net.jini.jeri. Available at: https://java.sun.com/pro-
ducts/jini/2.1/doc/api/net/jini/jeri/package-summary.html.
Accessed on: March 15, 2007.

[21] Pitt E., McNiff K., java.rmi: The Remote Method Invocation
Guide, Addison-Wesley Professional (2001)

[22] Project Rio, A Dynamic Service Architecture for Distributed
Applications. Available at: https://rio.dev.java.net/. Accessed
on: March 15, 2007.

[23] Röhl, P.J., Kolonay, R.M., Irani, R.K., Sobolewski, M., Kao,
K. A Federated Intelligent Product Environment, AIAA-
2000-4902, 8th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Long Beach,
CA, September 6-8 (2000)

[24] RPC: Remote Procedure Call Protocol Specification Version
2. Available at: http://www.ietf.org/rfc/rfc1831.txt (1995).
Accessed on: March 15, 2007.

[25] Ruh W.A., Herron T., Klinker P., IIOP Complete: Under-
standing CORBA and Middleware Interoperability, Addison-
Wesley (1999)

[26] Sobolewski M., Federated P2P services in CE Environments,
Advances in Concurrent Engineering, A.A. Balkema Pub-
lishers, 2002, pp. 13-22 (2002)

[27] Sobolewski M., FIPER: The Federated S2S Environment,
JavaOne, Sun's 2002 Worldwide Java Developer Conference,
2002. Available at:
http://sorcer.cs.ttu.edu/publications/papers/2420.pdf.
Accessed on: March 15, 2007.

[28] Sobolewski M., Ghodous P. (Eds), Next Generation Concur-
rent Engineering. Proceeding of the 12th Conference on Con-
current Engineering: Research and Applications,
ISPE/Omnipress (2005)

[29] Sobolewski M., Kolonay R., Federated Grid Computing with
Interactive Service-oriented Programming, International
Journal of Concurrent Engineering: Research & Applications,
Vol. 14, No 1., pp. 55-66 (2006)

[30] Sobolewski, M., Percept Conceptualizations and Their
Knowledge Representation Schemes, Ras Z.W. and
Zemankova M. (Eds.) Methodologies for Intelligent Systems,
Lecture Notes in AI 542, Berlin: Springe-Verlag, pp. 236-245
(1991)

[31] Sobolewski, M., Soorianarayanan, S., Malladi-Venkata, R-K.
2003, Service-Oriented File Sharing, Proceedings of the
IASTED Intl., Conference on Communications, Internet, and
Information technology, pp. 633-639, Nov 17-19, Scottsdale,
AZ. ACTA Press (2003)

[32] Soorianarayanan, S., Sobolewski, M., Monitoring Federated
Services in CE, Concurrent Engineering: The Worldwide En-
gineering Grid, Tsinghua Press and Springer Verlag, pp. 89-
95 (2004)

[33] SORCER Research Group. Available at:
http://sorcer.cs.ttu.edu/. Accessed on: March 15, 2007.

[34] SORCER Research Topics. Available at:
http://sorcer.cs.ttu.edu/theses/. Accessed on: March 15, 2007.

[35] Sotomayor B., Childers L., Globus® Toolkit 4: Programming
Java Services, Morgan Kaufmann (2005)

[36] Thain D., Tannenbaum T., Livny M.. Condor and the Grid. In
Fran Berman, Anthony J.G. Hey, and Geo rey Fox, editors,
Grid Computing: Making The Global Infrastructure a Reality.
John Wiley (2003)

[37] The Service UI Project. Available at:
http://www.artima.com/jini/serviceui/index.html.
Accessed on: March 15, 2007.

[38] Waldo J., The End of Protocols, Available at:
http://java.sun.com/developer/technicalArticles/jini/protocols
.html. Accessed on: March 15, 2007.

[39] Zhao, S., and Sobolewski, M., Context Model Sharing in the
FIPER Environment, Proc. of the 8th Int. Conference on
Concurrent Engineering: Research and Applications, Ana-
heim, CA (2001)

