Federated P2P Services in CE Environments

Michael Sobolewski
GE Global Research Center, Niskayuna, New York, USA

ABSTRACT: The goal of the Federated Intelligent Product Environment (FIPER) environment is to form a
federation of distributed services that provide engineering data, applications and tools on a network. A highly
flexible software architecture has been developed, in which engineering tools like computer-aided design
(CAD), computer-aided engineering (CAE), product data management (PDM), optimization, cost modeling,
etc., act as distributed service providers and service requestors. Service providers can enter the federation by
registering with a service registry and publish the services through a process of discovery and join. The indi-
vidual services communicate via so-called context models, which are abstractions of the master model of a par-
ticular product. Many instances of mechanical analysis have been implemented. FIPER supports three
centricities and deploys three neutralities. FIPER’s three centricities are network centricity, service centricity,
and web centricity. The three neutralities FIPER deploys are location neutrality, protocol neutrality, and imple-
mentation neutrality. In a federated peer-to-peer (P2P) environment, object-oriented concepts are applied to the

network.

1 INTRODUCTION

GE has teamed with Engineous Software, BFGoo-
drich, Parker Hannifin, Ohio Aerospace Institute,
Ohio University, and Stanford University in a four-
year effort to develop the Federated Intelligent Prod-
uct Environment (FIPER) under the sponsorship of
the National Institute for Standards and Technology
(NIST). FIPER strives to drastically reduce design
cycle time, and time-to-market by intelligently auto-
mating elements of the design process in a linked, as-
sociative environment, thereby providing true con-
currency between design and manufacturing. This
will enable distributed design of robust and opti-
mized products within an advanced integrated web-
based environment.

The systematic integration of humans with the
tools, resources, and information assets of an organi-
zation is fundamental to concurrent engineering
(CE). In an integrated environment, all entities must
first be connected, and they then must work coopera-
tively. Services that support concurrency through
communication, team coordination, information shar-
ing, and integration in an interactive and formerly se-
rial product development process provide the founda-
tion for a CE environment. Product developers need a
CE programming environment in which they can
build programs from other developed programs,
built-in tools, and knowledge bases describing how

to perform a complex design process. In every sys-
tem, some part handles details unique to each user. In
client/server systems, this is typically a client pro-
gram. In monolithic systems, some program modules
maintain status information for each user and provide
an interface to other system modules. In a peer-to-
peer (P2P) model (Oram 2001, Sobolewski 1996)
system components dedicated to individual users are
shared peers acting on behalf of those users. P2P en-
vironments distribute intelligence throughout the en-
tire system, allowing individual components to re-
main simple. Interaction between components is
minimized through the use of peers, which adapt au-
tomatically to changes in components. These are fea-
tures that are necessary in large flexible design and
manufacturing systems.

P2P is not about file sharing, music, or Napster,
nor is it a collection of tools and applications. It is
just a computing concept. It defines all decentralized
distributed components in the system to be equal.
These components might be devices, computers or
objects on the network. In the FIPER environment,
peers are distributed objects of the same type. They
are equal since they define a common top-level inter-
face, but the interface might be implemented differ-
ently by different groups of network objects. Rather
than the currently prevalent client/server model, in
which all communication passes through and is con-
trolled by a central server (e.g., web, FTP, mail, and

application servers), in P2P, the communication goes
directly from one client’s object to another client’s
object. Because accessing these decentralized object
nodes means operating in an environment of unstable
connectivity and unpredictable IP addresses, P2P
nodes must operate outside the domain name system
(DNS) and have significant or total autonomy from
central servers (Edwards 1999, Li 2000).

The FIPER environment applies object-oriented
techniques directly to the network. This software ar-
chitecture houses a pool of peer objects called ser-
vice providers. Providers provide two types of ser-
vices: data services (called context services) and
remote operations (called method services). Context
services create dependencies by observing data they
depend on and adapt dynamically to changes in the
data. Since service providers serve each other in a
uniform way, This type of model is called federated
service-to-service (S2S) computing. The architecture
is simultaneously web-centric, service-centric and
network-centric. The web-centricity enables trans-
parent web-based access to the globally distributed
data and the pool of services. The individual services
can act within this framework, both in the role of
providing services (server mode) and requesting ser-
vices (client mode). When requesting aggregated ser-
vices, the FIPER infrastructure also brokers the re-
quests, delegating them to the appropriate registered
component’s services.

The three centricities of the FIPER system are
clearly identified in Figure 1. The client accesses the
system portal through HTTP requests, indicating the
web-centric approach. The network-centric concept
that the service is the network is represented by
FIPERnet, which contains various service providers.
Since all the providers form a network-centric envi-
ronment, the system portal or stand-alone requestor
finds directly or indirectly a particular provider’s
proxy and then communicates with the provider. The
direct access uses discovery and lookup protocols
(Edwards 1999, Li 2000) to find a proper provider on
the network. Indirectly, a provider can access a par-

ticular proxy in its dynamic catalog of currently
available services via a provider called cataloger.
Also, a provider can drop a task into an available
shared object space (Freeman et al 1999) via a pro-
vider called dropper. Within FIPERnet, all service
providers are connected to multiple object spaces and
execute relevant tasks by taking a task and returning
results to the object space. The persistence provider
(persister) uses the file store to handle files or JDBC
(Zhao et al. 2001, Reese 2000) to talk to the underly-
ing database. As far as the client is concerned from
the service-centric perspective, getting a service from
the desired provider is the ultimate goal. This entry
service becomes the network for its requestor.

The FIPERnet capabilities can be obtained and
configured at a moment’s notice. New business ap-
plications can be assembled as needed on the fly by
integrating new capabilities into existing workflows,
systems, devices and applications. FIPERnet reduces
the costs of solving business problems as well as of
establishing and maintaining online business rela-
tionships. Services are provided by shared low-cost
peers and are easily integrated into the core business
of an enterprise.

Each computational module, independent of how
large it is or how it is distributed, has three basic
components: data, operations and control strategy.
All of these are described herein with an explanation
of how they constitute a megaprogram and are used
in a federated S2S environment. A megaprogram is a
program whose execution requires milions of objects
to be used.

2 S2S DATA: CONTEXTS AND CONTEXT
MODELS

The implementation of natural language knowledge
definition and editing critically depends on the intri-
cacy of translation between natural language con-
structs and internal knowledge representation struc-

Web HTTP FIPER Object
— Client » Portal Space
PersonalJava J2EE, Servlets JavaSpaces
Requestor JDBC
Service Ul |« FIPERnet > RDBMS
J2SE '
A
v L
Client Project Org. File
Ly File File Store Store
Store J2EE, Servlets PDM
Data Store

Figure 1. FIPER organizational architecture.

tures. This is a function of the chosen knowledge
representation method. In humans, knowledge and
thinking are believed to be based in large part on per-
ceptual data processing (Arnheim 1969). This fact is,
in turn, reflected in the structure and semantics of
natural languages. The percept-calculus knowledge
representation scheme used in the DICEtalk system
(Kulpa et al. 1991, Sobolewski & Kulpa 1984, Sobo-
lewski 1989a, b, Sobolewski 1990, Sobolewski
1991a, b) is based on this assumption.

In the percept formalism, an entity of the world is
treated as the image given by perception, and that im-
age is called a percept. A percept conceptualization
is the semantic counterpart of the syntactic level of
the knowledge description theory called percept cal-
culus. In the percept conceptualization, attributes and
their values are used as atomic conceptual primitives,
and complements are used as molecular ones. A com-
plement is an attribute sequence (path) with a value
at the last position. An elementary percept property
consists of a percept subject and a set of percept
complements, and usually corresponds to a simple
sentence of natural language. For example, a bit of
knowledge about some dogs is carried by the follow-
ing English sentences:

Fido is a dog.

Wi te and bl ack are col ors.

Size may be | ong.

Fido has a long tail.

Fido's fore legs are black and hind | egs

are white.

may be written in the “simplified English” language
of the system as follows:

Tail of the dog Fido: size is |ong.

Legs of the dog Fido: fore color is black,
hind color is white.

/ tail — size {long, ...}
\ fore — color {black, white, ...}
N

Figure 2. Attribute tree structure.

dog {Fido, ...}

legs
hind — color {black, white, ..}

Posting
Processing

StressMesh.dat

Figure 3. Example context model for turbine analysis showing the tree-like node structure.

and produces the following percept calculus repre-
sentation:

(dog, Fido: tail, size, |ong)
(legs, dog, Fido: fore, color, black;
hi nd, color, white)

and the attribute tree structure shown in Figure 2,
with attributes dog, tail, size, legs, fore, hind, color,
and values Fido, long, black, white.

A FIPER context model is the basic element of
FIPER data structures and is based on the percept
calculus knowledge representation scheme. It forms
the essential structure of the data being processed. A
context model in the FIPER system is represented as
a tree-like structure of context nodes. A data node is
where the actual data resides. The context denotes an
application domain namespace, and a context model
is its context with data nodes as leaf nodes appended
to its context paths. A context path is a name for a
data in its leaf node.

A partial context model structured for a turbine
airfoil mechanical analysis is depicted in Figure 3.
Ovals in the figure represent context nodes, which in
turn form the paths of this model. The rectangle
shape indicates the data node, which is located at the
leaf. Since the FIPER environment is a federation of
distributed services, the ability to share and access
context models is itself one of the FIPER services.
The first step for clients sharing a context model in a
persistent and concurrent manner is finding the ser-
vice provider, as they would for any other services.

Persistence services provide access to static con-
text models in a data store, for example a PDM sys-
tem. However, there are many context providers who
also serve dynamic design data that represent parts in
the product control structure. These context provid-
ers are linked via the observer/observable pattern
(Grand 1999) to form a virtual network-centric prod-
uct, such as an aircraft engine.The details for locating
a service provider are presented in Section 5 below.

Data persistence control is a critical element of the
FIPER environment, in which data from its context
models and distributed business logic are available
globally. In this model, the distributed clients might

request services concurrently for the same data. The
data persistence provider can also provide database
independence, so that multiple database vendors can
be adopted (Zhao et al. 2001, Reese 2000). While
persistence providers maintain data in static data-
bases, context providers maintain dynamic distrib-
uted data as a product control structure. The latter is
a network-centric, object-oriented form of distributed
product data management.

3 S2S OPERATIONS: METHODS AND PROVID-
ERS

Communities of peers as network objects provide the
domain business logic in the FIPER environment.
The peers are network objects that are registered with
object registries (Fig. 4). Each peer may implement
multiple interfaces that are published when the peer
joins the environment. All methods of these inter-
faces have the same format:
publ i c Fi per Cont ext operati onNane(Fi per-
Cont ext)
Both arguments and return values of these methods
are instances of type FiperContext that represent con-
text models described in Section 2 above. By its in-
terface (type) and optional attributes (e.g., provider
name), the network object can be dynamically found
on the network without a host name and port re-
quired. These interfaces and their implementations
might change, as they are specific to particular ser-
vice providers. Thus peers should not expose their
specific interface explicitly at the S2S infrastructure
level.
The top-level peer interface called Servicer is de-
fined as follows:
public interface Servicer {
/1 Put into action the specified exertion
public Exertion service(Exertion exer-
tion)
t hr ows Renot eExcepti on,
tion;
/1 Mbnitoring nethods

Exerti onExcep-

}

So, all peers implement this interface and their
equality is defined as being service providers or ser-
vicers. A service is an act of requesting a ser-
vi ce(Exer ti on) operation from a service provider.
The exertion is a distributed activity defined by the
Exertion interface as follows:

public interface Exertion {

/1 Apply this exertion nethod to the spec-
i fied context

public Exertion exert()

t hr ows Renot eExcepti on,
tion;

Exerti onExcep-

In the FIPER environment two types of basic ex-
ertions are defined: fasks and jobs. A task is the
atomic exertion that is defined by its data (a context
model), and by its method, which defines a network
object to be bound to in runtime. This network object
provides the business logic to be applied to the task
context model.

A method is primarily defined by an interface and
a selector (operation name) of an operation in the
provider’s interface. Optionally, additional attributes
might be associated with the method, for example a
provider’s name or provider’s identifier. The infor-
mation included in the task method allows the FIPER
system to bind the task to the network object and pro-
cess the task’s context by one of its peer’s operations,
which is defined by its published interface. This type
of service provider is called a method provider.

There are four types of methods: preprocess, pro-
cess, postprocess and append. Only one method of
process type can be associated with a task, but multi-
ple methods of other types can be attached to the
same task. The process method associated with a task
defines the method provider to which the task is
bound in runtime. All preprocess, process, and post-
process methods are executed by method providers.

Append methods bind to context providers, peers
that maintain dynamic data (context models) on the
network. For example, a turbine blade and disk con-
text model might be maintained by context providers
for a mechanical airfoil analysis. A method provider
processing a task associated with an append method
binds to the context provider and submits a context
template associated with the append method. The re-
turned context model from the context provider is ap-
pended to the task’s context model and used later by
remaining methods in the task. This dynamic context
specified by the context template complements the
static context model explicitly provided in the task.

The dynamic context models are observed by de-
pendent context peers as well as method providers
who use the dynamic data. This observer/observable
dependency (Grand 1999) forces context providers to

Object Registry
Lookup Service

HTML/XML Clientl eee [Clientm

HTTP
App Server

D
Pp

Providerp
DBMS

Figure 4. Service providers in a S2S environment.

adapt dynamically to changes while they occur and
update their state according to their constraints. If
these changes are allowed then all observers are noti-
fied about the changes, otherwise changes are re-
fused and the requesting servicer is notified about the
observable constraints violation.

The job is a compound exertion that is comprised
of tasks and other jobs. A job is a recursive structure
expressed in terms of exertions. While a classic com-
puter program is an organized list of statements in a
programming language, a job’s exertions can be
treated as distributed statements that tell the FIPER
environment what to do with task context models.
Since the execution of a job might require millions of
objects to be used by all involved service providers a
job is called a megaprogram and the process of job
creation is called megaprogramming. The concept of
service binding and a job as a distributed megaap-
plication is depicted in Figure 5.

/—7 Job
A Task

Context
/&7 Method

Method Type:
&7 Preprocess /§/ Process /§ Postprocess /4 Append

Figure 5. Service binding in a job as a megaapplication.

4 S2S CONTROL STRATEGY

In Section 3 above, basic S2S operations were de-
scribed. This section will present how they are used,
at the task level and job level, to execute a distributed
megaprogram. As defined before, a task is associated
with a collection of methods. There is only one pro-
cess method in this collection and multiple instances
of append, preprocess, and postprocess methods. The
process method is responsible for binding to the ser-
vice provider that executes the task. The task submit-
ted by a service requestor can be submitted directly
or indirectly. In the direct approach the service re-
questor finds the relevant provider using a task pro-
cess method and submits the task to this provider. Al-
ternatively, a service requestor can use a system
object space (Freeman et al. 1999) and simply drops
the task into the space. Each service provider looks
continuously into the space for tasks that match a
provider’s interfaces and attributes. Each service pro-
vider that picks up a matched task from the object
space returns the task being executed back into the
space, then the requestor picks up the executed task
from the space. The object space provides a kind of
automatic load balancing — the fastest available ser-
vice provider gets a task from the space. When a ser-
vice provider gets a task then the task methods are
executed in the following order:

1 All append methods are executed first and in the
result the task’s context model is complemented
with dynamic data delivered from context provid-
ers specified by these methods.

2 All preprocess methods are executed in the order
specified in the task; in the result the task context
model is ready for applying a process method.

3 The process method is executed and results are
captured in the task context model.

4 All postprocess methods are executed in the order
specified in the task; in the result the task context
model is ready to be returned to the requestor.

Servicer <}Pr0v|der ----- Arithmetic
e a ..Interface
i P
RS, v/, N
Remote Arithmetic
-------------------------------- » Remote
JavaSpace Provider Runs Fiper N gnicatst
vasp Uses | Worker Provider (%neocf
! Submits___ & T)
Task i
Arithmetic Arithmetic [Fiper
Method Providerlmpl | ppiishes | Joiner
J7 Proxy
Executes Submits Task
A4 . . J
Remote Invokes Entry |« Arithmetic
FiperMethod |~ FiperTask Requestor |-----
v
---------- P v, Requestor
i Fiper 0. Has i Runner
i Context Y FiperTask
Drops Task ~ "TTTTTTRL TRy

Figure 6. Task execution.

i Provider iRequestor;
Service Submits 4
Servlet : - -
"~ | Requestor g Arithmetic
Runner Requestor
<<HTTP>> Invokes
L]
Servlet Dispatcher * """""""
Protocol Fagoy | [TeskDispatcher
H = Creates
2 H H
Proxy : TaskDispatcher J Fiper
Protocol - Factory TaskDispatcher
Service =~ =~
Uses Catalogimpl
Fiper 1 ; !
Launcher Provider | Catalog Space
Uses] Accessor TaskDispatcher | | TaskDispatcher
JobBrowser | | JavaSpace 3 Drops Job
Figure 7. Job execution.
5 IMPLEMENTATION OF THE FIPER S2S
ENVIRONMENT
FIPER
Federation of Services o
) (FIPER supports three centricities and deploys three
Lookup ocation ‘s =
Service neutrality) neutralztles (Zhao et ?11. 2001, Rohl et a}. .2000).
FIPER’s three centricities are network centricity, ser-
get proxy, & 7 publish proxy vice centricity, and web centricity. A EIPER federa-
| 4 “, tion is composed of various service providers
. communicate| gepyice (FIPERnet in Figure 1); any of these can come and
C"e”t@ <(pmtocol> Provider go, and the system can respond to changes in its en-
neutrality) imolementation vironment in a reliable way (network centricity). Ser-
neutrality) vices in FIPERnet can discover lookup services and

Figure 8. FIPER’s three neutralities, providing a simplified,
highly flexible software environment.

The UML diagram illustrating the task execution is
presented in Figure 6.

Jobbers are specialized service providers that exe-
cute jobs. A jobber coordinates execution of exer-
tions in a job using the job context model called a
control context. Similarly as for a task, a job’s pro-
cess method defines a runtime binding to a specific
jobber. A control context defines a job’s execution
strategy. A strategy implements a master/slave com-
puting model (Freeman et al. 1999) with sequential
or parallel execution of slave exertions with the mas-
ter exertion executed as the last one. In general, full
algorithmic logic operations: concatenation, condi-
tional, iterative and break are supported for exertion
execution. The strategy also specifies the way a job-
ber accesses service providers: directly using a utility
called ProviderAccessor, using a catalog of currently
available service or indirectly via an object space
(Freeman et al. 1999). The catalog is just another ser-
vice provider called a cataloger. In the FIPER envi-
ronment there are eight types of dispatchers that im-
plement different types of control strategies. A
relevant dispatcher is assigned to a jobber by a dis-
patcher factory based on a job control context. The
UML diagram illustrating the job execution is pre-
sented in Figure 7.

join the federation or lookup for relevant services in
order to cooperate in a distributed environment (ser-
vice centricity). Users can request to use multiple
services and check the status of their submissions in
different locations through an HTTP portal with thin
web clients (web centricity).

The three neutralities FIPER deploys are location
neutrality, protocol neutrality, and implementation
neutrality (Fig. 8).

With location neutrality, services need not be
colocated; lookup services are discovered and used
to find a particular service, which simplifies manage-
ment of the entire network environment With proto-
col neutrality, the way in which clients communicate
with a service provider is not important. Clients are
not aware of what protocols are used or where the
implementations reside. With implementation neu-
trality, the clients who use the FIPER services do not
need to know what languages are used or how a ser-
vice is implemented. In all, FIPER provides accessi-
bility through web-centric architecture; self-manage-
ability using federated services, scalability via
network centricity, and adaptability with the power
of mobile code inserted for execution through service
providers.

To be able to achieve the network-centricity and
service-centricity requirements, The Jinil] network
technology from Sun Microsystems (Edwards 1999,
Li 2000) is being used. Jini is a set of specifications

allowing federations of services on a network and
providing a framework that allows those services to
participate in certain types of operations. As opposed
to server-centricity, where all the data and services
are located in a specific or predefined server, net-
work-centricity can allow many services at unknown
locations to be found and then executed. Service pro-
viders are found and resolved through a lookup ser-
vice provider or registrar. New service providers are
added to the registrar by discovery and join. To pub-
lish a service, its service provider first uses a discov-
ery protocol to locate an appropriate lookup service
and then joins, or registers, with the lookup service.
Services can communicate with each other in the en-
tire federation, creating communities of services.

Each service in the network is an autonomous
business logic unit that can serve other units and also
be served by them. Data persistence functionality is
provided by one of the services that exist in the net-
work. This persistence service handles client requests
and communicates with the product data repository.
It provides concurrent sharing and data access.

The lookup service is similar in principle to the
naming and directory server used in server-centric
distributed network environments. For each service
the lookup service holds the service attributes along
with its proxy. An application that wants to use a Jini
service finds the desired service by matching the ser-
vice’s attributes within the lookup service. A Jini ser-
vice provider must register itself with a Jini lookup
service and maintain an active registration in order
for applications to find its service.

To locate a Jini lookup service, which itself is also
a Jini service, Jini provides three discovery proto-
cols. When a FIPER service provider starts, it dis-
covers all relevant lookup services on the network
through discovery. Then it registers with a discov-
ered lookup service by using Jini’s join protocol. In
addition, the service provider may listen for new
lookup services that start on the network and join
them if desired. After the service is registered, its
provider has to actively manage its relationship with
the lookup service. By managing the relationship,
service providers have to renew the lease they re-
ceived when they registered with the lookup service.
Otherwise, the lookup service will assume this ser-
vice provider has gone away and free the resource al-
located. Figure 9 illustrates how a service provider
seeks a lookup service and then registers its proxy.

For a client to be able to use services registered
with a Jini lookup service, the client needs to dis-
cover the Jini lookup service as well. After the
lookup service is located, the client will perform
lookup for the prospective service according to its re-
quired attributes. The lookup service will pass back a
copy of the service proxy to the client, and then the
client will communicate with the service provider via
the proxy, as illustrated in Figure 10.

The FIPER functional architecture overview is
presented in Figure 11. All layers depend on the job/
task/context/method framework presented above in
terms of S2S data, operations and control strategy.
Web clients and stand-alone requestors submit jobs
to be executed by FIPERnet. Any peer to one of the
available jobbers can submit jobs. In the case of web
clients, jobs are submitted to a FIPER interportal or
extraportal. A FIPER extraportal is an application
proxy that forwards incoming requests to a FIPER
interportal. The extraportal is used for business-to-
business secure communication over security fire-
walls. The FIPER interportal is implemented by three
servlets: controller, dispatcher and file upload servlet
(Hunter & Crawford 1998, Callaway 1999). The con-
troller implements a command execution engine. The
controller executes commands mostly related to data-
base processing. For example, it authenticates users,
manages access control list for FIPER business ob-
jects, or manages notifications for the FIPER notifi-
cation manger (Lapinski & Sobolewski 2001) called
notifier. The dispatcher servlet dispatches requestes
into FIPERnet.

Discovery and Join

Lookup
Service
Service Attributes
Service Proxy

-

‘ Service
Provider
Service Attributes
Service Proxy

Client

A Service Provider Seeks a Lookup Service.
A Service Provider Registers with Lookup Service.

Figure 9. The discovery lookup and communicate protocols
used by clients of Jini services.

Discovery Lookup and Communicate

N\

Client

Lookup
Service

Service Attributes
Service Proxy
7}

Service
Provider

Service Attributes
Service Proxy

AA

»
>

A Client Seeks a Lookup Service and
a Service with the Specified Attributes.

Client Receives a Copy of the Service Proxy.
Client Interacts Directly with Service Provider.

Figure 10. The discovery and join protocols used for register-
ing a Jini service.

Utilities and Templates Web CMTJ Clients

[Requestor][Service Uls][Intraportal] [Extraportal]

Infrastructure Providers

Jobber, Dropper, Cataloger, Persister, Notifier, Reporter, Securer, Auditor

Fiper Core ;
Task Dispatchers, Provider, Proxy, Bean Perﬁgstgrrwce
DataAccessor, ProviderAccessor Y

Static
Bootstrapping

J2EE, Jini, Rio, GApp

Figure 11. FIPER functional architecture overview.

6 CONCLUSIONS

In the S2S environment, object-oriented concepts are
applied to the network. A job (a collection of exer-
tions) is a distributed megaapplication executed in a
federated S2S environment across multiple enter-
prises. Jobs are created using friendly, interactive
web-based graphical interfaces. Jini connection tech-
nology from Sun Microsystems enables federated
S2S, platform independent, real-world megapro-
gramming environments. It allows us to realize a
whole aircraft engine as a virtual object-oriented
product control structure that can be manipulated by
multidisciplinary teams as a network-centric, active,
evolving product in a distributed observer/observable
mode. The FIPERnet capabilities can be obtained
and configured at a moment’s notice. New concur-
rent engineering applications can be assembled as
needed on the fly by integrating new capabilities into
existing workflows, systems, devices and applica-
tions. FIPERnet reduces the costs of solving business
problems as well as of establishing and maintaining
online business relationships. Services are provided
by shared low-cost, easy-to-develop service provid-
ers and are easily integrated into the core business of
an enterprise.

7 REFERENCES

Arnheim, R. 1969. Visual Thinking. University of California
Press.

Callaway, Dustin R. 1999. Inside Servlets, Addison-Wesley.

Edwards, W. Keith 1999. Core JINI. Prentice Hall.

Freeman, Eric, Hupfer, Suzanne, Arnold, Keen. 1999. Jav-
aSpaces Principles, Patterns, and Practice. Addison-Wes-
ley.

Grand, Mark 1999. Patterns in Java, Volume 1. Wiley.

Hunter, Jason & Crawford, William 1998, Java Serviet Pro-
gramming. O’Reilly & Asssociates.

Kulpa, Z., Sobolewski M. & Dwivedi, S.N. 1991. Graphical
User Interface with Object-Oriented Knowledge-Based
Engineering Environment; CAD/CAM, Robotics and Facto-
ries of the Future 90, Vol. 1. In Dwivedi, S.N., Verma, A K.

& Sneckenberger, J.E. (eds), Concurrent Engineering: 154—
159. Berlin: Springer-Verlag.

Lapinski, Michael, & Sobolewski, Michael 2001. Notification
Manager in the FIPER Environment, Proc. of the 8th Int.
Conference on Concurrent Engineering: Research and
Applications, Anaheim, CA.

Li, Sing 2000. Professional Jini.
014469-X.

Oram, Andy (ed.) 2001. Peer-to-peer, Harnessing the Benefits
of a Disruptive Technology. O’Reilly & Associates.

Reese, George 2000. Database Programming with JDBC and
Java, 2nd ed. O’Reilly & Asssociates, ISBN: 1-56592-
616-1.

Rohl, Peter J., Kolonay, Raymond M., Irani Rohinton K., Sobo-
lewski, Michael, Kao, Kevin 2000. A Federated Intelligent
Product Environment. AIAA-2000-4902, 8th AIAA/USAF/
NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Long Beach, CA, September 6-8, 2000.

Sobolewski M. 1989a. Percept Knowledge Description and
Representation. /CS PAS Reports. No. 663. Warsaw, Poland.

Sobolewski, M. & Kulpa, Z. 1984. From Sentences to Attribute
Networks. In Plander, I (ed.), Artificial Intelligence and
Information-Control Systems of Robots:345-348. North-
Holland.

Sobolewski, M. 1989b. EXPERTALK: An Object-oriented
Knowledge-based System. In Plander, 1. (ed.), Artificial
Intelligence and Information-Control Systems of Robots.
North-Holland.

Sobolewski, M. 1990. DICEtalk: An Object-oriented Knowl-
edge-based Engineering Environment; CAD/CAM, Robot-
ics and Factories of the Future 91, Vol 1. In Dwivedi, S.N.,
Verma, A.K. & Sneckenberger, J.E. (eds). Concurrent Engi-
neering:117-122. Berlin: Springer-Verlag.

Sobolewski, M. 1991a. Object-oriented Knowledge Bases in
Engineering Applications. Proc. of the 6th Int. Conference
on CAD/CAM, Robotics and Factories of the Future. Lon-
don, UK.

Sobolewski, M. 1991b. Percept Conceptualizations and Their
Knowledge Representation Schemes. Proc. of the 6th Inter-
national Symposium on Methodologies for Intelligent Sys-
tems. Charlotte, NC. Lecture Notes in Ras, Z.W. &
Zemankova, M. (eds), Al 542: 236245, Springer-Verlag.

Sobolewski, M. 1996. Multi-Agent Knowledge-Based Environ-
ment for Concurrent Engineering Applications, Concurrent
Engineering: Research and Applications. Technomic.

Zhao, Shuo, & Sobolewski, Michael 2001. Context Model
Sharing in the FIPER Environment, Proc. of the 8th Int.
Conference on Concurrent Engineering: Research and
Applications, Anaheim, CA.

Wrox Press. ISBN 0-13-

