
1)

1 DEFINITIONS AND FUNDAMENTAL
TECHNOLOGY

1.1 Definitions of Cluster- and Grid Infrastructures

We define for the purposes of this paper a cluster as
a collection of independent, homogeneous computa-
tional entities that are located in physical proximity,
controlled by a single resource scheduler. A grid is
defined as a collection of multiple resources that can
be inhomogeneous, managed by multiple local re-
source schedulers and located either in physical
proximity or remotely connected. A grid, however,
allows access to its resources through a singular in-
terface and provides user level code access to com-
putational, data, visualization or other resources.

1.2 Definitions of Service Oriented Architectures

In a very broad and general definition, “a service-
oriented architecture is essentially a collection of
services. These services communicate with each
other. The communication can involve either simple
data passing or it could involve two or more services
coordinating some activity. Some means of connect-
ing services to each other is needed”1. A service is
“a unit of work done by a service provider to
achieve desired end results for a service consumer”2,
and finally “both provider and consumer are roles
played by software agents on behalf of their own-
ers”.

Elements of a SOA are usually
• Services that implement a contained set of
functionality, for example business logic or
data operation, with a defined interface. The

interface needs to be light-weight and im-
plemented in a platform independent fashion,
for example with Java, Jini or XML.

• A registry where all services publish their in-
terfaces and expose their functionality. The
registry is used by services to locate provider
services.

• Clients, which can be other services, that lo-
cate a provider service through published in-
terfaces in the registry and connect using the
interface. (Adapted from Singh et al, 20043)

For the purposes of this paper it needs to be noted
that a service could be fairly complex. The concept
of a SOA does not require the service itself to be
light weight, only its interface. The service can be
implemented in a native method like C or FOR-
TRAN, while the interface description needs to be
platform independent. Exposing the functionality of
a native method program to a public interface is
called wrapping and the connector between the pro-
gram and its public interface is called a wrapper. If a
service is implemented in a object oriented lan-
guage, an object can be invoked from its class, but a
native method program could be started by the inter-
face. One of the key advantages of SOA is the loose
coupling of elements through the interface publish-
ing and subscription method and the registry. N con-
sumer services can connect to M provider services,
which makes SOA inherently scalable. Agents are
roles of services.

Service Oriented Architectures and Grid computing – A New Generation
of Applications for Grid Enabled Data Centers and Public Utility
Computing

Heinz J. Schwarz
Sun Microsystems, Inc., Menlo Park, CA, USA

ABSTRACT: Cluster- and Grid infrastructures have gained significant popularity within the scientific com-
munity, and in recent years also became the platform of choice for commercial applications in various fields.
We will argue in this paper that a combination of service oriented architecture style systems design, imple-
mented within cluster- and grid infrastructures, and controlled by dynamic multi-agent systems, will enable
new types of applications that can not only leverage the resources of datacenters most efficiently, but also
form the foundation for public utility computing. Key to this technique is the decomposition of traditional ap-
plications into functional units, which are then exposed as services. We will describe the basic requirements
and control mechanisms, as well as the benefits of this novel systems design.

13

Next Generation Concurrent Engineering - M. Sobolewski & P. Ghodous (eds)
© 2005 ISPE, Inc., ISBN 0-9768246-0-4

2 CLUSTER AND GRID INFRASTRUCTURE

2.1 Cluster design parameters

Clusters are usually built from homogeneous com-
ponents. There are several good reasons why this
makes sense. One set of reasons encompasses ease
of administration, software distribution and han-
dling. It is better to have two clusters with homoge-
neous components within them, than one cluster
with heterogeneous components. This becomes dras-
tically evident if nodes are provisioned with boot
images, which has several advantages, but requires a
homogeneous setup. Another reason to keep nodes
homogeneous is application mapping. Given that a
Datacenter provides resources with different archi-
tecture profiles, it makes sense to allocate resources
that most efficiently match the application require-
ments. If a cluster is built from homogeneous com-
ponents, it is easy to characterize.
In order to allow all cluster nodes to run concur-
rently different threads of a single application, it is
necessary to create access to a single, shared file
system. Access to data prior to job execution and
during runtime can influence the execution perform-
ance significantly. Hence, the design of the shared
cluster file system deserves special attention in
terms of aggregate bandwidth and scalability. La-
tency is not as relevant given that data access from
disk is several orders of magnitude slower than local
access within memory. We assume that application
programmers already optimized their applications in
terms of data caching and pre-fetching. On the other
hand, for parallel applications with huge amounts of
communication, in this case specifically messages, it
is often recommended and common practice to use
low latency, high bandwidth interconnects. Some
applications are more sensitive to interconnect la-
tency than others, but the general principle is that the
more communication is required between the nodes,
the more communication bandwidth and latency be-
comes a bottleneck. The speed of an individual CPU
can become less performance relevant than the
communication characteristics of the cluster nodes.
In order to use a cluster as a singular resource, it

is common practice to define one master node that
keeps track of available resource within the cluster
with a Dynamic Resource Management (DRM) sys-
tem like Condor, PBS, LSF or Sun N1GE64. Most of
the common DRM systems collect jobs submitted
for execution on the cluster in one or many queues
and allocate resources to the job based on a policy or
scoring mechanism. In the simplest form, a queue
would just sequentially store and forward jobs (first-
in, first out). More sophisticated systems allow pol-
icy management, advance reservation with backfill-
ing and metering of queue and execution times per
job, user, group and project. Every job is evaluated
upon submission to the queue. This model creates a
relatively static queue. Given a deep queue on one

side and a dynamic system on the other side, many
things can happen between initial job priority scor-
ing and its actual allocation. For large, scalable envi-
ronments, we will suggest a more dynamic model
based on multi agent systems. However, some of the
traditional DRM features can be exposed to higher
level management tools through the GRAM inter-
face. The GRAM interface within the Globus
Toolkit5, “provides a single interface for requesting
and using remote system resources for the execution
of 'jobs'. The most common use of GRAM is remote
job submission and control. It is designed to provide
a uniform, flexible interface to job scheduling sys-
tems”. Higher level services can build on GRAM to
allow job scheduling across a grid, as implemented
for example in the grid-lab resource management
system6. We described here only a few of the most
important cluster design parameters. Other parame-
ters like power consumption in relation to perform-
ance, cooling, physical layout etc. are not pertinent
to the topic of the paper and are therefore omitted,
which by no means suggests those parameters were
less important.

2.2 Grid Design Parameters

According to our definition, we deal with grid de-
sign parameters already when we have more than
one cluster and wish to allocate jobs, or as we will
later define decomposition blocks, across those mul-
tiple clusters. In reality, we could have different
clusters with homogeneous nodes among them, yet
heterogeneous characteristics between the clusters,
and a collection of different size single systems. We
refer to size here as shorthand for characteristics like
number of CPUs, memory, I/O bandwidth and so on.
System ß shall be defined as bigger than system �, if
ß has more of either of the aforementioned charac-
teristics. In order to be able to access resources
within the grid, the grid offers a singular interface,
which could be either a log-in node with a public IP
address or a portal server. The log-in server needs to
record some basic user information and authenticate
a user to check if she is authorized to submit jobs to
the grid. We need all of these features for a single
system or a single cluster also, but request that the
grid middleware acts as a gateway, hence handling
the authentication and authorization process once for
all resources within the grid. In some grid environ-
ments, we find resource scheduling capability on a
grid level, which is desirable. However, many cur-
rent grid implementations require a user to select
manually on which grid resource the application
should be scheduled. Resource scheduling at a grid
level requires a feature we will refer to as meta
scheduling. Meta scheduling is a functionality that
matches resource requests with resource availability
of the grid resources. Every grid resource should
have a local interface that collects resource informa-

14

tion and can report those in an aggregated form to a
higher level scheduler. GRAM is a basic interface
definition that allows implementing meta scheduling
across multiple grid resources. However, sophisti-
cated features, like advance reservation and backfill-
ing, which are certainly common in local resource
management environments, are difficult to imple-
ment on this level, as GRAM defines only the ex-
change of basic information.
Another important consideration regarding grid de-
sign involves access and management of data. We
defined that, in a cluster, all cluster nodes shall have
access to a single file system simultaneously to al-
low the execution of a single, parallel application. In
a grid environment, several different scenarios are
conceivable. Architecturally difficult to implement,
yet simplifying from an application programmer's
point of view, would be a singular file system for all
grid resources. In current grid implementations, ap-
plications usually do not use resources concurrently,
but sequentially. An application might be submitted
to a meta scheduler, scheduled for execution at one
resource, executed and the result stored in a defined
directory. In this scenario, a singular file system is
not necessary. The data could be transferred along
with the executable program to the designated grid
resource and stored in a file system local to this grid
resource. However, what needs to be considered in
this case is the bandwidth available to transfer data
between one grid resource and another. A large data
transfer of several hundred Gigabytes could take a
substantial time, which needs to be considered as
resource utilization itself. With our previous exam-
ple we have introduced the concept of simultaneous
data access, which requires a single file system, and
sequential data access, which requires data transfer
between grid resources. We also defined the basis
for a service requirement we will describe in detail
later. Data transfer is costly in itself, as it requires
considerable resources. A large data transfer requires
I/O capacity on two servers (sender and receiver),
network bandwidth and storage capacity. Moreover,
data transfers are costly in terms of time consump-
tion. We shall from hereon refer to cost as a descrip-
tion for the consumption of any measurable re-
source. In order to increase efficiency within the
grid, we might have to deal with trade off decisions.
Transferring data from one resource to another
might make sense under the aspect that more appro-
priate CPU resources or Storage resources can be
used at the receiving resource, but we incur cost for
the data transfer. If the benefit of the transfer out-
weighs the cost, we should do it, but at the same
time we shall avoid transactions if the cost out-
weighs the benefits. Most current grid middleware
environments have no means to consider data trans-
fer cost while making resource allocations, if re-
source allocation are made automatically or dynami-
cally at all.

3 APPLICATION DECOMPOSITION

3.1 Native Methods and application decomposition

Functional application decomposition is a method
fairly common in high performance computing envi-
ronments. We will define basic elements with a sim-
ple example depicted in figure 1. It is fairly common
that a single application has different sequential
phases, irregardless of the actual implementation
with a native method programming language. Let's
assume that our sample application requires some
sort of pre processing, for example sorting and or-
dering input parameters. In the second phase, the
application accesses a large database based on the
preprocessed data. The database access requires sev-
eral complex join operations between various tables.
This access populates a sparse matrix, which then
can be processed in an iterative loop. Every step of
the iteration performs a simple operation on the data.

In the next step, all the results are combined in a
post processing operation and written in an output
file.
Each of the previously described phases of the pro-
gram requires a different set of resource characteris-
tics and a set of operations. Traditional decomposi-
tion is interested in looking at these groups to iden-
tify sequential dependencies and potential paralleli-
zation targets to speed up the execution of the appli-
cation. However, in our example, one phase is data
dependent on the previous phase. Optimizations can
occur within the phase. We will refer to these se-
quential phases with defined, common characteris-
tics performing a set of defined functions from now
on as decomposition blocks, indicating that we de-
composed the application into sequential blocks,
each of which operating a set of functions. In a tradi-
tional program, the sum of all decomposition blocks
equals the sum of all operations of the program and
hence of the application. Another way to describe a
monolithic application would be to call it the aggre-
gate execution of decomposition blocks. In our ex-
ample, we label the decomposition blocks sequen-
tially DB1 to DB4. For the purposes of our concept
we shall now address two other characteristics: the
execution time of the decomposition block, and both

Figure 1

15

the incoming and outgoing data volume. As we
move from DBn to DBn+1, we have to pass the output
data of DBn forward as the input data of DBn+1. In a
trivial case, the entire application with all decompo-
sition blocks is executed in one single computer sys-
tem with shared memory, so the data transfer is
nothing more than data handles defined within the
program pointing to the same logical storage point-
ers, which could be either in cache, memory or the
file system. The operating system handles the alloca-
tion between the logical and physical representation.
In cluster and grid environments, data handling is
more complex.
We measure the execution time of one decompo-

sition block as the time to access input data, perform
all operations of the decomposition block and write
the output data. Therefore, the execution time is not
only dependent on the compute time, but also on the
time to transfer data, which in turn is dependent on
the bandwidth and data volume. In a simplified form
we define Tt = Te + Td , in which Tt is the total run-
time for a decomposition block, Te the execution
time and Td the time required for data transfer.
Another concept we need to define in our model

is related to parallel execution. Some decomposition
blocks, like DB3 in our example, allow parallel exe-
cution. As we perform the operations of the matrix,
each operation is not dependent on another opera-
tion, only on the input data in relation to an index i.
Therefore, we have actually n implementations of
DB3 that are index dependent on i. We shall define
each parallel executable functional unit of a decom-
position block as a parallel decomposition sub-block
(PBSB). In our example, DB3 can be executed in
parallel with n PDSBs, in which n is dependent on i.
We refer to each PDSB as an instantiation or copy of
the DB with the index i and label accordingly. The
execution time for DB3 is the aggregate of all
PDSB. DB3 is an ideal typical parallel DB which
requires little or no communication between the
nodes executing each PDSB. It is not uncommon to
find DBs that can be represented in PDSBs, yet the
calculations are somewhat dependent on each other
and require the exchange of data. Data exchange
within PDSB is often referred to as messages.
We could combine all decomposition blocks into

one application and run them on different architec-
tural platforms, as is common practice today. In that
scenario we will encounter trade off situations. DB1,
for example, is a fairly simple decomposition block
with a small data input and output set and no spec-
tacular requirements in terms of CPU or memory
requirements. DB2, however, has a different set of
characteristics. We can execute it on a large SMP
system, which would allow us to perform the join
operations within memory, which will speed up the
execution time significantly. If we decide to execute
the decomposition block on a cluster, we will likely
exceed the memory of the individual cluster nodes

and have to rely on a parallel database access sys-
tem, such as Oracle 10G. However, we will experi-
ence heavy data exchange between the cluster nodes,
as the join operation requires communication be-
tween all elements. On the other hand, DB3 is an
ideal set of operations for a cluster environment, as
all operations can be performed in parallel.
On a single SMP, the OS will treat different

PDSBs as threads. If we have a sufficient number of
CPUs or CPU equivalent cores available to execute
the PDSBs, each thread will have its own fast cache
memory to speed up memory transactions. Message
exchange between the PDSBs, if required, could use
the relatively fast memory system, which should re-
duce the network cost compared to an external net-
work required in a cluster. In case of an oversub-
scribed system however (i.e. more PDSBs than
CPUs), caches will be shared between threads. This
will lead to cache contention, in which case one
thread will evict data that is still needed by another
thread. Such a behavior is costly as it requires re-
loading data numerous times. One way to address
this costly behavior would be to match the size of
the SMP environment to the number of parallel
threads. While this reduces the overall cost of run-
ning a parallel application on a SMP system, the cost
of a large SMP system for running this type of ap-
plication might be high7. We will discuss the differ-
ence between the cost of an application running on a
system and the cost of a system running an applica-
tion hereafter and in section 4.2.
We have given so far just some rough examples,

based on heuristics, to demonstrate different types of
decomposition block profiles. Current practice is to
optimize an application as a collection of decompo-
sition blocks and select one architecture target. As
we have demonstrated, any architecture can have
advantages and disadvantages for any decomposi-
tion block. We could take the entire application and
execute it on different platforms and define that the
platform with the best overall execution time would
become the preferred target platform, the one with
the second best time would become the second pri-
ority and so on and so forth. The result would be
static and could be stored in a scoring table. We
suggest, in contrast, a three step process.
In the first step, we perform traditional applica-

tion decomposition and optimize each decomposi-
tion block. In the second step, we measure Te for the
entire application on each of the available architec-
tures and build a scoring table. We shall refer to the
execution of a collection of decomposition blocks
further on as aggregate execution. The score pro-
vides a ranking of architectures based on the cost of
aggregate execution. Then, in a third step, we per-
form the same scoring for each decomposition block
separately on different platforms. We shall refer fur-
ther on to the execution of decomposition blocks on
different systems as disaggregate execution. If we

16

achieve a higher score (lower cost) with disaggre-
gate execution, we suggest exposing each decompo-
sition block as a service and using different re-
sources within a grid infrastructure to execute the
application not as an aggregate of decomposition
blocks, but disaggregated. The better the bandwidth
between the grid resources, the lower will be Td and
hence the likelihood that a disaggregated model
achieves a higher score than an aggregate model. If
Td was equal to zero, which would equate to zero
time delay for data transfer, every decomposition
block could be executed on the platform that is most
appropriate and efficient.

4 IMPLEMENTATION

In the previous sections of this paper we described
design parameters for clusters and a grid infrastruc-
tures built from multiple clusters and other re-
sources. We also described a process called applica-
tion decomposition that analyzes functional blocks
within an application. In the next two sections we
will describe how these decomposition blocks are
turned into services and mapped to the various po-
tential resources in a grid environment.

4.1 Exposing Interfaces of decomposition blocks

We defined earlier a service as “a unit of work done
by a service provider to achieve desired end results
for a service consumer”8. With the process of appli-
cation decomposition we created a set of service
providers. Each service provider or decomposition
block has specific characteristics. We can describe
these characteristics in a standardized way and at-
tach these descriptions to an interface layer for the
service provider. The interface layer also describes
input and output parameters. The combination of the
service provider and its interface layer is called a
service. We can use an instantiation of the interface
layer to represent the service in a service directory,
which allows the agents of other services to locate
and connect to the service. Thereby, we have all the
essential elements of a SOA, namely services, a reg-
istry and clients that connect to and use the services.

4.2 Mapping of decomposition blocks with service
descriptors

As we defined already, a decomposition block is a
set of functions with defined, common characteris-
tics. One of the implications is that we can test the
performance of each decomposition block in a co-
herent way, as the definition of the decomposition
block required common characteristics. All func-
tions performed within a decomposition block re-
quire similar access to resources, be it integer or
floating point threads, memory access, communica-

tion etc. We can measure and describe all of these
resource requirements and determine the cost spe-
cific to different platforms. The best fit of a decom-
position block to a specific architecture is the archi-
tecture that incurs the lowest cost (see figure 2).

We can measure for example time, memory con-
sumption, bandwidth consumption and compute
thread consumption on different platforms available
within a grid to determine the best fit. In our sample
application, DB2 might not need a lot of compute
threads, but it needs a lot of memory and communi-
cation. Implemented on a cluster, we would still
have the same consumption of compute threads, but
we’d now need additionally a lot of I/O threads to
enable communication which is less time consuming
within an SMP system. Communication also creates
CPU overhead, resulting in increased cost. At this
point, we do not correlate the cost of executing a
service on a specific platform, and the cost of a plat-
form executing a service. Instead, we create a scor-
ing table that determines architecture match based
on lowest overall resource utilization. This architec-
ture related cost is static and therefore a fixed cost.
The cost of a platform running a service, in contrast,
is not fixed. It can depend on different factors and
time. Cost calculation for a platform consists of dif-
ferent types of costs, for example capital costs (ac-
quisition, depreciation), operating costs (power,
cooling, floor space, services etc.), connectivity
costs (bandwidth of the connection, bandwidth re-
lated costs). Most of these costs are relatively fixed,
which leads to the quick conclusion that they deter-
mine the price of a service executed on this system.
But this is a false assumption. It might be that the
cost for one CPU/hour in a cluster is $1, whereas the
cost of one CPU/hour within an SMP system is $5.
It is furthermore reasonable to assume that this cost
remains similar or equal, regardless of actual utiliza-
tion. Energy utilization actually varies not only with
the level of utilization, but varies with the very na-
ture of a specific application. But for the purpose of
our discussion, we assume fixed energy consump-
tion. Under these circumstances, it would make
sense for the owner of the resource to make sure that
the resource is utilized close to or at capacity, as that
would lower the price per unit of work. If its reason-
able to assume that the cluster will be utilized at

Figure 2

17

40% of capacity, the price of a unit (for example
CPU/hour) must equal at least the cost at that capac-
ity. Incremental utilization would lead to marginal
revenue. We define this point as the break even
point. In the example, the break even point would be
reached at 40% utilization with a return of $1 per
CPU per hour. The break even point for a system
could be calculated at a higher or lower utilization,
based on a policy decision of the resources owner.
Resource owners can implement more aggressive or
less aggressive strategies to utilize their resources
and maximize marginal revenue. It would be con-
ceivable to drop the price close to or to marginal
cost in periods of low utilization, for example at
night or on weekends. Since marginal cost (the cost
for an additional work unit) is practically zero, the
price for a marginal unit of computing could be set
to just $0.50. We are not suggesting that the cost of
an SMP system is lower than the cost of a cluster.
What we suggest is that the marginal cost for a work
unit is small or zero and therefore marginal prices
for compute resources can be set policy based. As a
consequence, the allocation of a decomposition
block needs to be calculated based on variable fac-
tors, not merely on platform resource utilization.

Platform Cost on
Platform

Cost of
Platform

Marginal
Cost of Plat-

form

A (SMP) 10 CPU h $5 $0.50

B (small SMP) 20 CPU h $2 $0.50

C (cluster) 40 CPU h $1 $0.50

Table 1 – cost/platform relationship

Table 1 represents a simple example to demonstrate
the consequences of this observation. We assume the
table represents the cost of DB2, expressed in CPU
hours, running on three different platforms. The
resource utilization could be easily calculated at $50
on platform A, $40 on platform B and also $40 on
platform C. If our optimization goal was shortest
runtime, the lowest cost would be provided by plat-
form A. If the optimization goal was lowest expense,
platform B and C would be equal choices. In that
case, availability of the platform, namely queue
depth, could influence the platform decision. If all
platforms are offered at marginal cost, because their
target capacity had been reached, platform A be-
comes the most attractive platform, because it incurs
the lowest cost and the lowest expense.
So far we referred to the cost of a DB running on

a particular platform as a fixed cost. We need to
clarify that even this cost varies with the data set.
The same service and can operate with different
datasets, and the dataset will determine the total cost
for the execution of a service on a platform, as the

cost of handling data can vary by platforms. There-
fore, we need to specify rules that allow to calcu-
lated, how different data sizes impact the cost of
execution of a service.
The purpose of the previous discussion is to show

the difference between the cost of running an appli-
cation on a platform, which is a fixed relationship,
and the cost of a platform running an application,
which is variable. Instead of implying a result, we
suggest to define a framework that allows ad hoc
platform allocation based on rules and policies.
Service descriptors define the characteristics and

platform requirements of a service, but they should
not map a service to a particular platform. Instead,
service descriptors provide information and rules
that allow other services to perform ad hoc mapping
services, based on an evaluation of conditions within
the grid infrastructure at the time of the mapping.
The mapping service should continuously collect
information about availability of resources and the
marginal cost of utilization, similar to the function
of a DRM in a cluster environment.

4.3 Policy implementation

We established that cluster and grid environments
are dynamic, non deterministic systems. We suggest
that the connection between services should leverage
and adjust to this dynamic system. Instead of deter-
mining invocation and utilization of services or
mapping of service to a platform upfront, we suggest
to implement a rule based framework, using a multi-
agent system (MAS) control structure. “The charac-
teristics of MASs are that (1) each agent has incom-
plete information or capabilities for solving the
problem and, thus, has a limited viewpoint; (2) there
is no system global control; (3) data are decentral-
ized; and (4) computation is asynchronous”9. When-
ever one service provider (decomposition block)
concludes the work of its designated set of function-
ality's, services are invoked to determine the best
possible execution platform for the next service pro-
vider. Parameters to consider are the cost of execu-
tion on platforms available within the grid, cost of
data transfer and the cost of the platform. All those
parameters change dynamically. In order to deter-
mine cost of data transfer, available bandwidth, data
volume and network access, data transfer costs have
to be evaluated by a data transfer agent. Every plat-
form can advertise a price for resource utilization,
which could be based on a full or partial return cal-
culation with marginal cost incentives. This function
could be performed by a pricing agent, which re-
trieves information from single systems, DRMs of
clusters or equivalent grid interfaces. A scoring
agent with information about the architecture scor-
ing can evaluate the information provided by the
data transfer agent and pricing agent to determine,
what at any given time the best execution platform

18

would be. Users can determine if they want deci-
sions to be optimized for shortest time, or lowest
cost. This decision impacts the decision making at
run time. Additionally, resource owners define poli-
cies that determine how, to whom and with which
policy to advertise their resources and which work-
load to accept. A multi agent based policy frame-
work creates a dynamic, self adjusting control sys-
tem, in which the optimization strategies are rule
based, with every decision made in response to cur-
rent conditions.

5 RELATED WORK

SORCER at Texas Tech10 is related, as it creates a
network of services for existing applications. The
implementation uses JINI and Java, wrapping exist-
ing applications and exposing them as a service.
Gridlab11 is a related architecture using existing grid
middleware while adding advanced services. Both
projects contribute an extensive body of knowledge
and sets of sophisticated tools. John McClain’s12

work on building scalable and adaptive systems us-
ing Java and Jini technology and the RIO project13,
are related. RIO provides a framework for dynamic
provisioning and the idea of dynamic containers.

Rio introduces the concept of dynamic containers,
which is very important in the context of this paper.
“The Dynamic Container support in Rio is called a
Cybernode. Cybernodes embrace the recognition
that the network is composed of heterogeneous
compute resources with multiple architectures, oper-
ating systems - all with different capabilities. The
Cybernode provides a lightweight dynamic 'agent'
turning heterogeneous compute resources into serv-
ices available through the network”. It appears that
RIO seems to be a very capable platform in the con-
text of SOA implementations in grid environments.
All of those related projects deserve more considera-
tion in a separate paper.

6 TOWARDS PUBLIC UTILITY COMPUTING

Within a single data center, we can address many of
the issues of disaggregated execution with a control
structure of multi agent systems. Architecturally, we
can reduce data transfer times by providing high
bandwidth interconnects between grid resources. A
variety of platforms increases the likelihood of op-
timal matching. This structure forms also the basis
for public utility computing. If an architecture that
would be optimal for the execution of a particular
decomposition block is not available in a data cen-
ter, we could use agents to locate remote services
and use the same scoring and evaluation agents to
determine if the remote execution would be the low-
est cost alternative. If the best possible environment
to execute a decomposition block was, for example a
1024 node cluster, which we don’t have available,
the evaluation of our MASs could indicated that it
was still better to transfer both data and code to a
retail cluster (a cluster that offers compute cycles on
demand), than to run it locally. However, using a
public infrastructure requires several additional serv-
ices for security, authentication and authorization,
accounting and data handling. But the service ori-
ented architecture implemented on clusters and grids
with a multi agent control systems is fundamentally
scalable, dynamic and extendable enough to master
these requirements.

7 SUMMARY

In this paper we have discussed how the principles
of SOA can be used to maximize the efficiency of
resource utilization within a datacenter. Instead of
compromising different elements of a monolithic
application, here called decomposition blocks, into a
single architecture at run time, we describe a model
that will allow distributing decomposition blocks
across different architectural platforms within a
datacenter dynamically at run time. We combine the
traditional method of application and data decompo-
sition with exposing the functionality of the decom-
position block through interfaces that are published
in a registry, hence leveraging the advantages of
SOA for data- and compute intensive applications
realized in native methods.
Rather than coupling services or decomposition

blocks statically with web services, we suggest a
multi agent system that dynamically allocates the
best possible execution platform based on rules.
We pointed out limitations of the system based on

the cost of data transfer and decision making over-
head. The granularity of the decomposition blocks
has to be appropriate to yield benefits from this con-
cept. Future research will determine the exact rela-
tionship between network, platform and application
parameters to achieve those potential benefits.

Figure 3 Rio Architecture

19

8 ACKNOWLEDGMENTS

Albeit this paper represents the beginning of a re-
search undertaking, not a final result, it has already
been shaped by numerous vivid discussions. I'd like
to acknowledge specifically my colleagues Victoria
Livschitz and Ruud van der Pas. Victoria pointed me
in the direction of multi agent systems to resolve the
problem of using multiple concurrent optimization
parameters for decision making in dynamic systems.
Ruud is a first class expert in application analysis
and tuning and provided invaluable input on section
3.

9 REFERENCES

W3C, Mapping of W3C Web Service Architecture work to
SOA RM work, online at http://www.oasis-
open.org/apps/group_public/download.php/12209/Ma
pping%20of%20W3C%20Web%20Service%20Archit
ecture%20work%20to%20SOA%20RM%20work_05-
04.pdf

1
Service-oriented architecture (SOA) definition, online at

http://www.service-architecture.com/web-
services/articles/service-
oriented_architecture_soa_definition.html

2
He, Hao (2003), What is Service Oriented Architecture?,

online at
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.
html

3
Singh, Inderjeet; Brydon, Sean; Murray, Greg;

Ramachandran, Vijay Ramachandran; Violleau,
Thierry; Stearns, Beth: (2004), Designing Web
Services with the J2EE 1.4 Platform, Addison-
Wesley, Boston

4
The open source version is free and known as Grid Engine,

online at
http://gridengine.sunsource.net/download.html

5
The Globus Toolkit, GRAM manual, online at http://www-

unix.globus.org/toolkit/docs/3.2/gram/ws/
6
Nabrzyski, Jarek, GRMS, online at

http://www.globusworld.org/program/abstract.php?id
=92

7
This paragraph is based on contributions by Ruud van der

Pas, Sun Microsystems Inc.

8
He, Hao (2003), What is Service Oriented Architecture?,

online at
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.
html

9
Sycara, Katia P; (1998), Multiagent Systems, online at

http://www.aaai.org/Resources/Papers/AIMag19-02-
007.pdf

10
Sobolewski, Michael; [PI] online at

http://www.cs.ttu.edu/~sorcer/about/about.html
11
Online at http://www.gridlab.org/

12
McClain, John; online at

http://www.javasig.com/Archive/lectures/JavaSIG-
JiniSunTechDays-JMcClain.pdf

13
Rio project home, online at http://rio.jini.org/

20

