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Abstract 

Improvements in distributed computing, and the technologies that enable them, have led to significant 
improvements in middleware functionality and quality, mainly through networking and protocols. However, the 
distributed programming style is the same as ten, twenty, even thirty years ago. Most programs are still written line 
per line of code in languages like C, C++, and Java.  These conventional programs that can provide grid operations 
and grid data can be considered as common grid resources and shared by research and education communities 
worldwide. However, there are no relevant programming methodologies to utilize efficiently these shared service 
providers as a potentially vast grid repository, except through the manual writing of code - just as it was done 
decades ago. Realization of the potential of grid computing requires significant improvements in grid programming 
methodologies. The Grid Interactive Service-Oriented (GISO) methodology is presented that provides a 
programming environment with development tools that permit interactive (point-and-click), true grid programming, 
thus permitting the different elements of programming to be stored, reused, aggregated, and executed with a level of 
concurrency and grid-level control strategy not achievable in the conventional programming languages.  

 
 

1. Introduction 
 
From the very beginning of networked computing, the desire has existed to develop protocols and methods 

that facilitate the ability of people and automatic processes across different computers to share information and 
knowledge across heterogeneous systems.  As ARPANET [1] began through the involvement of the NSF [2,3] to 
evolve into the Internet for general use, the steady stream of ideas became a flood of techniques to submit, control, 
and schedule jobs across distributed systems [4].  The latest in these ideas is the grid [30-35], to be used by a wide 
variety of different users in a non-hierarchical manner to provide access to powerful aggregates of resources [5,6].  
Grids, in the ideal, are intended to be accessed for computation, data storage and distribution, and visualization and 
display, among other applications without undue regard for the specific nature of the hardware and underlying 
operating systems on the resources on which these jobs are carried out [7,8]. 

The reality at present, however, is that grid resources are still very difficult for most users to access, and 
that detailed programming must be carried out by the user through command line and script execution to carefully 
tailor jobs on each end to the resources on which they will run, or for the data structure that they will access.  This 
produces frustration on the part of the user, delays in adoption of grid techniques, and a multiplicity of specialized 
“grid-aware” tools that are not, in fact, aware of each other that defeat the basic purpose of the grid. 

Most programs are still presently written line per line of code in compiled languages such as FORTRAN, 
C, C++, Java and or scripting languages such as Perl and Python.  The current state of the art is that these scripts and 
programs can provide grid operations (by method providers) and grid data (by context providers) that can then be 
considered as common grid resources (the analog of conventional programming libraries) and shared by research 
and education communities worldwide. However, there are presently no relevant programming methodologies to 
deploy and access these service providers efficiently as a potential vast grid repository, except by writing code as it 
was done decades ago.  

The need for further improvements in grid computing is clear, and requires significant further 
improvements in grid programming technology.  By inspection of the above paradigm, it is clear that incremental 
improvements in the scripts and submission techniques will not suffice.  A new grid interactive service-oriented 
(GISO) integrated development environment (IDE) that is based on evolution of the concepts and lessons learned in 
the FIPER project [9-14], a $21.5 million program founded by NIST, is presented. It provides an environment that 
will permit true interactive click-and-drag grid programming through the manipulation of graphical elements that 
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represent object-oriented grid resources, thus permitting the different elements of grid program to store, reuse, 
aggregate, and execute with a level of concurrency and grid-level control strategy not achievable in the conventional 
programming languages.  
 
 
The presented GISO programming approach is characterized as follows: 

1. Service-oriented grid programming is achieved by applying the object-oriented concepts directly to the 
grid as a repository of network objects (method and context providers) 

2. Service-oriented execution infrastructure enabling dynamic federations of grid providers to execute 
service-oriented programs 

3. Provisioning and deploying grid objects with an autonomic behavior, enabling grid objects to be 
instantiated and managed on compute resources available through the grid using an adaptive quality of 
service model 

4. An open, web-based environment in which existing proprietary applications and analytical packages are 
integrated through Java-based wrappers that handle grid processes and data distributed across different 
locations. 

 
 The presented approach addresses a number of gaps which exist in the grid technology. The technology 
gaps and approach to solving these gaps are articulated in Table 1. 

Technology Gap GISO Solution 
1. Protocol-based grid middleware is difficult to use Develop object-oriented middleware components 
2. Current grid middleware is transaction, data and host 
centric 

Provide autonomic, dynamic, QoS, network centric 
middleware components 

3. No grid-oriented programming methodologies to 
utilize grid resources and middleware services 

Provide point-and-click interactive grid programming 

4. Moving executable code and data over grid to 
compute resources is inefficient  

Provide reusable method and data services as service-
to-service grid providers 

5. Access to grid resources is not user friendly GISO easy-to-use web-based end-user-agents 
6. No grid high-level programming and development 
tools 

Develop interactive grid-programming and 
development tools 

Table 1. Technology gaps vs. the GISO approach 
 
 
2. GISO Conceptual Framework 

 
The structured computing paradigm is a strategy based on a concept that a system has data and 

functionality (behavior) separated into two distinct parts. The object-oriented paradigm, on the other hand, defines a 
system as a collection of interacting active objects. These objects do things and know things, or stated equivalently 
they have functions and data that complement each other. Usually an object-oriented system creates its own object 
space instead of accessing a data repository. This object space constitutes an object-oriented program.  

Building on the object-oriented paradigm is the service-oriented paradigm, in which the objects are 
distributed, or more precisely they are network objects and play some predefined roles. A service provider is an 
object that accepts messages from service requestors to execute an item of work – a task. The task object is a 
service request – a kind of elementary grid instruction executed by a service provider. A service jobber is a 
specialized service provider that executes a job – a compound request in terms of tasks and other jobs. The job 
object is a service-oriented program that is dynamically bound to all relevant and currently available service 
providers on the grid. This collection of grid providers dynamically identified by a jobber is called a job federation. 
This federation is also called a job space. While this sounds similar to the object-oriented paradigm, it really isn’t. In 
the object-oriented paradigm the object space is a program itself; here the job space is the execution environment 
for the job itself and the job is a service-oriented program. This changes the game completely. In the former case the 
object space is a virtual computer, but in the latter case the job space is the virtual network. This virtual network or 
grid federation is the jobs’ execution environment and the job object is a service-oriented program. In other words, 
we apply the object-oriented concepts directly to the grid in the service-oriented manner. 

The GISO framework is built on the top of the FIPER Technology middleware. FIPER is a four year 
National Institute of Standards and Technology (NIST) Advanced Technology Program (ATP) which teams General 



Electric, Goodrich, Parker Hannifin, Engineous Software, Ohio University, Stanford University, Texas Tech 
University  and Ohio Aerospace Institute to develop a distributed large-scale engineering design system. Here and 
throughout the remainder of this paper FIPER refers to the FIPER Technology and proto-type implementation 
developed by the General Electric Global Research Center and it’s sub-contractor Texas Tech University. The GISO 
environment provides the means to create interactive service-oriented programs and execute them without writing a 
line of source code. Jobs and tasks are created using web-based user interfaces. Also via web-based interfaces the 
user can execute and monitor the execution of jobs or tasks. The jobs and tasks are persisted for later reuse. This 
feature allows the user quickly to create new applications or programs on the fly in terms of existing tasks and jobs. 
Jobs created this way might be used later with their own custom user interfaces that collect input from the user and 
update a job accordingly before its execution as a service-oriented program. 
 FIPER supports three centricities and deploys three neutralities. FIPER’s three centricities are network 
centricity, service centricity, and web centricity. A GISO federation is composed of various service providers any of 
these can come and go, and the system can respond to changes in its environment in a reliable way (network 
centricity). Services in GISO can discover lookup services and join the grid or lookup for relevant services in order 
to cooperate in a grid federation (service centricity). Users can request to use multiple services and check the status 
of their submissions in different locations through a FIPER HTTP portal with thin web clients (web centricity).  
 

 
 

Figure 1.  FIPER three neutralities, providing a, highly flexible grid environment. 
 

 The three neutralities FIPER deploys are location neutrality, protocol neutrality, and implementation 
neutrality as illustrated in Figure 1. With location neutrality, services need not be collocated; lookup services are 
discovered and used to find a particular service, which simplifies management of the entire grid environment. With 
protocol neutrality, the way in which clients communicate with a service provider is not important. Clients are not 
aware of what protocols are used or where the implementations reside. With implementation neutrality, the clients 
who use the FIPER services do not need to know what languages are used or how a service is implemented. 

In all, GISO development tools provide (see Figure 2) accessibility through web-centric architecture; self-
manageability using federated grids, scalability via network centricity, and adaptability with the power of mobile 
code inserted for execution through service providers.  

 



 
 

Figure 2.  GISO layered architecture. 
 
 
3. FIPER Execution Environment  
 

The peer-to-peer (P2P) service-oriented framework is proposed that targets multiparty grid transactions. A 
collection of all registered service providers (active and inactive) is called a service grid. A nested transaction is 
composed of a federation of providers that come together for completing a transaction. A transaction consists of a 
set of tasks with specific precedence relationships. The service providers do not have mutual associations prior to 
the transaction. They come together (federate) for a specific transaction. Each provider in the federation performs its 
services according to a job’s control strategy that defines a transaction. Once the transaction is complete the 
federation dissolves and the providers disperse and seek other transactions to join. Different combinations of 
providers may come together for any given type of transaction at different times. The following characteristics 
define such transactions that are supported by the FIPER execution environment: 

1. Multiple tasks/jobs need to be executed in order to complete the transaction 
2. Service providers are interchangeable (i.e., any provider that implements the same interface for a service 

can be selected to perform the service) 
3. Same service provider can perform multiple tasks in the transaction 
4. Tasks in a transaction (federation) need to share data and resources with each other 

 
The FIPER middleware is service-based in which a service is defined as an independent self-sustaining entity 
performing a specific task or job. Each service is defined by a public interface. The service grid is dynamic in which 
new services can enter the grid and existing services can leave the network at any instance. Services advertise 
themselves and can be found and selected based on the type (interface) and other attributes that they exhibit.  
FIPER defines all decentralized distributed components in the system to be equal. These components might be 
devices, repositories, processes or objects on the network. In the FIPER environment, peers are network objects of 
the same type. Each peer may implement multiple interfaces that are published when the peer joins the environment. 
All methods of these interfaces have the same format:  

public ServiceContext operationName(ServiceContext) 
Both arguments and return values of these methods are instances of type ServiceContext that represent service data. 
By its interface (type) and optional attributes (e.g., provider name), the network object can be dynamically found on 
the network without a host name and port required. These interfaces and their implementations might change, as 
they are specific to particular service providers. Thus peers should not expose their specific interface explicitly at the 
FIPER infrastructure level. The common, top-level peer interface called Servicer is defined as follows: 

public interface Servicer { 
// Put into action the specified exertion 
public Exertion service(Exertion exertion)  
throws RemoteException, ExertionException; 
… 
} 



So, all peers implement this interface and their equality is defined as being service providers or servicers. A service 
is an act of requesting a service(Exertion) operation from a service provider as explained in Figure 4. The exertion is 
a distributed activity defined by the Exertion interface as follows: 

public interface Exertion { 
// Apply this exertion method to the specified context 
public Exertion exert()  
throws RemoteException, ExertionException; 
… 

} 

 
Figure 3. A service is an act of requesting a service(exertion) operation from a service provider. An exertion is 
accepted if its method matches one of provider’s interface and one of the interface’s methods. 
 
 

In the FIPER environment two types of basic exertions are defined: tasks and jobs. A task is the atomic 
exertion that is defined by its context model (data), and by its method. An exertion method defines a service 
provider (grid object) to be bound to in runtime. This network object provides the business logic to be applied to the 
exertion context model. The computing framework based on concepts: context model, method and exertion is called 
for short the CME framework. 
A method is primarily defined by a provider type (interface) and selector (operation name) in the provider’s 
interface. Optionally, additional attributes might be associated with the method, for example a provider’s name or 
provider’s identifier. The information included in the exertion method allows the GISO program to bind the exertion 
to the network object and process the exertion’s context by one of its peer’s operations, which is defined by its 
published interface. This type of service provider is called a method provider. Another type of service provider is a 
context provider that provides shared data to the grid via the observer-observable paradigm. Thus, both context and 
method providers represent grid data and operations to be used in the grid-oriented programs. The FIPER 
middleware currently supports only method providers. 

Service providers are equal since they define a common top-level interface, but the interface might be 
implemented differently by different groups of network objects. Rather than the currently prevalent client/server 
model, in which all communication passes through and is controlled by a central server (e.g., web, FTP, mail, and 
application servers), in service-toservice (S2S), the communication goes directly from one grid’s object to another 
grid’s object. Because accessing these decentralized object nodes means operating in an environment of unstable 
connectivity and unpredictable IP addresses, P2P nodes operate outside the domain name system (DNS) and have 
significant or total autonomy from central servers. 

Sun’s JiniTM  Network Connection Technology [17-25] is used to implement the functionality specified 
above. The discovery and lookup protocols that JiniTM defines allow for a dynamic federation of services to be 
created.  

A simplified UML-diagram showing the service-oriented framework of GISO is illustrated in Figure 4. The 
core of the framework consists of the four middleware services: Jobber (Service Broker), Cataloger (Service 
Catalog), Dropper (Exertion Spaces) and Provisioner. The Jobber coordinates exertion execution within the GISO 
job. It interprets the job control context supplied by the end-user-client or any of service providers and coordinates 
the exertion execution accordingly as specified in the job. 

   



 
Figure 4.  Job execution in FIPER. 

 
There are two different ways in which the jobber can submit requests to the service providers. For an explicit access 
to the service provider the jobber can either use discovery to find a lookup service or use a service catalog 
(Cataloger used by ExertionCatalogDispatcher) for selecting a service from dynamically formed peer groups. The 
lookup service caches all the proxies for services that have registered with it for a particular group(s) of services. A 
cataloger is a service-grid cache that periodically polls all relevant lookup services and maintains a cache of all the 
proxies that are registered with the lookup services for a particular peer group. The jobber has to discover lookup 
services each time it needs to use them where as it finds a cataloger then the cataloger continues service discovery 
for the jobber. In case the jobber finds an available service using a lookup registry or catalog, a proxy for the service 
is downloaded on to the jobber who invokes the service. Alternately the jobber submits the service request implicitly 
into an exertion space that is a shared GISO program repository for executing grid services. The exertion spaces 
provider, called Dropper (used by ExertionSpaceDispatcher), holds the request and waits for a relevant service 
provider to acquire the request from the exertion space. This is essential so that the job does not have to abort due to 
non-availability of a service. 

Central to the execution of the GISO job is the ExertionDispatcher that can dispatch exertions either by the 
lookup service, the cataloger, or the dropper. A factory pattern is used whereby the right dispatcher is called based 
on the number of exertions, execution sequence (sequential or parallel) of the services and access type of services 
(Cataloger or Dropper). The framework supports autonomic provisioning whereby the jobber can provision or 
activate services on demand using a provisioning provider (Provisioner). Also GISO defines a common service 
provider interface and a set of utilities to create and register service providers with the GISO as service peers. A 
GISO service joiner is used for static bootstrapping service providers and also for maintaining leases on registered 
proxies. 

The GISO programming environment consists of basic FIPER middleware providers: Jobber, Dropper, 
Cataloger, Provisioner, and Persister (as listed in the GISO functional architecture in Figure 5). Domain specific 
providers used by GISO programs (jobs) can be developed using GISO development tools (see Figure 2). All layers 
depend on the FIPER CME (Context, Method, Exertion) framework. Web clients and stand-alone requestors submit 
jobs to be executed by FIPER middleware services (infrastructure providers) in concert with domain specific 
providers that complement GISO programming. 

 



 
 

Figure 5. The GISO functional architecture. 
 

 
In the case of web clients, exertions also can be submitted to a GISO interportal or extraportal. The extraportal is 
used for HTTP-based B2B secure communication over security firewalls. 
 
 
4. GISO Programming and Development Tools 
 

As defined earlier a nested transaction is carried out by a federation of providers that come together for 
completing a transaction. When performing a nested transaction, be it either a banking transaction or an engineering 
analysis, there are three basic components that can be identified. These are; the process or series of steps that must 
be executed to complete the transaction, a specification of the action to be taken in each step of the process, and the 
information/data associated with each step in the process (both input and output). Within FIPER the program objects 
that represent the components of a nested transaction are FiperExertion (FiperJob and FiperTask), FiperMethod, and 
FiperContext. That is the components of FIPER CME framework. The basic work unit or building block within the 
FIPER programming environment is an exertion. Each exertion (task or job) contains a FiperMethod and a 
FiperContext object. The FiperMethod specifies what action, or possibly the actual action in the case of mobile 
code, that is to be taken in a given step in the process.   The FiperContext contains all the data/information the 
FiperMetod operates on or generates. The FiperContext also holds attributes for the data much like MIME types that 
identify the application(s) the data is associated with, its format (text, binary etc.), and other user defined modifiers. 
A FiperJob defines the process. A FiperJob consists of one or more exertions, the execution strategy for the process 
(sequential, parallel, looping and conditionals), and the mapping/relationship of data between exertions. The 
hierarchy of these classes is shown in Figure 6. It is worth nothing that recursion of FiperJobs is supported. That is 
any of the FiperTasks within a FiperJob can be a FiperJob itself.  

The relationship between the FIPER program objects and the general description of a nested transaction is 
as follows; a FiperJob represents the process, the FiperMethod represents the action, and a FiperContext represents 
the data/information. The FiperTask acts as a container holding the FiperMethod and FiperContext creating the basic 
unit of work that is passed between various service providers.  

As an example of a nested transaction in the FIPER Environment consider the following engineering 
application, the mechanical analysis of a gas turbine component. The component, a turbine blade is shown in figure 
7. The process of performing a mechanical analysis consists of the following actions; generate solid geometry, 
descretize the geometry into a finite element model (FEM), apply boundary conditions to FEM, apply materials to 
FEM, solve the FEM for structural stresses. The necessary input data for each action and the resulting output data 
are shown in Figure 8. Also depicted in Figure 8 is the association between the three components of a nested 
transaction and the FIPER program objects. 
 



 
Figure 6. Fiper Program Object Hierarchy 

 
 Figure 7. Turbine Blade Solid Geometry 

        

 
Figure 8.  Process for the Mechanical Analysis of a Turbine Blade 

 
To create the necessary program objects (FiperContext, FiperMethod, FiperTask, and FiperJob) for a nested 

transacti
ion can 

alysis 

on in the FIPER environment a collection of web browser user agents has been developed.  It is not 
necessary to use these user agents for the development and execution of a FiperJob.  Any standalone applicat
perform programmatically the same steps to create the necessary objects and act as a service requestor to submit the 
FiperJob for execution.  Two of the goals of the FIPER project [9-14] are to allow access to the environment 
anywhere anytime (AWAT) and to evaluate if web browser technology can support large-scale engineering an



and design. Web browser technology clearly supports the AWAT requirement with the ability to access the 
environment from any device that can execute a web browser such as laptops, PDAs, and cell phones. This gi
end-user almost continuous access to the FIPER environment for creating, editing, submitting, and monitoring 
FiperJobs. The ability of web browser technology to support large-scale engineering has not proven to be so 
obvious. The performance of the web client and more importantly the robustness of   web browsers raises seri
questions to weather browser technology is mature enough to support large-scale engineering analysis and design. 
With the current implementation, which is based on JDK1.1 due to the requirement that it should run on many 
devices, many robustness issues have been encountered.  For example, when the application is launched all the 
necessary classes will not download properly requiring the termination of the browser and a restart. Also, the 
browser will periodically freeze or lock for no apparent reason, once again requiring the restarting of the brow
Engineers will not tolerate these problems when performing analysis and design tasks.  

The following sections illustrate the usage of the web user agents to create and 

ves the 

ous 

ser.  

execute the necessary 
FIPER p r rogram objects to perform the mechanical analysis of the turbine blade. Figure 9 shows the Fiper launche
page once logged into the Fiper environment. Here it can be seen that there are separate selections for the above 
described program objects, FiperContext, FiperTask, and FiperJob.  The FiperMethod object is created within the 
FiperTask menu selection.  
 

 
 

Figure 9. Fiper Launcher and New Context Dialogue 

4.1 Context Editor  

The Context Editor allows the end-user to specify the data or references to the data along with attributes 
associate e 

The Name and Description fields are user defined, the Domain and Subdomain are selected from a drop 
down m s 

 
 

 

d with the data.  When creating a new context the end-user is presented with the dialog presented in Figur
9. 

enu. At this point Domain and Sub Domain are used solely for sorting and searching purposes.  The Acces
field is a company internal access classification and the Export Control box indicates if the data is export controlled. 
The ACL button produces an Access Control List (ACL) dialogue that allows the end-user to assign read, write, and 



execute permissions on this program object based on userid or role.  The scope indicates weather the context is 
publicly available (anyone who has access to the FIPER Environment can view and read), private (only the own
can see the object) or available to only the system administrator. Once the end-user completes the New Context 
Dialogue and selects OK the Context Editor then appears. Figure 10 shows the Context Editor along with the con
for the first action or task in the Turbine Mechanical Analysis Job represented in Figure 8.  

er 

text 

 
Figure 10. Context Editor 

Figure 10 also illustrates that the Fi e with Context Nodes and Data Nodes. The 
Data No

perContext is a tree structur
des are further identified as either input “>” or output “<”.  The editor allows the end-user the ability to 

create, edit, or delete Context Nodes and Data Nodes in the FiperContext.  Specifically if the Autoshank Parameter 
Node is highlighted and “Update Data Node” is selected from the editor the dialog in Figure 11 appears.  
 

 
Figure 11. Update Data Node Dialog 

This dialog shows the pertinent information associated with this Context Data Node.  In this dialog the Data Type of 

er 

n 

 it can be seen that the Autoshank Output DataNode is Empty. That is 
it contain

 

the object that resides in the Context Data Node is seen to be of type FiperNode. The contents of a Context Data 
Node can be any Java primitive data type or object. For an object type of FiperNode it is further noticed that a Fip
Type can be associated with the FiperNode. Here three fields represent the Fiper Type: Application, Format, and 
Modifier. These are attributes describing the data that resides within or is referenced by the Node Data Type field i
the Dialog. In this case the Node Data Type is URL. The URL is essentially a reference to a file. Based on the Fiper 
Type one can see that the file at the given URL is for the Application “autoshank,” Format is “text”, and has a 
Modifier of “parameter”. The service, which receives this Context, will recognize this Fiper Type and take 
appropriate action based on this information. 

Upon close examination of Figure 10
s no data or reference at this time. When the autoshank provider finds this node at run time it recognizes 

that it must take the appropriate actions to generate and fill this empty DataNode.  Once all the necessary 
FiperContexts are created the end-user can now create the FiperTasks.  
 



 
4.2 FiperTask Editor 
 

From the Fiper launcher in Figure 9 the end-user selects Task, New and completes the New Task Dialog 
(similar 

. 
to the New Context Dialog in Figure 9) to gain access to the Task Editor shown in Figure 12.  Figure 12 

represents the creation of the first task (Generate Solid Shank) associated with the FiperJob illustrated in Figure 8
 

 
 

Figure 12. FiperTask Editor 

Recalling that the FiperTask is the fundamental building block or work unit in the FIPER Environment which 

dit 
contains the action and data for a nested transaction (reference Figure 6), one can see that the Methods field 
represents the action and the Context field in the FiperTask Editor in Figure 12 represents the data. To view/e
more detail on theses fields the end user selects “Update Content” which produces an editor (see Figure 13).  



 

Figure 13.  FiperTask, FiperMethod and FiperContext Editor 

Figure 13 shows the definition of the FiperMethod and the Context that is used for the selected task, 
Generate Solid Shank.  The fields Interface, Command, Provider, and Method Type define the Method. The 
interface is the Java Interface that is implemented by a given service provider, the Command is the java Method 
within that interface that will be called, and the Provider is the Name that the provider is published under.  Method 
Type can be pre-process, process, or post-process. Currently only process is implemented for Method Type.  The 
Interface and the Provider are used as the attributes to locate a service within the environment with the current 
implementation. This Method Definition should be replaced with a much more user-friendly way to search and 
select the available methods in the Fiper Environment. In addition, a Quality of Service (QoS) should be 
implemented as well to expand the number and types of attributes that are used to resolve or select a given service. 
The context for this task is the CAD Model Context presented in Figure 10. This is inserted into the task by 
browsing the contexts that the end-user has created or has access to. Once the context has been added to the task the 
end-user has the full context editor available to them to modify the context in the task.  Once all the 
actions/FiperTasks have been defined for a given process/FiperJob the FiperJob itself can then be constructed. 

 

4.3 FiperJob Editor 

Once again from the Fiper launcher in Figure 9 the end-user selects Job, New and completes the New Job 
Dialog (similar to the New Context Dialog in Figure 10) to gain access to the Job Editor shown in Figure 14.  Figure 
14 illustrates the creation of the FiperJob represented in Figure 8. It contains all the tasks Generate Solid Shank, 
Mesh Shank, Apply Boundary Conditions, Apply Materials, and Perform Stress Analysis.  



 

Figure 14. FiperJob Editor 

The Job Editor lists all FiperTasks associated with the job along with the FiperTask’s Name and 
FiperMethod Attribute information (Provider Name and requested provider’s type - interface).  The Task & Job 
Editor features allow the end user to add additional FiperTasks or FiperJobs by either browsing existing program 
objects or creating new objects on the fly. The Job Editor features also enable the specification of the Control 
Context and the JobContext. The ControlContext specifies the flow and method of execution of the FiperJob. Figure 
15 shows the Control Context for the Turbine Analysis Job.  

 



Figure 15. FiperJob Control Context Editor 

The Control Context dialog is divided into two regions, Job Tasks and Job Settings. Under the Job Tasks 
region the end-user can specify if a task is executed or not and the order in which the tasks are executed (for 
sequential execution strategy). Currently the Control Context does not support the capability of looping and 
conditionals. But these are considered to be critical features in a production GISO computing environment.  Finally, 
the end-user has the ability to specify that the job suspend during execution so that results can be reviewed before 
continuing.  This is a very powerful and desirable feature that will be discussed in further detail in the Job Monitor 
section.  Within the Job Settings region of the editor one can select the Task dispatching method (catalog, dropper, 
Jini Lookup), the Execution strategy (sequential or parallel), and the Job broker type. 

The final step before a FiperJob can be executed is to define the flow of data between tasks in the job. This 
is done using the JobContext dialog, which can be invoked from the Job Editor features on the Job Editor Dialog in 
Figure 14.  

The FiperJob Context dialog for the Turbine Analysis Job is shown in Figure 16.  Here the Job is shown 
with each task and the context for each task in a hierarchical tree structure.  The data flow from one task to the other 
is defined by dragging one Fiper DataNode onto another Fiper DataNode. In Figure 16 this has occurred by dragging 
the AutoShank Output Solid Shank Node contained in Task0 onto the Solid Shank unnamed Fiper DataNode in 
Task1.  



 

Figure 16.  JobContext Dialog 

Once the data flow has been defined in the JobContext the FiperJob is now ready for execution. To submit the job to 
the Fiper Environment the Run Job button is selected in the Job Editor (Figure 14). A typical engineering analysis or 
design job could take anywhere from a few hours up to several days or even weeks. With jobs running this long it is 
critical that the end-user have access to the status of the job and control over the job as it executes. This is the 
function of the Job Monitor. The Job Monitor can be accessed from the Fiper Launcher, Figure 9, by selecting the 
Monitor option.  

 

4.4 Job Monitor 

Probably the most critical capability that GISO programming will need from an end-users perspective is the 
ability to interact with the process/FiperJob once it has been submitted to the environment. Using a GISO IDE will 
require a cultural change within the end-user community.  Today’s state of practice is that typical designers and 
analysts execute single standalone applications either on their desktop or submit the runs to a major shared resource  
(MSR) computing environment. In either case the end-user is executing applications individually and if a failure 
occurs they know at least which application the failure occurred within. Also, when running locally or in a MSR the 
end-user usually has some or all control over the running application and can closely monitor the progress of the 
execution by monitoring log files and or output files from the application.  In the GISO IDE the end-user is now 
combining many application to perform a nested transaction and submitting the execution of the nested transaction 
to the network, which could easily take days or weeks to complete. In the GISO IDE the end-user may have no idea 
where the execution is taking place and worse will have no feedback as to the state of progress of the process. In the 



GISO IDE the end-user surrenders all control to the environment, a precarious proposition for a designer who is 
accustomed to having complete control of the applications they are running. With these facts in mind a few essential 
functionalities are identified for GISO programming that are necessary for end-user to accept such a working 
environment.  The end-user must be able to monitor the progress of the process and obtain intermediate results from 
a given task. The end-user must be able to control the process once it is submitted to the environment by stopping, 
suspending, or terminating the process. For a suspended GISO program the end-user must be able to edit not only 
the data within the process but also the process itself by adding or deleting tasks. After any edits to the data or 
process the end-user must be able to resume the process from any task within the process not necessarily the task the 
process was suspended at. If the process fails the end-user must obtain meaningful information that specifies where 
the failure occurred and what action needs to be taken to correct the problem.  This last requirement puts a 
significant burden on the service provider developers to properly trap exceptions and translate them into meaningful 
information for the end-user. 

As an example of the needs for end-user interaction with a running process consider the Turbine Analysis 
Job presented in Figure 8.  The first task is to generate the geometric solid shank for the turbine blade with a new set 
of shank parameters. The second task is to discretize the shank with a given meshing strategy. It is not known if the 
meshing strategy will be adequate with the parametric changes made to the shank. Thus, when the mesh task is 
taking place the end-user needs to obtain intermediate information from the meshing application to evaluate if the 
quality of the mesh is satisfactory in terms of aspect ratios of the finite elements.  If not, the task will need to be 
terminated and the process suspended. The end-user makes the necessary edits to the meshing strategy and the 
process resumed from the meshing task. There is no need to re-run the generate solid shank task.  In this case this 
saves only a few minutes of run time but not re-running satisfactorily completed tasks could save hours or days.  
Once the process is resumed the end-user soon decides that they would like to review the entire FEM before 
performing the stress analysis. The end-user must be able to select a task in the process and state that the process 
should suspend after execution of the task. That is suspending after the Apply Materials task in the current example. 
Once a review of the FEM is completed the process is resumed and the stress analysis initiated. If the stresses are 
requested for several loading conditions the client would like to review the stresses for each load case as they are 
completed.  Again, the need for intermediate information from a task is desired. As the client reviews this 
information it is determined that due to the parametric changes in the shank geometry the location of the critical 
stresses have moved and the mesh density in that region is not sufficient to properly resolve the stresses. At this 
point the user terminates the task, and once again edits the meshing strategy to create a denser mesh in the new 
critical stress region. Once the edits are complete the user now resumes execution, not from where the job was 
suspended(Perform Stress Analysis) but, from the meshing task. Once the job completes the client reviews the stress 
results obtained and recognizes that the stresses are not in the proper format. The user desires to add an additional 
task to the job after the stress analysis. This is not an edit to the data but now an edit to the process.  The client adds 
a post-processing task after the stress analysis task. The output from the stress analysis is passed as input to the post-
processing task. The job is then resumed starting with the prost-processing task. Although this is a simple example 
with only five tasks it demonstrates the critical need for end-user control and interaction of the executing 
process/FiperJob. In a large scale multi-disciplinary analysis and design applications the process could easily have 
one hundred tasks and could take weeks to execute. In such a scenario the user control and interaction is the only 
way that GISO programming could be successfully employed.   

In the FIPER Environment the monitoring/client process interaction is done using the Job Monitor. The Job 
Monitor is accessed from the Fiper Launcher page as the first menu pick. Figure 17 shows the Turbine Analysis Job 
running in the Job Monitor. The Job Monitor can be viewed as an “interactive debugger for program objects or 
services on the network”. The Job Monitor shows the progress of the process (green complete, green/yellow 
running, red failed, yellow suspended). It also displays intermediate information from a task (by viewing the job 
context) if the provider returns such information. The client is also able to stop, suspend, step and resume a running 
job. In addition, for a given suspended or completed job, the client has access to a drop down menu that allows full 
edit capability of the data in the job or the job/process itself.  Data can be changed, tasks can be edited/added/deleted 
and the job resumed from any task. The only functionality not supported by the job monitor in the current 
implementation is the suspension or termination within a task. Currently suspension/termination can occur only 
between tasks.   



 

Figure 19. FiperJob Monitor 

Conclusions 
 In the GISO approach object-oriented concepts are applied to the network and grid-oriented programs. A job (a 
collection of exertions) is a service-oriented program executed in a federated service-oriented environment across 
multiple virtual organizations. Jobs are crated using friendly, interactive web-based graphical interfaces. Jini 
connection technology from Sun Microsystems enables federated, platform independent, real world grids. It allows 
us to create GISO programs that process a whole aircraft engine as a virtual object-oriented product control structure 
that can be manipulated by multidisciplinary teams as network-centric, active, evolving product. New shared 
programs and engineering applications can be assembled as needed on the fly by integrating new capabilities into 
existing workflows, systems, devices and applications. The presented web-centric GISO IDE reduces the costs of 
solving business problems as well as of establishing and maintaining online business relationships. Services are 
provided by shared low cost, easy to develop service providers and are easily integrated into the core business of an 
enterprise. An experimental version of presented approach was successfully deployed at GE Aircraft Engines. The 
further extensions of the presented approach, including distributed observer/observable model [26] for context (data) 
provider, algorithmic and logic programming control contexts, integration with  JXTA [28], and web services are 
investigated in the SORCER Laboratory, Texas Tech University [16] to be tested and deployed on Texas Tech 
University TechGrid [15]. 
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