
Smart Card Authentication and Authorization Framework

BY SAURABH BHATLA

A MASTER’S THESIS IN COMPUTER SCIENCE

Submitted to the Graduate Faculty of Texas Tech University

in partial fulfillment of the requirement for the degree of Master in Science

Approved

Chairperson of the committee

Accepted

Dean of the Graduate School

May 2005

i

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who helped me to complete this

thesis. I am deeply indebted to my supervisor Prof. Dr. Michael W Sobolewski whose

help, stimulating suggestions and encouragement helped me during the time of research

for this thesis. I would like to give my sincere thanks to Dr. Hector Hernandez and Dr Yu

Zhuang for serving on my Thesis committee, for detailed reviews and for their invaluable

guidance.

I would also like to thank all my lab mates at the SORCER laboratory for

providing a wonderful ambiance which made me feel at home and thus increased my

productivity. I am also thankful to the Computer Science department for providing

hardware and infrastructure for completing my research.

I dedicate this thesis to my parents and brother for their encouragement, love,

support and enthusiasm they have shown all my life. It is because of them that I am able

to see this high point of my life.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... i

LIST OF CONTENTS .. ii

ABSTRACT... vi

TABLE OF FIGURES... viii

CHAPTER

1 INTRODUCTION ... 1

1.1 Challenges... 3

1.2 Motivation... 4

1.3 Thesis Organisation .. 5

2 JINI NETWORK TECHNOLOGY ... 10

2.1 Technology ... 10

2.1.1 Introduction... 10

2.1.2 Features ... 12

2.1.3 Architecture... 13

2.2 Components .. 17

2.2.1 Infrastructure... 17

2.2.2 Programming model.. 18

2.2.3 Services ... 19

3 SERVICE ORIENTED COMPUTING ... 24

3.1 Service – Oriented program (SO Programming) .. 24

3.2 Service Oriented Computing Environment(SORCER) .. 26

3.2.1 Framework .. 26

3.2.2 Design ... 28

4 JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)............. 32

iii

4.1 Introduction... 32

4.2 Subjects and Principals ... 34

4.3 Credentials .. 34

4.4 Authentication... 35

4.5 Authorization .. 37

4.5.1 Principal-Based Access Control ... 37

4.5.2 Access Control Implementation.. 40

4.6 Scalability ... 41

5 PUBLIC KEY INFRASTRUCTURE (PKI).. 43

5.1 Introduction... 43

5.2 Public Key Cryptography ... 43

5.3 Digital Signatures and Data Encryption ... 45

5.3.1 Applications .. 47

5.4 PKCS #11.. 47

5.4.1 Introduction... 47

5.4.2 Overview... 48

5.5 PKCS #12.. 50

5.5.1 Introduction... 50

5.5.2 Overview... 51

5.6 PKCS# 15.. 56

5.6.1 Introduction... 56

5.6.2 Overview... 59

6 OPEN CA... 62

6.1 Introduction... 62

6.2 Basic Hierarchy... 63

6.3 Interfaces... 65

6.3.1 Node.. 65

6.3.2 CA... 65

6.3.3 RA... 66

iv

6.3.4 LDAP .. 66

6.3.5 Pub .. 66

7 OPENCARD FRAMEWORK AND SMART CARD .. 68

7.1 Introduction... 68

7.2 OpenCard Framework... 70

7.2.1 The Terminal Package .. 73

7.2.2 Card Terminal Representation .. 73

7.2.3 User Interaction... 74

7.2.4 Resource Management.. 74

7.3 Smart Card.. 75

7.3.1 Card Acceptance Device... 76

7.3.2 Smart Card Operating System .. 76

7.3.3 Smart Card File System .. 77

8 MUSCLE CARD CRYPTOGRAPHIC TOKEN FRAMEWORK 79

8.1 Introduction... 79

8.2 MUSCLE Architecture ... 80

8.3 Security Model.. 81

9 SCAF SERVICE SECURITY FRAMEWORK .. 83

9.1 Introduction... 83

9.2 Objective/Approach .. 84

9.3 CardEdge Applet... 85

9.3.1 Key Blobs.. 85

9.3.2 Application Directory Contents .. 88

9.4 Signing and Verification ... 92

9.4.1 Signing Process... 92

9.4.2 Verification Process .. 93

9.5 Channel Confidentiality In SCAF... 96

9.6 Benefits ... 96

9.7 Framework Design.. 97

v

9.7.1 SCAF... 97

9.7.2 Certification Process ... 99

9.7.3 Authentication... 100

9.7.4 Authorization .. 103

9.7.5 Non Repudiation ... 105

9.8 Implementation ... 107

9.8.1 Technical Architecture.. 107

9.8.2 Package Diagram .. 108

9.8.3 Physical Architecture .. 109

9.9 Validation.. 110

9.9.1 SCAF Credentials ... 110

9.9.2 Bulletin Board Services .. 112

9.9.3 Bulletin Board User Agent.. 113

9.9.4 Authentication In Bulletin Board.. 118

9.9.5 Authorization In Bulletin Board ... 119

9.9.6 Non-Repudiation In Bulletin Board.. 120

9.10 Conclusion .. 122

9.11 Future Research .. 122

REFERENCES ... 123

APPENDIX... 125

A. SCAF Interfaces... 125

B. SCAF API Specification .. 128

C. CardEdge Commands... 176

D. CardEdge Error Codes ... 177

vi

ABSTRACT

The service-oriented approach to computing has gained the widespread attention

of researchers and the industry. Major initiatives include service-oriented programming

(SOP) for constructing software components and service-oriented architectures (SOA) for

distributed applications. Software programs developed using SOP can be thought of as

mega programs, where the component programs can exchange messages through clearly

defined interfaces. SOP environment relies on the exchange of information between

various services over various networks.

Services may exchange sensitive information that should only be available for a

limited number of persons. Therefore it is necessary that various principals (people,

computers, servers) can authenticate themselves. Authentication means that a principal

can prove his identity. This can be done by means of secrets, usually cryptographic keys.

The process of deciding if user X is allowed to have access to service Y is called

authorization. SOP environments may require authorization based on user interaction

before he/she is allowed access to the services. Further, if sensible information is sent

over an open network, an eavesdropper should not be able to understand the information

that is sent and he should not be able to change this information without the receiver

detecting this.

Smart cards and the online authentication technology known as Public Key

Infrastructure (PKI) seems the perfect solution to achieve this. They are designed to allow

vii

individuals anywhere in the world to identify each other, exchange data in encrypted

form and to digitally “sign” documents in ways that cannot later be repudiated.

My research is based on designing a Smart Card based framework for SORCER

that will provide user authentication and authorization. This standard security mechanism

will not only enforce more consistent security policies, but application developers will be

freed from the low-level drudgery of building explicit security controls into their

software.

viii

LIST OF FIGURES

2.1. Jini-Platform Independent... 10

2.2. Discovery .. 20

2.3. Join…….. 20

2.4. Lookup… .. 21

2.5. Service Invocation .. 21

3.1. Tree structure of context nodes... 25

3.2. UML-Diagram for service-based framework to support nested transactions..... …28

3.3. Operation of Service Broker and Service Provider... 30

4.1. LoginContext Class and LoginModule Interface.. 36

4.2. Codesource-Based Policy Entry ... 37

4.3. Principal-Based Policy Entry.. 38

4.4. Role-Based and Group-Based Policy Entries ... 38

4.5. PrincipalComparator Interface and Example Policy Entry..................................... 39

4.6. Subject doAs Method.. 40

5.1. General Cryptoki Model ... 48

5.2. Object Model .. 50

5.3. Embedding of a PKCS #15 interpreter (example) .. 59

5.4. PKCS #15 Object hierarchy.. 60

6.1. Distributed PKI Architecture .. 64

6.2. OpenCA Design .. 64

6.3. OpenCA Workflow... 67

7.1. OpenCard Framework architecture... 70

8.1. Muscle Architecture.. 80

9.1. Key Blob Format... 86

9.2. RSA Key Blob Definition... 87

9.3. Contents of DF(PKCS #15) .. 88

9.4. SCAF…... 97

9.5. Certification process ... 99

ix

9.6. Authentication Sequence Diagram ... 101

9.7. Authentication Class Diagram .. 102

9.8. Authorization Activity Diagram ... 104

9.9. Auditing Sequence Diagrams ... 105

9.10. Authorization and Auditing Class Diagram.. 106

9.11. Technical Architecture.. 107

9.12. Package Diagram .. 108

9.13. Deployment Diagram.. 109

9.14. Bulletin Board Class Diagram .. 113

9.15. Sell Books Interface.. 115

9.16. Find Books Interface... 116

9.17. Browse Books Interface.. 117

9.18. Logon Frame... 118

9.19. Authorization Failure .. 119

9.20. Signing Class Diagram ... 120

9.21. Non-Repudiation Interface.. 121

1

CHAPTER 1

INTRODUCTION

 Walk up to an ATM anywhere in the world, insert your bank card, punch in your

PIN, and within minutes you can withdraw local currency from your own account, no

matter where you normally bank. Aside from a possible service charge, the transaction is

seamless. It’s the same as if you were at a branch in your hometown. That’s a federated

system in action. Out of mutual self-interest, using simple authentication at the point of

transaction, participating banks have agreed to trust one another to supply funds from

their respective vaults. The banks remain separate entities, but the flow of transactions is

shared, creating a federated network. Today, major IT vendors are looking to this same

model as a way to enable the next generation of integrated network services. As open

federated identity standards mature, IT will be able to deploy sophisticated access

controls and to secure multiparty transactions across all types of organizations.

 SOA is a conceptual architecture for implementing dynamic e-business. It is a

way of designing a software system to provide services to end-user applications or other

services through published and discoverable interfaces. Services provide a better way to

expose discrete business functions and, therefore, an excellent way to develop

applications that support business processes. Identity-based security controls are the

natural choice for SOA because they are not dependent on any single application design

or technology. Any number of tools could be used to authenticate a user to a given

identity, for example, ranging from simple passwords, to digital certificates, to Kerberos,

2

to biometrics. Individual services need not know anything about the underlying

authentication system so long as they are satisfied with the validity of the user’s digital

identity. PKI is perfect for service-to-service transactions on the Internet. An individual

can use a PKI-enabled digital certificate to encrypt and sign messages, and the person on

the other end, anywhere on the Internet, can be certain who sent the message and that the

contents were not altered.

 The issue involves questions as to where user identity should actually reside, the

role of technology versus the role of trust, and how open standards can ever hope to

rationalize the matrix of permissions required to share user information across an endless

diversity of systems and organizations. We have to make sure that the private key used

to guarantee the identity of the certificate-holder is not stolen by a hacker accessing a

certificate stored on a computer. Security provided by digital certificates is only as good

as the security provided for the storage and use of the private keys. Smart cards are small,

tamper-resistant devices providing users with convenient storage and processing

capability. The smart cards are suitable for cryptographic implementations because they

contain many security features that enable the protection of sensitive cryptographic data

and provide for a secure processing environment. The protection of the private key is

critical for digital signatures. This key must never be revealed. The smart card protects

the private key, and many consider the smart card an ideal cryptographic token.

3

1.1 Challenges

 We want the service and the smartcard holder to communicate in such a way that

the following security requirements are met:

• Authenticity means that the server and the smartcard holder trust each others

identity.

• Authorization guarantees that the authenticated person has the right to access the

service or data.

• Integrity requires that changing a message by an intruder will be detected by the

receiver.

• Confidentiality assures protection of a message in such a way that unauthorized

principals are not able to interpret the information in the message.

• Non-repudiation guarantees that the sender of the message cannot deny that

he/she sent it at a later point in time.

 When a certificate is presented to an entity as a means of identifying the

certificate holder (the principal of the certificate), it is useful only if the entity receiving

the certificate trusts the issuer, which is often referred to as the certification authority

(CA). When we trust a certification authority, that means we have confidence that the

certification authority has the proper policies in place when evaluating certificate requests

and will deny certificates to any entity that does not meet those policies. In addition, we

trust that the certification authority will revoke certificates that should no longer be

considered valid by publishing an up-to-date certificate revocation list Certificate

revocation lists are considered valid until they expire. The idea is that if the user trusts the

4

CA and can verify the CA's signature, then he can also verify that a certain public key

does indeed belong to whoever is identified in the certificate.

1.2 Motivation

 The problem is that when it comes to security, developers have historically been

forced to repeatedly reinvent the wheel. Whereas modern programming languages such

as C#, Java, and Python incorporate levels of abstraction that free developers from

thinking about low-level tasks such as memory management, there are no such standard

facilities for the basic functions of user authentication and authorization. By building

standard security mechanisms we can not only enforce more consistent security policies,

but application developers are freed from the low-level drudgery of building explicit

security controls into their software.

 In my thesis I intend to use the features of Public-key cryptography and Jini

architecture to design a Smart Card Authentication and Authorization Framework

(SCAF) that would integrate into Service Oriented Computing Environment (SORCER)

and hence enable secure service oriented computing. With SCAF it would be possible for

the developer to leverage the framework and provide security in SOA. The following

sections provide a brief background of Public-key cryptography and various technologies

used to perform service oriented computing.

5

1.3 Thesis Organisation

In traditional remote procedure call systems like CORBA or DCOM the

connecting fiber between two programs are the client-side stub and the server-side

skeleton [1]. Stub starts communication to the server by opening up a communication

channel, it then converts all the arguments to a form that can be transmitted across the

channel, and sends those converted arguments. When response comes from the server,

the stub converts any return values from their wire representation to the internal form

used in the process, and returns those results back to the process that originated the call.

On server side, similar functionality is provided skeleton code. It receives the information

transmitted by a stub, converts the received information into a form that the server

program understands. It then calls the appropriate server program and translates the

results send by server program into a form that can be transmitted over the wire, and

sends them back to the calling client.

For generating code for stub and skeleton, a definition of the interface between

the client and the service written in some neutral declarative language is given to a

compiler. The source code hence generated it compiled by native compilers on the

machine it is going to be executed.

Systems based on protocols also have their limitations. The information that can

be represented in the protocol is limited to the kinds of data found in languages that the

protocol is translated into. To satisfy the needs of client and server, all requirements have

to be fit into a single protocol in protocol based systems. The biggest problem with such

systems is their rigidity once deployed. If there is a change at any of the ends the change

6

needs to be propagated the other end. In current environment, service gets redefined all

the time, which makes requirement for continuous updates a serious problem for

protocol-based systems.

These limitations resulted in environment in which code can be dynamically

loaded into a running process no matter what the underlying processor or operating

system. In Java technology environment this functionality is provided by RMI. The code

that is used by the client to access a service is not deployed on the client but is

downloaded dynamically. Stubs, in RMI are references that implement all the interfaces

implemented by the service that different clients may want to use. JINI based on RMI

semantics, takes it a notch further by providing stubs as proxies which can be

downloaded from a Lookup Service. This means that the client does not even need to

know the location of the service and proxy to service can be found dynamically. JINI

network technology is explained in chapter 2.

This dynamic discovery, availability of services and dynamic downloading of

code on the requestor side has resulted in the inception of a new architecture for

distributed systems which is based on peer-to-peer communication instead of client-

server model. Such architecture is known as Service Oriented Architecture which can be

simply generalized as a collection of services communicating with each other. SOA

basically comprises of simple and ubiquitous set of interfaces universally available for all

service providers and consumers. Service ORiented Computing EnviRonment

(SORCER) is one such federated grid infrastructure that aims to provide a service

7

oriented environment which can handle the needs of any distributed scalable network

centric system. SORCER framework and design is explained in chapter 3.

 Java(TM) security technology provides a safe environment to run potentially

untrusted code downloaded from the public network. Fine-grained access controls can be

placed upon critical resources with regard to the identity of the running applets and

applications, which are distinguished by where the code came from and who signed it. As

Java is being widely used in a multi-user environment it is required to enforce access

controls based on the identity of the user who runs the code. The Java Authentication and

Authorization Service (JAAS) is designed to provide a framework and standard

programming interface for authenticating users and for assigning privileges. Chapter 4

contains the detailed explanation of entities in JAAS and how authentication and

authorization is achieved.

 SOAs are the conceptual architectures for implementing dynamic e-business.

Identity-based security controls are the natural choice for SOA because they are not

dependent on any single application design or technology. Any number of tools could be

used to authenticate a user, for example, ranging from simple passwords, to digital

certificates, to Kerberos, to biometrics. With the need for information security in today's

digital systems growing, cryptography has become one of its critical components. Digital

signatures are one of the many uses of cryptography. Public-key cryptography allows one

to digitally sign and encrypt information transacted between parties. Public Key

Infrastructure (PKI) uses this technology and adds authentication and non-repudiation of

the information regarding the parties concerned. Public Key Cryptography Standards

8

(PKCS) is a suite of protocols and algorithms and some of the standards used in this

thesis are discussed in chapter 5.

The problem is that more and more applications can be secured with such crude

things like certificates and keys but it is really difficult to setup PKIs and it is really

expensive too because flexible trust center software for Unix is expensive. The goal of

OpenCA is the production of an open source trust center system to support the

community with a good, inexpensive and future-proof solution for their base

infrastructure. Chapter 6 provided an in depth detail of the components and hierarchies of

OpenCA.

 The most important issue in providing security is to where user identity should

actually reside. User credentials saved on servers or in files are not completely safe and

are not portable. They are not intrusion protected and are not portable. It is required to

share user information across an endless diversity of systems and organizations. Security

provided by digital certificates is only as good as the security provided for the storage

and use of the private keys. Smart cards (discussed in chapter 7) are small, tamper-

resistant devices providing users with convenient storage and processing capability and

they contain many security features that enable the protection of sensitive cryptographic

data and provide for a secure processing environment. In order to use a smart card, we

need to be able to read the card and communicate with it using an application. OpenCard

provides a framework for this by defining interfaces that must be implemented. The

OpenCard framework defines several of these interfaces. Once these interfaces are

9

implemented, we can use other services in the upper layers of the API, overview of which

is given in chapter 7.

 Smartcards typically vary from release to release so the middleware, that

communicates with the card and exports the card's functionality to the host, generally is

in constant change. Each card must have its own CSP (crypto/card service provider) on

the host which has large support problems. Chapter 8 gives an overview of MUSCLE

applet approach, using which only one host CSP be written for the middleware, thus

reducing the time spent migrating to new card releases and vastly reducing the number of

CSP's on the host. The MUSCLE applet has to be loaded on the card with a static

application identifier (AID) and the host based CSP will communicate to the card through

this applet.

As explained earlier, this research is based on the development of Smart Card

Authentication and Authorization Framework which is a Smart Card based framework

for SORCER that provides user authentication and authorization. This standard security

mechanism enforces more consistent security policies and application developers are

freed from the low-level drudgery of building explicit security controls into their

software. Chapter 9 elaborates on the Objective/Approach, benefits, design,

implementation and validation of SCAF.

10

CHAPTER 2

JINI NETWORK TECHNOLOGY

2.1 Technology

2.1.1 Introduction

Jini is a set of Java classes and specifications that are platform independent and is

built on top of java Technology as shown in the Figure 2.1. It aids the construction of

distributed systems where scale, rate of change and complexity of interactions within and

between networks are extremely important and cannot be satisfactorily addressed by

existing technologies [2]. The Jini architecture specifies a way for clients and services to

find each other on the network and to work together to get a task accomplished. Jini

technology provides a flexible infrastructure for interactions between clients and services

regardless of their hardware or software implementations.

Figure 2.1. Jini-Platform Independent

11

 Jini has several properties which are inherited from Java to support service-

oriented architecture. They are:

• Homogeneity

• A single type system

• Serialization

• Code Downloading

• Safety and Security

Jini architecture makes the entire network of services adaptable to changes in the

network by using objects that move around the network. The Jini architecture specifies a

way for clients and services to find each other on the network and to work together to get

a task accomplished. Service providers supply clients with portable Java technology-

based objects that give the client access to the service. Since the client only sees the Java

object provided by the service, network interaction can use any type of networking

technology such as RMI, CORBA, or SOAP. For example, a Jini enabled printer can

provide print service to the entire network. Jini services can be either hardware based or

software based in nature [3]. This makes it a dynamic environment where any service can

enter or leave the network at anytime and provides constructs that make administration of

services simple.

 Jini system is a collection of clients and services communicating by means of Jini

protocols. A Jini system consists of a set of components that provides an infrastructure

for federating services in a distributed system, a programming model that supports and

encourages the production of reliable distributed services and services that can be made

12

part of a federated Jini system and which offer functionality to any other member of the

federation.

2.1.2 Features

 Jini was designed with the goal of making services accessible to everybody on

network. Jini enabled device can access any service that becomes available on the

network in type-safe and robust way. The features of Jini architecture are explained

below:

Connect anything, anytime, anywhere: It provides an infrastructure that helps different

network users to discover, join, and participate in any network community spontaneously.

Network Plug and work: It makes available a new service to all the users without any

configuration and installation hassles.

Abstraction of Hardware/Software distinction: It provides architecture centered on a

service network instead of a computer network or device network.

Promote Service Based Architecture: Applications created for stand alone purposes can

be made available as services in the network by certain deploying mechanisms. This

enables service based architecture wherein all applications can be considered as services

for clients in the network.

Simplicity: Jini services provide a simple generic framework. Services are designed in a

way that they are reusable and can be modified according to the users needs.

13

2.1.3 Architecture

 The Jini system extends the Java Application Environment from a single virtual

machine to a network of machines. Jini Architecture [4] provides an infrastructure for

defining, advertising and finding services in a network. As both code and data can move

from machine to machine the Java application environment provides a good computing

platform for distributed computing. The Jini architecture adds mechanisms that allow

fluidity of all components in a distributed system, extending the easy movement of

objects to the entire networked system. The environment provides built in security for

downloaded code from one machine to another.

 Jini technology blurs the distinction between devices and software by

concentrating on the services that devices provide. Devices, whether they are pocket-

sized, consumer electronic items, desktop computers, or industrial machinery, provide

services that can be utilized by clients. These services can be unified by a Jini network.

Jini technology brings object-orientation to the network. Clients of a service need only

know the interface of that service written in the Java programming language (Java

interface) to use it. The details of the service that implements the interface are hidden

from the client.

� Services

 The most important concept within the Jini architecture is that of a service. A

service is an entity that can be used by a person, a program, or another service. A service

may be a computation, storage, a communication channel to another user, a software

filter, a hardware device, or another user. Two examples of services are printing a

14

document and translating from one word-processor format to some other. Members of a

Jini system federate in order to share access to services. Services are defined via an

interface, and the implementation of a proxy supporting the interface that will be seen by

the service client will be uploaded into the lookup service by the service provider. This

implementation is then downloaded into the client as part of that client finding the

service. This service-specific implementation needs to be code written in the Java

programming language to ensure portability.PA Jini system consists of services that can

be collected together for the performance of a particular task. Services may make use of

other services, and a client of one service may itself be a service with clients of its own.

The dynamic nature of a Jini system enables services to be added or withdrawn from a

federation at any time according to demand, need, or the changing requirements of the

workgroup using it.

 Services in a Jini system communicate with each other by using a service

protocol, which is a set of interfaces written in the Java programming language. The Jini

system defines these set of protocols for services to interact with each other.

� Lookup Service

 Services are found and resolved by a lookup service. The lookup service is the

central bootstrapping mechanism for the system and provides the major point of contact

between the system and users of the system. A lookup service maps interfaces indicating

the functionality provided by a service to sets of objects that implement the service.

15

A service is added to a lookup service by a pair of protocols called discovery and join--

first the service locates an appropriate lookup service (by using the discovery protocol),

and then it joins it (by using the join protocol).

� Java Remote Method Invocation (RMI)

 Java Remote Method Invocation (Java RMI) enables the programmer to create

distributed Java technology-based to Java technology-based applications, in which the

methods of remote Java objects can be invoked from other Java virtual machines*,

possibly on different hosts. RMI uses object serialization to marshal and unmarshal

parameters and does not truncate types, supporting true object-oriented polymorphism.

Fundamentally, RMI is a Java-programming-language-enabled extension to traditional

remote procedure call mechanisms. RMI allows not only data to be passed from object to

object around the network but full objects, including code. Much of the simplicity of the

Jini system is enabled by this ability to move code around the network in a form that is

encapsulated as an object.

 Communication between services can be accomplished by Remote Method

Invocation (RMI). The infrastructure to support communication between services is not

itself a service that is discovered and used but is, rather, a part of the Jini technology

infrastructure. RMI provides mechanisms to find, activate, and garbage collect object

groups.

� Security

 The design of the security model for Jini technology is built on the twin notions of

a principal and an access control list. Jini services are accessed on behalf of some entity--

16

the principal--which generally traces back to a particular user of the system. Services

themselves may request access to other services based on the identity of the object that

implements the service. The granting of access to a service depends on the contents of an

access control list that is associated with the object.

� Leasing

 Access to services in the Jini system environment is lease based. A lease is a grant

of guaranteed access over a time period. Each lease is negotiated between the user of the

service and the provider of the service as part of the service protocol: A service which is

requested for some period is granted access for some period, presumably taking the

request period into account. If a lease is not renewed before it is freed--either because the

resource is no longer needed, the client or network fails, or the lease is not permitted to

be renewed--then both the user and the provider of the resource may conclude the

resource can be freed.

 Leases are either exclusive or non-exclusive. Exclusive leases insure that no one

else may take a lease on the resource during the period of the lease; non-exclusive leases

allow multiple users to share a resource.

� Transactions

 A series of operations, either within a single service or spanning multiple services,

can be defined as a transaction. The Jini Transaction interfaces supply a service protocol

needed to coordinate a two-phase commit. The implementation of a transaction is left up

to the service using the interfaces.

17

� Events

 The Jini architecture supports distributed events. An object may allow other

objects to register interest in events in the object and receive a notification of the

occurrence of such an event. This enables distributed event-based programs to be written

with a variety of reliability and scalability guarantees.

2.2 Components

 The components of the Jini system can be segmented into three categories:

infrastructure, programming model, and services. The infrastructure is the set of

components that enables building a federated Jini system, while the services are the

entities within the federation. The programming model is a set of interfaces that enables

the construction of reliable services, including those that are part of the infrastructure and

those that join into the federation.

2.2.1 Infrastructure

 The Jini technology infrastructure defines the minimal Jini technology core. The

infrastructure includes the following:

• A distributed security system, integrated into RMI, which extends the Java

platform's security model to the world of distributed systems

• The discovery/join protocol, a service protocol that allows services (both

hardware and software) to discover, become part of, and advertise supplied

services to the other members of the federation

18

• The lookup service, which serves as a repository of services. Entries in the lookup

service are objects in the Java programming language; these objects can be

downloaded as part of a lookup operation and act as local proxies to the service

that placed the code into the lookup service

2.2.2 Programming model

 Entries in the lookup service are leased, allowing the lookup service to reflect

accurately the set of currently available services. When services join or leave a lookup

service, events are signaled, and objects that have registered interest in such events get

notifications when new services become available or old services cease to be active. The

programming model rests on the ability to move code, which is supported by the base

infrastructure.

 Both the infrastructure and the services that use that infrastructure are

computational entities that exist in the physical environment of the Jini system. Services

also constitute a set of interfaces, which define communication protocols that can be used

by the services and the infrastructure to communicate between themselves.

 These interfaces, taken together, make up the distributed extension of the standard

Java programming language model that constitutes the Jini programming model. Among

the interfaces that make up the Jini programming model are the following:

• The leasing interface, which defines a way of allocating and freeing resources

using a renewable, duration-based model

19

• The event and notification interface, which is an extension of the event model

used by Java Beans components to the distributed environment that enables event-

based communication between Jini services

• The transaction interfaces, which enable entities to cooperate in such a way that

either all of the changes made to the group occur atomically or none of them

occur

2.2.3 Services

 Services are objects written in Java programming language. A service has an

interface which defines the operations that can be requested of that service. Some of these

interfaces are intended to be used by programs, while others are intended to be run by the

receiver so that the service can interact with a user. The type of the service determines the

interfaces that make up that service and also define the set of methods that can be used to

access the service. A single service may be implemented by using other services.

Services form the interactive basis for a Jini system, both at the programming and user

interface levels

� Discovery and Lookup Protocols

 The heart of the Jini system is a trio of protocols called discovery, join, and

lookup. A pair of these protocols--discovery/join--occurs when a device is plugged in.

Discovery occurs when a service is looking for a lookup service with which to register.

Join occurs when a service has located a lookup service and wishes to join it. Lookup

occurs when a client or user needs to locate and invoke a service described by its

20

interface type (written in the Java programming language) and possibly, other attributes.

The following diagram outlines the discovery process.

Figure 2.2. Discovery

Figure 2.3. Join

Discovery/Join is the process of adding a service to a Jini system. A service

provider is the originator of the service--a device or software, for example. First, the

service provider locates a lookup service by multicasting a request on the local network

for any lookup services to identify themselves (discovery, Figure 2.2). Then, a service

object for the service is loaded into the lookup service (join, Figure 2.3). This service

object contains the Java programming language interface for the service including the

21

methods that users and applications will invoke to execute the service, along with other

descriptive attributes.

Services must be able to find a lookup service; however, a service may delegate

the task of finding a lookup service to a third party. The service is now ready to be looked

up and used, as shown in the following diagram (Figure 2.4).

Figure 2.4. Lookup

A client locates an appropriate service by its type--that is, by its interface written

in the Java programming language--along with descriptive attributes which are used in a

user interface for the lookup service. The service object is loaded into the client.

Figure 2.5. Service Invocation

22

 The final stage is to invoke the service, as shown in the following diagram

(Figure 2.5). The service object's methods may implement a private protocol between

itself and the original service provider. Different implementations of the same service

interface can use completely different interaction protocols.

The ability to move objects and code from the service provider to the lookup

service and from there to the client of the service gives the service provider great freedom

in the communication patterns between the service and its clients. This code movement

also ensures that the service object held by the client and the service for which it is a

proxy are always synchronized, because the service object is supplied by the service

itself. The client only knows that it is dealing with an implementation of an interface

written in the Java programming language, so the code that implements the interface can

do whatever is needed to provide the service. Because this code came originally from the

service itself, the code can take advantage of implementation details of the service known

only to the code.

The client interacts with a service via a set of interfaces written in the Java

programming language. These interfaces define the set of methods that can be used to

interact with the service. Programmatic interfaces are identified by the type system of the

Java programming language, and services can be found in a lookup service by asking for

those that support a particular interface. Finding a service this way ensures that the

program looking for the service will know how to use that service, because that use is

defined by the set of methods that are defined by the type.

23

 Programmatic interfaces may be implemented either as RMI references to the

remote object that implements the service, as a local computation that provide all of the

service locally, or as some combination. Such combinations, called smart proxies,

implement some of the functions of a service locally and the remainder through remote

calls to a centralized implementation of the service. A user interface can also be stored in

the lookup service as an attribute of a registered service. A user interface stored in the

lookup service by a Jini service is an implementation that allows the service to be directly

manipulated by a user of the system. In effect, a user interface for a service is a

specialized form of the service interface that enables a program, such as a browser, to

step out of the way and let the human user interact directly with a service. In situations

where no lookup service can be found, a client could use a technique called peer lookup

instead. In such situations, the client can send out the same identification packet used by

a lookup service to request service providers to register. Service providers will then

attempt to register with the client as though it were a lookup service. The client can select

those services it needs from the registration requests it receives in response and drop or

refuse the rest.

24

CHAPTER 3

SERVICE ORIENTED COMPUTING

3.1 Service – Oriented program (SO Programming)

 Service Oriented Programming (SO programming) is a paradigm for distributed

computing built over Object Oriented Programming (OO programming) paradigm

emphasizing the point that problems can be modeled in terms of services rather than

objects. SO programming differs from OO programming by focusing on what things can

do whereas OO programming focuses on what things are and how they are constructed.

SO Programming defines set of core principles to maintain interoperability of services

over time.

 The object-oriented paradigm, defines a system as a collection of interacting

active objects. These objects do things and know things, or stated equivalently they have

functions and data that complement each other. Usually an object-oriented system creates

its own object space instead of accessing a data repository. This object space constitutes

an object-oriented program. The execution of the object-oriented program is a collection

of dialoguing objects (sending and receiving messages).

 Building on the object-oriented paradigm is the service-oriented paradigm, in

which the objects are distributed, or more precisely they are network objects and play

some predefined roles. A service provider is an object that accepts messages from service

requestors to execute an item of work – a task. The task object is a service request – a

kind of elementary service executed by a service provider. A service broker is a

25

specialized service provider that executes a job – a compound request in terms of tasks

and other jobs. The job object is a service-oriented program that is dynamically bound to

all relevant and currently available service providers on the network. This collection of

service providers dynamically identified by a broker is called a job federation. This

federation is also called a job space. While this sounds similar to the object-oriented

paradigm, it really isn’t. In the object-oriented paradigm the object space is a program

itself; here the job space is the execution environment for the job itself and the job is a

service-oriented program that federates relevant providers at runtime. This changes the

game completely. In the former case the object space is a virtual machine, but in the latter

case the job space is the virtual federating network. This runtime federation is the jobs’

execution environment and the job object is a service-oriented program. In other words,

we apply the object-oriented concepts directly to the network in the service-oriented

paradigm. Tasks and jobs as elementary and compound service-oriented programs,

respectively, are called exertions.

Figure 3.1. Tree structure of context nodes

 A context model is the exertion’s data structure and is based on the percept

calculus knowledge representation scheme. It forms the essential structure of the data

being processed as specified by the exertion’s interface and operation. It is represented as

Name Space (Context)

Data Node

26

a tree-like structure of context nodes (Zhao, 199) as shown in figure 3.1 It is represented

by the ServiceContext interface or alternatively can be represented in XML when used

across heterogeneous programming environments. The context denotes an application

domain namespace, and a context model is its context with data nodes as leaf nodes

appended to its context paths. A context path is a name for a data in its leaf node. The

leaf node might contain any object and in particular an object that represents a file, for

example a URL. A special container object called ServiceNode acts as a wrapper that

holds a reference to a remote document object available for example from the File Store

provider (Sobolewski, 2003).

 In the service grid environment two types of basic exertions are defined: tasks and

jobs. A task is the atomic exertion that is defined by its context model (data), and by its

method (operation). An exertion method defines a service provider (grid object) to be

bound to in runtime. This network object provides the business logic to be applied to the

exertion context model as specified in the exertion’s method.

3.2 Service Oriented Computing Environment(SORCER)

3.2.1 Framework

 The P2P service-oriented framework developed in this work targets complex

business and engineering transactions. A transaction is composed of a sequence of

activities with specific precedence relationships. The grid contains service providers that

offer one or more services to other peers on the overlay network. Service providers do not

have mutual associations prior to the transaction; they come together (federate)

27

dynamically for a specific transaction. Each provider in the federation performs its

services in a choreographed sequence. Once the transaction is complete, the federation

dissolves and the providers disperse and seek other transactions to join. The architecture

is service centric in which a service is defined as an independent self-sustaining entity

performing a specific network activity. Each service is defined by a well-known public

interface. A service provider that plans to offer a service implements its interface or

multiple interfaces (services) to be eligible for participating in federations.

 The same provider can provide multiple services in the same federation and

different providers can provide the same service in different federations. The service grid

is dynamic in which new services can enter the overlay network and existing services can

leave the network at any instance. The service-based architecture is resilient, self-healing,

and self-managing. The key to the resilience is the transparency of search and seamless

substitution of one service with another. The architecture allows services to share data by

using specialized data services or a shared data repository (distributed file store). The

architecture also allows asynchronous execution of activities such that an activity can

wait for a service to be available.

 The architecture uses Jini network technology [24] and Java Spaces technology

[25] for implementing the service-based overlay network described above. However, the

proposed service-oriented architecture is abstract and can be implemented using any

distributed network technology that provides support for dynamic discovery of resources

and a rich software development environment.

28

3.2.2 Design

 The core of the architecture consists of service providers and service brokers

interacting with lookup registries, a catalog of services, and exertion shared space. In

general, a service provider executes a task, and a service broker executes a job. While

executing a job, the service broker coordinates exertion execution within the nested

transaction. It interprets the transaction map supplied by the service requestor and

completes the nested exertions. A UML-diagram showing the framework of the system

developed is illustrated in Figure 3.2.

Uses

Requests

creationService
Broker Creates

Invokes

Exertion

Dispatcher

Catalog Exertion
Dispatcher

Space Exertion
Dispatcher

Service
Broker

Interface

Service

Provider

Dispatcher

Factory

Interface

Dispatcher
Factory

Service
Joiner

Exertion

Space

Bootstraps &

Manages

Service

Catalog

Service

Requestor

Service
Requestor

Interface

Service

Provider

Proxy

Service

Provider

Interface

Uses

Lookup

Registry

Dispatcher

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Uses

Servicer

Figure 3.2. UML-Diagram for service-based framework to support nested

transactions

29

 At the start of the transaction the service broker reads all the exertions in the

transaction and executes those exertions, which have no precedence relationships. At

each step it executes the services for which all the precedence relationships have been

satisfied (services complete). Whenever it gets a notification of a service being completed

it evaluates the remaining unfinished activities and invokes one or more exertions based

on their precedence relationships.

 The service broker, by using an appropriate exertion dispatcher, can directly

access the service provider through a service catalog and select a provider or drop the

exertion into Exertion Space for the first available provider to process the request. While

the service broker is servicing a job, a nested job within the job being currently serviced

can be executed locally, or can be dropped into the Exertion Space, or passed on directly

to another service broker. Another available service broker can then federate and

collaborate in the job execution by executing the nested job, and so on. Thus not only can

the service providers federate to execute a job for a particular service broker, but the

service brokers can also federate along with other service providers. The federated

brokers with the originating broker execute the nested jobs while the regular service

providers execute all the tasks within all jobs including the originating one. A service

broker uses a factory design pattern to request a relevant exertion dispatcher that matches

the control structure of the executed job.

 Two main types of exertion dispatchers are used: a catalog exertion dispatcher

and a space exertion dispatcher. The catalog exertion dispatcher finds needed service

30

providers using the service catalog. The space exertion dispatcher drops exertion into the

exertion space to be picked up by matching available service providers. When the

exertion is picked up from the space and it is executed by a matching provider then the

provider returns it into the space and the space exertion dispatcher gets it back from the

space for the service broker. The service grid also defines a common service provider

interface (Provider that extends the top level interface Servicer) and a set of utilities to

create and register providers with the grid as service peers. A Service Joiner is used for

bootstrapping service providers and also for maintaining leases on registered proxies.

Service

Requestor

Exertion

Space

Service

Catalog

Service

Provider

Lookup
Service

Discovery

and lookup

Discovery

and lookup

Lookup

Discovery,

registration and

leasing

Drop

task or job

Execute task

Get

task

Execute job

Get
job

Service

Broker

Execute task

Lookup

Discovery

and lookup

Figure 3.3. Operation of Service Broker and Service Provider

 Figure 3.3 shows the different ways in which a provider (the service broker or

service provider) can submit requests to the providers. For a direct connection to the

service provider the provider can either use discovery to find a lookup service or use a

Service Catalog provider for selecting a service. The lookup service caches all the proxies

31

for services that have registered with it for a particular group(s) of services. The Catalog

provider is a service-grid cache that periodically polls all relevant lookup services and

maintains a cache of all the proxies that are registered with the lookup services for a

particular group or groups of services.

 Thus, multiple service catalogs may be used for different logical overlay sub

networks. The provider has to discover lookup services each time it needs to use them

where as it finds one of required catalogs only once when it (provider) is instantiated and

then the Catalog continues service discovery for the provider. In case the provider finds

an available service using a lookup registry or the Catalog, a proxy for the service is

downloaded on to the provider who invokes the service by calling service (Exertion).

Alternately the provider submits the service request to an Exertion Space that holds the

request and waits for a matching service provider to accept the exertion. This is essential

so that the transaction does not have to abort due to non-availability of a service. This

also helps in better load balancing of the services since available providers will act at

their own pace to process the exertions in the space. A notification management

framework (Lapinski 2002) based on a notification provider allows federated providers

notify the service requestor on their collaborative actions. Additionally the File Store

provider (Sobolewski 2003) allows federated providers to share exertion input as well as

output data is a uniform service-oriented way.

32

CHAPTER 4

JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)

4.1 Introduction

 Java(TM) security technology originally focused on creating a safe environment

to run potentially untrusted code downloaded from the public network [5]. In Java(TM)

Platform, fine-grained access controls can be placed upon critical resources with regard

to the identity of the running applets and applications, which are distinguished by where

the code came from and who signed it. However, the Java platform still lacked the means

to enforce access controls based on the identity of the user who runs the code. Java is

being widely used in a multi-user environment. For example, an enterprise application or

a public Internet terminal must deal with different users, either concurrently or

sequentially, and must grant these users different privileges based on their identities. The

Java Authentication and Authorization Service (JAAS) is designed to provide a

framework and standard programming interface for authenticating users and for assigning

privileges.

The JAAS infrastructure can be divided into two main components: an

authentication component and an authorization component. The JAAS authentication

component provides the ability to reliably and securely determine who is currently

executing Java code, regardless of whether the code is running as an application, an

applet, a bean, or a servlet. The JAAS authorization component supplements the existing

Java 2 security framework by providing the means to restrict the executing Java code

33

from performing sensitive tasks, depending on its code source and depending on who was

authenticated.

JAAS authentication is performed in a pluggable fashion. This permits Java

applications to remain independent from underlying authentication technologies.

Therefore new or updated authentication technologies can be plugged under an

application without requiring modifications to the application itself. Applications enable

the authentication process by instantiating a LoginContext object, which in turn

references a Configuration to determine the authentication technology, or LoginModule,

to be used in performing the authentication. Typical LoginModules may prompt for and

verify a username and password. Others may read and verify a voice or fingerprint

sample.

 Once the user executing the code has been authenticated, the JAAS authorization

component works in conjunction with the existing Java 2 access control model to protect

access to sensitive resources. Unlike in Java 2, where access control decisions are based

solely on code location and code signers (a CodeSource), in JAAS access control

decisions are based both on the executing code's CodeSource, as well as on the user

running the code, or the Subject. JAAS policy merely extends the Java 2 policy with the

relevant Subject-based information. Therefore permissions recognized and understood in

Java 2 (java.io.FilePermission and java.net.SocketPermission, for example) are also

understood and recognized by JAAS. Furthermore, although the JAAS security policy is

physically separate from the existing Java 2 security policy, the two policies, together,

form one logical policy.

34

4.2 Subjects and Principals

 Users often depend on computing services to assist them in performing work.

Furthermore services themselves might subsequently interact with other services. JAAS

uses the term; subject, to refer to any user of a computing service [6][7]. Both users and

computing services, therefore, represent subjects. To identify the subjects with which it

interacts, a computing service typically relies on names. However, subjects might not

have the same name for each service and, in fact, may even have a different name for

each individual service. The term, principal, represents a name associated with a subject

[6]. Since subjects may have multiple names (potentially one for each service with which

it interacts), a subject comprises a set of principals.

 Principals can become associated with a subject upon successful authentication to

a service. Authentication represents the process by which one subject verifies the identity

of another, and must be performed in a secure fashion; otherwise a perpetrator may

impersonate others to gain access to a system. Authentication typically involves the

subject demonstrating some form of evidence to prove its identity. Such evidence may

be information only the subject would likely know or have (a password or fingerprint), or

it may be information only the subject could produce (signed data using a private key).

4.3 Credentials

 Services can also associate other security-related attributes and data with a subject

in addition to principals. JAAS refers to such generic security-related attributes as

credentials. A credential may contain information used to authenticate the subject to new

35

services. Such credentials include passwords, Kerberos tickets, and public key

certificates (X.509, PGP, etc.), and are used in environments that support single sign-on.

Credentials might also contain data that simply enables the subject to perform certain

activities. Cryptographic keys, for example, represent credentials that enable the subject

to sign or encrypt data.

 JAAS divides each subject's credentials into two sets. One set contains the

subject's public credentials (public key certificates, Kerberos tickets, etc). The second set

stores the subject's private credentials (private keys, encryption keys, passwords, etc). To

access a subject's public credentials, no permissions are required. However, access to a

subject's private credential set is security checked.

4.4 Authentication

 Depending on the security parameters of a particular service, different kinds of

proof may be required for authentication. The JAAS authentication framework is based

on PAM [8], and therefore supports an architecture that allows system administrators to

plug in the appropriate authentication services to meet their security requirements. As

new authentication services become available or as current services are updated, system

administrators can easily plug them in without having to modify existing applications.

 The JAAS LoginContext class represents a Java implementation of the PAM

framework. The LoginContext consults a configuration that determines the authentication

service, or LoginModule, that gets plugged in under that application. The syntax and

details of the configuration are defined by PAM.

36

 public final class LoginContext {

 public LoginContext(String name) { }

 public void login() { } // two phase process

 public void logout() { }

 public Subject getSubject() { } // get the authenticated Subject

 }

 public interface LoginModule {

 boolean login(); // 1st authentication phase

 boolean commit(); // 2nd authentication phase

 boolean abort();

 boolean logout();

 }

Figure 4.1. LoginContext Class and LoginModule Interface

 JAAS, like PAM, supports the notion of stacked LoginModules [16]. To

guarantee that either all LoginModules succeed or none succeed, the LoginContext

performs the authentication steps in two phases. In the first phase, or the 'login' phase, the

LoginContext invokes the configured LoginModules (Figure 4.1) and instructs each to

attempt the authentication only. If all the necessary LoginModules successfully pass this

phase, the LoginContext then enters the second phase and invokes the configured

LoginModules again, instructing each to formally 'commit' the authentication process.

During this phase each LoginModule associates the relevant authenticated principals and

credentials with the subject. If either the first phase or the second phase fails, the

LoginContext invokes the configured LoginModules and instructs each to 'abort' the

entire authentication attempt. Each LoginModule then cleans up any relevant state they

had associated with the authentication attempt.

37

4.5 Authorization

 Once authentication has successfully completed, JAAS provides the ability to

enforce access controls upon the principals associated with the authenticated subject.

The JAAS principal-based access controls (access controls based on who runs code)

supplement the existing Java 2 codesource-based access controls (access controls based

on where code came from and who signed it) [9].

4.5.1 Principal-Based Access Control

 Services typically implement the access control model of security, which defines

a set of protected resources, as well as the conditions under which named principals may

access those resources. JAAS also follows this model, and defines a security policy to

specify what resources are accessible to authorized principals. The JAAS policy extends

the existing default Java 2 security policy, and in fact, the two policies, together, form a

single logical access control policy for the entire Java runtime.

// Java 2 codesource-based policy

 grant Codebase "http://foo.com", Signedby "foo" {

 permission java.io.FilePermission "/cdrom/-", "read";

 }

Figure 4.2. Codesource-Based Policy Entry

 Figure 4.2 depicts an example codesource-based policy entry currently supported

by the default policy provided with Java 2. This entry grants code loaded from 'foo.com',

and signed by 'foo', permission to read all files in the 'cdrom' directory and its

subdirectories. Since no principal information is included with this policy entry, the code

will always be able to read files from the 'cdrom' directory, regardless of who executes it.

38

// JAAS principal-based policy

 grant Codebase "http://bar.com, Signedby "bar",

 Principal bar.Principal "duke" {

 permission java.io.FilePermission "/cdrom/duke/-", "read";

 }

Figure 4.3. Principal-Based Policy Entry

 Figure 4.3 depicts an example principal-based policy entry supported by JAAS.

This example entry grants code loaded from 'bar.com', signed by 'bar', and executed by

'duke', permission to read only those files located in the '/cdrom/duke' directory. To be

executed by 'duke', the subject affiliated with the current access control context must

have an associated principal of class, 'bar.Principal', whose 'getName' method returns,

'duke'. If the code from 'bar.com', signed by 'bar', was not executed by 'duke', or if the

code was executed by any principal other than 'duke', then it would not be granted the

FilePermission. Also if the JAAS policy entry did not specify the Codebase or Signedby

information, then the entry's FilePermission would be granted to any code running as

'duke'.

// an administrator role can access user passwords

 grant Principal foo.Role "administrator" {

 permission java.io.FilePermission "/passwords/-", "read, write";

 }

 // a basketball team (group) can read its directory

 grant Principal foo.Team "SlamDunk" {

 permission java.io.FilePermission "/teams/SlamDunk/-", "read";

 }

Figure 4.4. Role-Based and Group-Based Policy Entries

39

 JAAS treats roles and groups simply as named principals. Therefore access

control can be imposed upon roles and groups just as they are with any other type of

principal. See Figure 4.4.

 For flexibility, the JAAS policy also permits the Principal class specified in a

grant entry to be a PrincipalComparator (the class implements the PrincipalComparator

interface). The permissions for such entries are granted to any subject that the

PrincipalComparator implies.

public interface PrincipalComparator {

 boolean implies(Subject subject);

 }

 // regular users can access a temporary working directory

 grant Principal bar.Role "user" {

 permission java.io.FilePermission "/tmp/-", "read, write";

 }

Figure 4.5. PrincipalComparator Interface and Example Policy Entry

 Figure 4.5 demonstrates how PrincipalComparators can be used to support role

hierarchies. In this example assume that an administrator role is senior to a user role and,

as such, administrators inherit all the permissions granted to regular users. To

accommodate this hierarchy, 'bar.Role' must simply implement the PrincipalComparator

interface, and its implies method must return, true, if the provided subject has an

associated "administrator" role principal. Note that although the JAAS policy supports

role hierarchies via the PrincipalComparator interface, administrators are not limited by

it. JAAS can accommodate alternative role-based access control mechanisms (such as

that deined in), as long as the alternative access controls can be expressed either through

the existing Java 2 policy or the new JAAS policy.

40

4.5.2 Access Control Implementation

 The Java 2 runtime enforces access controls via the java.lang.SecurityManager,

and is consulted any time untrusted code attempts to perform a sensitive operation

(accesses to the local file system, for example). To determine whether the code has

sufficient permissions, the SecurityManager implementation delegates responsibility to

the java.security.AccessController, which first obtains an image of the current

AccessControlContext, and then ensures that the retrieved AccessControlContext

contains sufficient permissions for the operation to be permitted.

 JAAS supplements this architecture by providing the method, Subject.doAs, to

dynamically associate an authenticated subject with the current AccessControlContext.

Hence, as subsequent access control checks are made, the AccessController can base its

decisions upon both the executing code itself, and upon the principals associated with the

subject. See Figure 4.6.

 public final class Subject {

 ...

 // associate the subject with the current

 // AccessControlContext and execute the action

 public static Object doAs(Subject s,

 java.security.PrivilegedAction action) { }

 }

Figure 4.6. Subject doAs Method

 To illustrate a usage scenario for the doAs method, consider when a service

authenticates a remote subject, and then performs some work on behalf of that subject.

For security reasons, the server should run in an AccessControlContext bound by the

subject's permissions. Using JAAS, the server can ensure this by preparing the work to

41

be performed as a java.security.PrivilegedAction, and then by invoking the doAs method,

providing both the authenticated subject, as well as the prepared PrivilegedAction. The

doAs implementation associates the subject with the current AccessControlContext and

then executes the action. When security checks occur during execution, the Java 2

SecurityManager queries the JAAS policy, updates the current AccessControlContext

with the permissions granted to the subject and the executing codesource, and then

performs its regular permission checks.

 When the action finally completes, the doAs method simply removes the subject

from the current AccessControlContext, and returns the result back to the caller. To

associate a subject with the current AccessControlContext, the doAs method uses an

internal JAAS implementation of the java.security.DomainCombiner interface. It is

through the JAAS DomainCombiner that the existing Java 2 SecurityManager can be

instructed to query the JAAS policy without requiring modifications to the

SecurityManager itself.

4.6 Scalability

 The JAAS principal-based access control policy was intentionally designed to be

consistent with the existing codesource-based policy in the Java 2 platform. The default

policy implementations provided with both Java 2 and JAAS reside in a local file, and

assume that all policy decisions can be defined and made locally. Obviously, this design

does not scale beyond small localized environments.

42

 To improve scalability, both the Java 2 and JAAS file-based policy

implementations can be replaced with alternative implementations that support

delegation. This is achieved by specifying the alternative implementations in the

'java.security' properties file located in the lib/security subdirectory from where the Java

runtime environment was installed.

43

CHAPTER 5

PUBLIC KEY INFRASTRUCTURE (PKI)

5.1 Introduction

 Cryptography comes in two flavors: symmetric and assymetric. Symmetric

cryptography is when two parties share a secret key that no one else knows. They use this

key to encrypt and decrypt messages. If that key were to get loose though, anyone could

do the same. Assymmetric cryptography works in key pairs. There is a public and private

key. The public key is anywhere and can be used by anyone to encrypt a message that the

owner of that public key decrypts with their private key which is safely stored on the

smart card. Since symmetric cryptography is generally thousands of times faster than

assymetric, a combination of the two is used to achieve the best level of security at the

right speed.

5.2 Public Key Cryptography

 With the need for information security in today's digital systems growing,

cryptography has become one of its critical components. Digital signatures are one of the

many uses of cryptography. PKCS#11, also known as Cryptoki, was defined by RSA and

is a generic cryptographic token interface.

 Public-key cryptography allows one to digitally sign and encrypt information

transacted between parties. Public Key Infrastructure (PKI) uses this technology and adds

authentication and non-repudiation of the information regarding the parties concerned.

44

Public Key Cryptography Standards (PKCS) is a suite of protocols and algorithms that

are used as an industry standard when implementing public-key cryptography and

infrastructure. The fundamentals are based on Key Pairs, Message Digests and

Certification.

 A key pair consists of a private key and a public key. The private key is never

revealed to any party. The public key is made available to the world, or at least the parties

concerned with receiving or sending information. In public key algorithms like those

from RSA, any data encrypted with the private key can be decrypted only with the public

key, and data encrypted with the public key can be decrypted only with the private key.

Stronger encryption uses longer keys. For strong encryption, it is “computationally

infeasible” to derive the private key given the public key, or vice versa.

 Message Digests are hash functions that take in data and generate a statistically

unique digest, like a 20 byte number – such that even one bit change in the input data

results in a totally different digest. Thus these digests serve as finger-prints of a

document. Given a digest and a document, and knowing the hash algorithm, it is easy to

verify whether the digest is derived from the document.

 Certification is the mechanism by which authenticity is established. A party

generates a key pair consisting of the private and public keys. The public key is placed

into a certificate request and sent to a certifying authority (CA) like Thawte, IDCertify,

VeriSign and so on. The certifying authority (CA) verifies the party’s credentials and the

purpose of using the keys, through a vetting process, and then certifies the public key

they received. That is, the authority issues a certificate, typically called an X.509 digital

45

certificate that contains the details of the party, the intended use of the certificate and

most importantly, the party’s public key. This information is then digitally signed by the

CA using the CA’s private key. The authenticity of the certificate itself can be verified by

using the CA’s public key, which is made available from the CA’s web site, or comes

embedded in a browser by default.

 In essence, if we trust the CA, then we can trust that the public key in the verified

certificate indeed belongs to who ever the CA says it belongs, and therefore if a digital

signature on a document is verified using that public key, the information therein was

indeed signed by the party mentioned in the certificate. This establishes authenticity,

since only the holder of the corresponding private key could have created that digital

signature. And trust in the CA is at the core of this process. If a CA is granted a notary or

equivalent status, then the certificate and the information signed or encrypted cannot be

repudiated and is valid in many courts of law.

5.3 Digital Signatures and Data Encryption

 A digital signature is a digital attestation of a document by a party [10]. This is to

establish authenticity. A digital signature is an encrypted digest (hash) of the data to be

signed.

 One essentially creates a digest or hash (using an algorithm like MD5 or SHA1)

from the document data and then encrypts this hash with one’s private key. The

encrypted hash thus becomes a digitally signed finger-print for that document, called a

digital signature. This signature can now optionally be attached to the document, along

46

with one’s certificate. Anyone intent on verifying the digital signature would verify the

certificate for authenticity first, then take the public key from the certificate and then

verify the digital signature. The latter part involves decrypting the digital signature with

the public key to reveal the digest or hash value. The document is then hashed using the

same algorithm to check whether the digest values match.

 A digital signature is typically attached to a document. This can be difficult for

certain document types. It is required to embed the signature into the document without

changing the document, which is contradictory. Therefore a signing process only works

on the information portion of a document, and uses other sections of the format to embed

the signature. For example it is possible to embed signatures into a Word document

treating the latter as an OLE compound document. One may also store signatures as

attributes of such a document. PDF is another format that is amenable to embedding

using the DIGSIG API. Multiple signatures may be created and attached to a document.

The signatures may be peer level or hierarchical level. Peer level signatures imply that

one or more parties have endorsed the document by applying their signatures.

Hierarchical signatures imply a work-flow and counter-signing process.

 Creation of a digital signature involves using one’s private key. In contrast,

encryption of information meant for another party uses the other party’s public key.

Anyone, knowing that party’s public key can send encrypted information. Only that party

can decrypt the information, using his/her own private key.

47

5.3.1 Applications

Digitally signed documents provide the authenticity of paper documents, and

convenience of electronic documents. This has made digitally signed documents a great

success. Some of the applications of digitally signed documents are in “legal document”

centric industries like law firms, banking, and stock broking. It also has high potential in

government sector, where powerful document management software can make the

system more efficient and fast.

Digital signatures also make transactions happen much faster. For example the

ownership of a cargo carried by an oil tanker from the Persian Gulf to New York may

change hands 5 to 10 times by the time the tanker reaches New York. With digital

signatures applied to contracts on e-Marketplaces, they may change hands maybe 50

times or more, greatly speeding up the trading process.

5.4 PKCS #11

5.4.1 Introduction

The PKCS #11 standard describes a programming interface that can work with

cryptographic tokens and devices such as smart cards and PCMCIA cards [11]. Through

this interface one may initialize such devices, create key pairs, store certificates, digitally

sign data etc. A PKCS#11 interface is typically implemented by a software driver that

works in conjunction with the hardware reader and the token, and translates interface

calls to token-specific controls. This well-defined interface allows even a browser to

interact with such a token and make use of its capabilities.

48

Portable computing devices such as smart cards, PCMCIA cards, and smart

diskettes are ideal tools for implementing public-key cryptography, as they provide a way

to store the private-key component of a public-key/private-key pair securely, under the

control of a single user. With such a device, a cryptographic application utilizes the

device to perform the operations, with sensitive information such as private keys never

being revealed.

5.4.2 Overview

� General model

Other Security Layers

Applica tion 1

Cryptoki

Other Security Layers

Application k

Cryptoki

Device Contention/Synchron ization

S lo t 1

Token 1

(Device 1)

S lot n

Token n

(Device n)

Figure 5.1. General Cryptoki Model

49

Cryptoki's general model is illustrated in Figure 5.1. The model begins with one

or more applications that need to perform certain cryptographic operations, and ends with

one or more cryptographic devices, on which some or all of the operations are actually

performed. A user may or may not be associated with an application.

Cryptoki provides an interface to one or more cryptographic devices that are

active in the system through a number of “slots”. Each slot, which corresponds to a

physical reader or other device interface, may contain a token. A token is typically

“present in the slot” when a cryptographic device is present in the reader. Of course,

since Cryptoki provides a logical view of slots and tokens, there may be other physical

interpretations. It is possible that multiple slots may share the same physical reader. The

point is that a system has some number of slots, and applications can connect to tokens in

any or all of those slots.

An application may be linked to Cryptoki directly; alternatively, Cryptoki can be

a so-called “shared” library (or dynamic link library), in which case the application would

link the library dynamically. Shared libraries are fairly straightforward to produce in

operating systems such as Microsoft Windows and OS/2, and can be achieved without

too much difficulty in UNIX and DOS systems.

The kinds of devices and capabilities supported depend on the particular Cryptoki

library. This standard specifies only the interface to the library, not its features. In

particular, not all libraries support all the mechanisms (algorithms) defined in this

interface (since not all tokens are expected to support all the mechanisms), and libraries

50

are likely to support only a subset of all the kinds of cryptographic devices that are

available.

� PKCS#11 Object Model

As seen in Figure 5.2, this is a simple object model but powerful enough for the

operations expected from a token. The private key is used for generating a digital

signature and the public key (which is also a part of the certificate) is used for verification

of the digital signature. Secret key or PIN is used for managing keys and certificates from

the store. A token can typically store a number of such objects.

Figure 5.2. Object Model

5.5 PKCS #12

5.5.1 Introduction

PCKS #12 standards describe transfer syntax for personal identity information,

including private keys, certificates, miscellaneous secrets, and extensions [12]. Entities

like machines, applications, browsers, Internet kiosks, and so on, that support this

51

standard will allow a user to import, export, and exercise a single set of personal identity

information.

This standard supports direct transfer of personal information under several

privacy and integrity modes. The most secure of the privacy and integrity modes require

the source and destination platforms to have trusted public/private key pairs usable for

digital signatures and encryption, respectively. The standard also supports lower

security, password-based privacy and integrity modes for those cases where trusted

public/private key pairs are not available.

This standard is amenable to both software and hardware implementations.

Hardware implementations offer physical security in tamper-resistant tokens such as

smart cards and PCMCIA devices.

5.5.2 Overview

� Exchange modes

There are four combinations of privacy modes and integrity modes. Encryption is

used by the privacy mode to protect personal information from exposure, and personal

information is protected from tampering by integrity mode. Without protection from

tampering, an adversary could substitute invalid information for the user’s personal

information without the user being aware of the substitution.

52

The following are the privacy modes:

• Public-key privacy mode: Personal information is enveloped on the source platform

using a trusted encryption public key of a known destination platform. The envelope

is opened with the corresponding private key.

• Password privacy mode: Personal information is encrypted with a symmetric key

derived from a user name and a privacy password. If password integrity mode is used

as well, the privacy password and the integrity password may or may not be the same.

The following are the integrity modes:

• Public-key integrity mode: Integrity is guaranteed through a digital signature on the

contents of the Protocol Data Unit (PDU), which is produced using the source

platform’s private signature key. The signature is verified on the destination platform

by using the corresponding public key.

• Password integrity mode: Integrity is guaranteed through a message authentication

code (MAC) derived from a secret integrity password. If password privacy mode is

used as well, the privacy password and the integrity password may or may not be the

same.

� Mode choice policies

All combinations of the privacy and integrity modes are permitted in this

standard. Good security policy suggests that certain practices be avoided, e.g., it can be

unwise to transport private keys without physical protection when using password

privacy mode or when using public-key privacy mode with weak symmetric encryption.

53

Unfortunately, weak symmetric encryption may be required for products exported from

certain countries under applicable export regulations.

In general, the public key modes for both privacy and integrity are preferable to

the password modes (from a security viewpoint). However, it is not always possible to

use the public key modes. For example, it may not be known at export time what the

destination platform is; if this is the case, then the use of the public-key privacy mode is

precluded.

� Trusted public keys

Asymmetric key pairs may be used in this standard in two ways: public-key

privacy mode and public-key integrity mode. For public-key privacy mode, an

encryption key pair is required; for public-key integrity mode, a signature key pair is

required.

It may be appropriate for the keys to be platform-specific keys dedicated solely

for the purpose of transporting a user’s personal information. Whether or not that is the

case, though, the keys should not be confused with the user’s personal keys that the user

wishes to transport from one platform to another (these latter keys are stored within the

PDU).

For public-key privacy mode, the private key from the encryption key pair is kept

on the destination platform, where it is ultimately used to open a private envelope. For

public-key integrity mode, the private key from the signature pair is kept on the source

platform, where it is used to sign personal information.

54

For both uses of public/private key pairs, the public key from the key pair must be

transported to the other platform such that it is trusted to have originated at the correct

platform. Judging whether or not a public key is trusted in this sense must ultimately be

left to the user. There are a variety of methods for ensuring that a public key is trusted.

� The AuthenticatedSafe

Each compliant platform shall be able to import and export AuthenticatedSafe

PDUs wrapped in PFX PDUs. For integrity, the AuthenticatedSafe is either signed (if

public-key integrity mode is used) or MACed (if password integrity mode is used) to

produce a PFX PDU. If the AuthenticatedSafe is signed, then it is accompanied by a

digital signature, which was produced on the source platform with a private signature

key, corresponding to a trusted public signature key. Public signature key must

accompany the PFX to the destination platform, where the user can verify the trust in the

key and can verify the signature on the AuthenticatedSafe. If the AuthenticatedSafe is

MACed, then it is accompanied by a Message Authentication Code computed from a

secret integrity password; salt bits; an iteration count and the contents of the

AuthenticatedSafe.

The AuthenticatedSafe itself consists of a sequence of ContentInfo values, some

of which may consist of plaintext (data), and others which may either be enveloped (if

public-key privacy mode is used) or encrypted (if password privacy mode is used). If the

contents are enveloped, then they are encrypted with a symmetric cipher under a freshly

generated key, which is in turn encrypted with RSA asymmetric encryption. The RSA

public key used to encrypt the symmetric key corresponds to an RSA private key, on the

55

destination platform. This public key needs to be trusted by the user when it is used at

export time. If the contents are encrypted, then they are encrypted with a symmetric

cipher under a key derived from a secret privacy password, salt bits and an iteration

counter.

Each ContentInfo contains an arbitrary collection of private keys, PKCS #8

shrouded private keys, certificates, CRLs, or opaque data objects, at the user's discretion,

stored in values of type SafeContents.

The reason for the unencrypted option is that some governments restrict certain

uses of cryptography. Having several parts in an AuthenticatedSafe keeps implementers’

options open. For example, it may be the case that strong cryptography can be used to

make PKCS #8-shrouded keys, but then these shrouded keys should not be further

encrypted, because super-encryption can limit a product’s exportability.

Around the AuthenticatedSafe is the integrity-mode wrapper, which protects the

entire contents of the AuthenticatedSafe This is the reverse of the wrapping order in

many protocols, in which privacy is the outermost protection. This latter, more common

wrapping order avoids signatures on encrypted data, which are undesirable under certain

circumstances and it is therefore preferable to protect the integrity of as much

information as possible.

56

5.6 PKCS# 15

5.6.1 Introduction

PKCS #15 establishes a standard that enable users in to use cryptographic tokens

to identify themselves to multiple, standards-aware applications, regardless of the

application's cryptoki (or other token interface) provider [13].

Cryptographic tokens, such as Integrated Circuit Cards (or IC cards) are

intrinsically secure computing platforms ideally suited to providing enhanced security

and privacy functionality to applications. They can handle authentication information

such as digital certificates and capabilities, authorizations and cryptographic keys.

Furthermore, they are capable of providing secure storage and computational facilities for

sensitive information such as:

• Private keys and key fragments;

• Account numbers and stored value;

• Passwords and shared secrets; and

• Authorizations and permissions.

At the same time, many of these tokens provide an isolated processing facility

capable of using this information without exposing it within the host environment where

it is at potential risk from hostile code (viruses, Trojan horses, and so on). This becomes

critically important for certain operations such as:

• Generation of digital signatures, using private keys, for personal identification;

• Network authentication based on shared secrets;

• Maintenance of electronic representations of value; and

57

• Portable permissions for use in off-line situations.

Unfortunately, the use of these tokens for authentication and authorization

purposes has been hampered by the lack of interoperability at several levels. First, the

industry lacks standards for storing a common format of digital credentials (keys,

certificates, etc.) on them. This has made it difficult to create applications that can work

with credentials from a variety of technology providers. Attempts to solve this problem in

the application domain invariably increase costs for both development and maintenance.

They also create a significant problem for the end-user since credentials are tied to a

particular application running against a particular application-programming interface to a

particular hardware configuration.

Second, mechanisms to allow multiple applications to effectively share digital

credentials have not yet reached maturity. While this problem is not unique to

cryptographic cards - it is already apparent in the use of certificates with World Wide

Web browsers, for example - the limited room on many cards together with the consumer

expectation of universal acceptance will force credential sharing on credential providers.

Without agreed-upon standards for credential sharing, acceptance and use of them both

by application developers and by consumers will be limited.

To optimize the benefit to both the industry and end-users, it is important that

solutions to these issues be developed in a manner that supports a variety of operating

environments, application programming interfaces, and a broad base of applications.

Only through this approach can the needs of constituencies be supported and the

58

development of credentials-activated applications encouraged, as a cost-effective solution

to meeting requirements in a very diverse set of markets.

The objectives of this document are therefore to:

• Enable interoperability among components running on various platforms

(platform neutral);

• Enable applications to take advantage of products and components from multiple

manufacturers (vendor neutral);

• Enable the use of advances in technology without rewriting application-level

software (application neutral); and

• Maintain consistency with existing, related standards while expanding upon them

only where necessary and practical.

As a practical example, the holder of an IC card containing a digital certificate

should be able to present the card to any application running on any host and successfully

use the card to present the contained certificate to the application.

As a first step to achieve these objectives, this document specifies a file and

directory format for storing security-related information on cryptographic tokens. It has

the following characteristics:

• Dynamic structure enables implementations on a wide variety of media, including

stored value cards;

• Allows multiple applications to reside on the card (even multiple eid

applications);

• Supports storage of any type of objects (keys, certificates and data); and

59

• Support for multiple pins whenever the token supports it.

� Information access model

The PKCS #15 token information may be read when a token is presented

containing this information, and is used by a PKCS #15 interpreter which is part of the

software environment, e.g. as shown in Figure 5.3.

Figure 5.3. Embedding of a PKCS #15 interpreter (example)

5.6.2 Overview

� Object classes

There are four general classes of objects: Keys, Certificates, Authentication

Objects and Data Objects. All these object classes have sub-classes, e.g. Private Keys,

Secret Keys and Public Keys, whose instantiations become objects actually stored on

cards. Figure 5.4 shows object hierarchy.

Card Terminal-

Interface

Card

independent

Application

Driver

PKCS#15

Interpreter

Application

PKCS#11-

Interface

60

� Attribute types

All objects have a number of attributes. Objects “inherits” attribute types from

their parent classes (in particular, every object inherit attributes from the abstract PKCS

#15 “Common” or “Top” object).

NOTE – instances of abstract object classes does not exist on cards

Figure 5.4. PKCS #15 Object hierarchy

� Access methods

 Objects can be private, meaning that they are protected against unauthorized

access, or public. In the IC card case, access (read, write, etc) to private objects is defined

by Authentication Objects (which also includes Authentication Procedures). Conditional

access (from a cardholder’s perspective) is achieved with knowledge-based or biometric

user information. In other cases, such as when PKCS #15 is implemented in software,

private objects may be protected against unauthorized access by cryptographic means.

Private Key
(structural)

Secret Key
(structural)

Public Key
(structural)

X.509
Certificate
(structural)

Other
Certificates
(structural)

External data
objects

(structural)

PIN Object
(structural)

Biometric
Template
(structural)

Key Object
(abstract)

Certificate
Object

(abstract)

Data Object
(abstract)

Authen-
tication
Object

(abstract)

PKCS#15
Top Object
(abstract)
(abstract)

61

Public objects are not protected from read-access. Whether they are protected against

modifications or not depends on the particular implementation.

62

CHAPTER 6

OPEN CA

6.1 Introduction

 Public key infrastructures are one of the most widely accepted musts of the future.

The problem is that more and more applications can be secured with such crude things

like certificates and keys but it is really difficult to setup PKIs and it is really expensive

too because flexible trust center software for Unix is expensive. The goal of OpenCA is

the production of an open source trust center system to support the community with a

good, inexpensive and future-proof solution for their base infrastructure.

 The idea consists of three major parts - a Perl web interface, an OpenSSL backend

for the cryptographic operation and a database [14]. Nearly all operations can be

performed via some web interfaces. The cryptographic backend is OpenSSL. The aim is

to provide the organizational infrastructure for a PKI. Databases store all the needed

information about the user’s crypto objects like certificate signing requests, certificates,

certificate revocation requests and CRLs.

OpenCA support the following things:

• Public interface

• LDAP interface

• RA interface

• CA interface

• SCEP

63

• OCSP

• IP-filters for interfaces

• Passphrase based login

• Certificate based login (incl. smatcards)

• Role Based Access Control

• flexible certifcate subjects

• flexible certificate extensions

• PIN based revocation

• digital signature based revocation

• CRL issuing

• Warnings for expiring certificates

• support for nearly every (graphical) browser

 OpenCA is designed for a distributed infrastructure. It cannot only handle an

offline CA and an online RA. We can build a hierarchy with three or more levels. The

goal is a maximum flexibility to support big organizations like universities, grids and

global companies. OpenCA is not only a small solution for small and medium research

facilities.

6.2 Basic Hierarchy

 The basic idea of every X.509 PKI (Public Key Infrastructure) is a strong

hierarchical organization. This results in a tree of databases if we try to create a

distributed PKI architecture.

64

Figure 6.1. Distributed PKI Architecture

 The data exchange between such isolated databases (Figure 6.1) can be handled

automatically if we use a distributed database system but in the sense of OpenCA such a

distributed database system is only one database in our tree. If we really have an isolated

database (e.g. for an Offline CA) then we must have the technology for the data exchange

and the management of the complete node in the hierarchy. This management

functionality is bundled in an interface called node or node management. Hence the

design of OpenCA looks like Figure 6.2.

Figure 6.2. OpenCA Design

 Normally every server in the infrastructure of the trust center has its own database

for security reasons. This hierarchy is the backbone of the trust center.

65

6.3 Interfaces

 After we know the basic infrastructure of OpenCA we think about things like CA,

RA, LDAP and a public interface which is sometimes called web-gateway. OpenCA

supports all these software components via special web interfaces.

6.3.1 Node

 This interface manages the database and handles all the export and import

functionalities. The database can be initialized what means that OpenCA can create all

the tables but OpenCA cannot create the database itself because this differs for every

vendor. So we need a database with the appropriate access rights and a new database. The

interface includes some functions for the backup and recovery of such a node but we you

MUST have a separate backup of the CA's private key and certificate. There is no default

mechanism in OpenCA to backup the private key.

 The export and import will be handled by this interface too. We can configure

different rules for the synchronization with nodes on a higher and a lower level of the

hierarchy. This includes the configuration of the objects and status which can be

exchanged. The configured filters avoid status injections from lower levels of the

hierarchy.

6.3.2 CA

 The CA interface has all the functions which you need to create certificates and

Certificate Revocation Lists (CRLs). The CA also includes all the functions which you

66

can use to change the configuration via a web interface. It is not possible to change the

configuration via another web interface.

 The CA is the home of the batch processors too. OpenCA includes some powerful

batch processors for creating certificates. These batch processors can be used for

automatic certificate creation from various Enterprise Resource Planning (ERP) systems

(e.g. SAP, HIS, NIS or /etc/passwd).

6.3.3 RA

 OpenCA's RA is able to handle all kinds of requests. This include things like

editing requests, approving requests, creating private keys with smart cards, delete wrong

requests and email users.

6.3.4 LDAP

 The LDAP interface was implemented to separate the LDAP management

completely from the rest of the software. This is necessary because there are many

functions which are really specific for LDAP admins, with only a few users needing these

features.

6.3.5 Pub

 The Public interface includes all the small things which the users need. This is

only a small list and perhaps it is incomplete

• Generates CSRs (certificate signing request) for Microsoft Internet Explorer

67

• Generates CSRs for Mozilla 1.1+ and Netscape Communicator and Navigator

• Generates client independent requests and private keys (e.g. for KDE's konqueror

or server administrators who don't know how to create a private key and request)

• Receives PEM-formatted PKCS\#10 requests from servers

• Enrolls certificates

• Enrolls CRLs

• Supports two different methods revocation

• Search certificates

• Tests user certificates in browsers (Microsoft IE and Netscape Navigator 4.7x)

If we want to design a powerful trust center then we must have a concept about how we

want to organize our work flow. We can see an example in the Figure 6.3.

Figure 6.3. OpenCA Workflow

68

CHAPTER 7

OPENCARD FRAMEWORK AND SMART CARD

7.1 Introduction

 In order to use a smart card, we need to be able to read the card and communicate

with it using an application. OpenCard provides a framework for this by defining

interfaces that must be implemented. The OpenCard framework defines several of these

interfaces. Once these interfaces are implemented, we can use other services in the upper

layers of the API. For example, with a properly interfaced reader, OpenCard can start a

Java card agent whenever the card is inserted. The card agent can then communicate with

applications on the smart card via the card terminal in the context of a session.

 While it's not necessary to use OpenCard in creating 100% pure Java smart card

applications, without it developers are forced to use home-grown interfaces to smart

cards. OpenCard also provides developers with an interface to PC/SC (a smart card

application interface developed by Microsoft and others for communicating with smart

cards from Win32-based platforms for PCs) for use of existing devices on Win32

platforms.

Smart card applications consist of a card-external application interacting with a

card-resident component. The card-external application comprises the program code

running on some computing platform such as a personal computer, a network computer,

an ATM (automatic-teller machine), or a personal digital assistant. The card-resident

component comprises data and functions in the smart card itself.

69

Interactions with the smart card occur by exchanging pairs of APDUs (application

protocol data units) and are initiated by the external application. Communication with the

smart card is accomplished via the card reader, an I/O device attached to the computing

platform into which the smart card is inserted. The application sends a CommandAPDU

to the smart card by handing it to the card reader’s device driver, which forwards it to the

smart card. In return, the card sends back a ResponseAPDU, which the device driver

hands back to the application.

A smart card’s functions are determined by the set of CommandAPDUs that it

understands. Although standards for smart cards do exist, the functionality may vary

significantly. In other words, depending on the card vendor and/or the type of card,

different functionalities are offered and the exact definition of the set of Command- and

ResponseAPDUs may differ.

Similarly, there is a broad range of card readers on the market with widely

differing functionalities. Very simple readers merely provide basic reader functionality

offering a single slot to insert the card. More sophisticated readers offer multiple slots or

include a PIN3 pad and a display that can be used to perform cardholder verification.

Card readers can attach to different I/O ports including serial port and PC Card slot.

There are even versions available that can be inserted into the floppy drive. They come

with proper driver software for a selection of operating systems. There is no single API to

access the card reader driver.

Given these technicalities, development of smart card applications has been much

of an art in the past and was confined to a relatively small number of specialized

70

programmers. In addition, the dependencies on the make of the card and the card reader

have usually prevented application developers from deploying their OpenCard

Architecture

 OpenCard provides architecture for developing applications in Java that utilize

smart cards or other ISO 7816-compliant devices on different target platforms such as

Windows, network computers, Unix workstations, Webtops, set tops, and so on. The

OpenCard Framework provides an application programming interface (API), which

allows us to register cards, look for cards in readers, and optionally have Java agents start

up when cards are inserted in the reader. The architecture of OpenCard is depicted in

Figure 7.1.

Figure 7.1. OpenCard Framework architecture

 The architecture of the OpenCard Framework is made up of the CardTerminal,

the CardAgent, the Agents and/or applications that interact with these components.

OpenCard consists of four Java packages with the prefix opencard.

7.2 OpenCard Framework

Developers are normally concerned with implementing both parts of a smart card

application, the card-resident component and the card-external program. OCF helps

71

developers primarily in developing the card-external program code. They can then

program against high-level APIs that let make the functionality and information

contained in the smart card fully accessible. Having OCF sit in between the application

and the smart card hides the complexity of interacting with the smart card. At the same

time, the high-level of abstraction offered by the OPENCARD FRAMEWORK [15]

achieves the desired transparency with regard to dependencies on the particular type of

smart card and/or card reader used in a particular setting. By virtue of its framework

nature, OPENCARD FRAMEWORK adapts its capabilities at run-time to match the

characteristics of a particular card reader device and/or the particular smart card inserted

into the reader. For programmers, this means that they can concentrate on the application

logic and need not be concerned with the intricacies of dealing with a particular reader or

card.

In order to adapt itself to a particular situation, OCF relies on the availability of

adequate JAVA components that can be plugged into the framework to address a

particular card reader and card inserted. But don’t worry, these components are typically

developed by card reader manufacturers and card-chip manufacturers and are not

something which application programmer have to implement. All they have to do is to

make sure that the card reader and card type they choose to deploy the application are

supported by OCF-compliant components. An up-to-date list of the devices supported can

be found at the OCF web site. OCF will not provide support in developing the card-

resident part of the application. Normally, smart card vendors offer their cards together

72

with a development toolkit that supports the development of the card-resident application

component.

For conventional smart cards, the toolkit may contain tools supporting all or a

subset of the following tasks:

� Layout Definition

This is the process of generating an EEPROM image from a high-level definition

of the EEPROM layout. Most smart card applications maintain information in the smart

card. This information is typically kept in EEPROM-based files on the card’s file system.

Layout definition is about identifying the information items that should go in the card and

defining an appropriate file structure in the card. The latter includes specifying the type

of file (transparent, record-oriented, cyclic), file names and/or identifiers, access

conditions, initial data, etc.

� Card initialization

This is the process of writing initialization data to the smart card EEPROM (it

could be compared to formatting a disk). The EEPROM image generated during the

layout definition is transferred to the smart card. Depending on volume, this can be

supported by special types of card readers that achieve a high throughput.

� Card personalization

This is the process of writing cardholder-specific data to the smart card. After

initialization, the smart card EEPROM reflects the basic file system structure as defined

in the layout definition and may contain some initial data that is constant across all cards,

such as meta-information about the file system structure, cryptographic key information,

73

etc. During personalization, the information peculiar to an individual cardholder is

written to the card prior to issuing it.

7.2.1 The Terminal Package

 The packages opencard.application and opencard.io provide the high-level API

used by the application developer. The services needed by the high-level API are carried

out by classes in the opencard.agent and opencard.terminal packages. The opencard.agent

package abstracts the functionality of the smart card through the CardAgent. Package

opencard.terminal abstracts the card terminals (also known as card readers).

Understanding the structure of the opencard.terminal package is required to understand

the sample implementations of card terminals provided in this article.

 A card terminal abstracts the device that is used in a computer system to

communicate with a smart card. The opencard.terminal package contains classes to

represent the card-terminal hardware, to interact with the user, and to manage card-

terminal resources. Not all readers have these abilities. When implementing a reader that

doesn't have keyboard entry, we will use the UserInteractionHandler.

7.2.2 Card Terminal Representation

 Each card terminal is represented by an instance of class CardTerminal that

defines the abstract OpenCard-compliant card terminal. A card terminal may have one or

more slots for smart cards and optionally a display and a keyboard or PIN pad. The slots

of a card terminal are represented by instances of the abstract class Slot, which offers

74

methods to wait for a card to be inserted, to communicate with the card, and to eject it (if

possible).

7.2.3 User Interaction

 Using a smart card requires interaction with the user -- for card-holder

verification. The interface UserInteraction provides for this functionality. It provides

methods to write a message onto the display and receive input from the user. Card

terminals that do not support all user interaction features can make use of the

UserInteractionHandler, which implements a UserInteraction as a graphical user interface

based on the abstract windowing toolkit (AWT).

7.2.4 Resource Management

 Cards and card readers require resource management so that agents can be granted

the level of access control they require. Resource management provides for the sharing of

card terminals and the cards inserted in them among the agents in the system. For

example, say you are using your smart card to sign a document at the same time that a

high-priority mail message comes in that needs to be decoded using your smart card.

Resource management arbitrates the access to the CardTerminal and the correct port.

 The resource management for card terminals is achieved by the

CardTerminalRegistry class of OpenCard. There is only one instance of

CardTerminalRegistry: the system-wide card terminal registry. The system-wide card

terminal registry keeps track of the card terminals installed in the system. The card

75

terminal registry can be configured from properties upon system start up or dynamically

through register and unregister methods to dynamically add or remove card terminals

from the registry.

 During the registration of a card terminal, a CardTerminalFactory is needed to

create an instance of the corresponding implementation class for the card terminal. The

card terminal factory uses the type name and the connector type of the card terminal to

determine the CardTerminal class to create. The concept of a card terminal factory allows

a card terminal manufacturer to define a mapping between user-friendly type names and

the class name.

7.3 Smart Card

 A smart card is a card that is embedded with either a microprocessor and a

memory chip or only a memory chip with non-programmable logic [17]. The

microprocessor card can add, delete, and otherwise manipulate information on the card,

while a memory-chip card (for example, pre-paid phone cards) can only undertake a pre-

defined operation.

Smart cards, unlike magnetic stripe cards, can carry all necessary functions and

information on the card. Therefore, they do not require access to remote databases at the

time of the transaction.

 Smart cards are small, tamper-resistant devices providing users with convenient

storage and processing capability. The smart cards are suitable for cryptographic

implementations because they contain many security features that enable the protection

76

of sensitive cryptographic data and provide for a secure processing environment. The

protection of the private key is critical for digital signatures. This key must never be

revealed. The smart card protects the private key, and many consider the smart card an

ideal cryptographic token. The private key is generated by the smart card and never

leaves the smart card providing high level of security.

 Today, there are three categories of smart cards, all of which are evolving rapidly

into new markets and applications:

• Integrated Circuit (IC) Microprocessor Cards

• Integrated Circuit (IC) Memory Cards.

• Optical Memory Cards.

7.3.1 Card Acceptance Device

 A smart card is inserted into card acceptance device (CAD) which may connect to

another computer. Card acceptance device can be of two types: readers and terminals.

Readers are connected to serial, parallel or USB ports of the computer through which it

communicates. A reader has a slot in which card is placed or it can receive data carried

through electromagnetic fields from the contactless card.

7.3.2 Smart Card Operating System

 The Smart operating system have a little resemble to our desktop operating

systems. Smart Card OS support a collection of instructions on which user applications

can build. ISO 7816-4 standardize a wide range of instructions in a format of APDUs. A

77

smart card operating system may support some or all of APDUs as well as manufacturers

extensions and additions. ISO 7816-4 are largely file system-oriented commands, such as

file selection and file access commands. A user application often is a data-file that stores

application-specific information. The semantics and applications to access the

information to access the application data file are implemented by operating system.

Therefore, the separation between the operating system and applications are not well

defined. This file-centric operating system is established in smart cards that are available

today. However newer operating systems which support a better system-layer separation

and downloading of custom application code are becoming more popular today. Java

Card Technology is one technology in the new trend.

7.3.3 Smart Card File System

 Smart Cards defined in ISO 7816-4 can have a hierarchical file system structure.

Each file is specified by either a 2-byte identifier or a symbolic name up to 16 bytes. To

perform file operations a file must be selected (like opening file). Access to file is

controlled by access conditions which can be specified differently by for read and write

access. Card operating system file are divided into three types [23]:

Master File (MF): It is the root of the file system. The master file can contain dedicated

and elementary files. There will be only one MF in one card.

Dedicated File (DF): A DF is a smart card directory file that holds other dedicated files

and other elementary files. A master File is a special type of DF.

78

Elementary File (EF): An EF is a data file it can’t contain other files. Based on file

structure there are four types of Elementary Files

• Transparent File- It is structured as sequence of data bytes; where as other three

are structured as a sequence of individually identifiable records.

• Linear Fixed File- It has records of fix size.

• Linear Variable- It has records of variable sizes.

• Cyclic File- It has fixed size record organize in a Ring

79

CHAPTER 8

MUSCLE CARD CRYPTOGRAPHIC TOKEN FRAMEWORK

8.1 Introduction

 Smartcards require large amounts of complex middleware that communicates

with the card and exports the card's functionality to the host. These cards typically vary

from release to release so the middleware generally is in constant change. Currently each

card must have its own CSP (crypto/card service provider) on the host creating large

support problems and security trust well beyond most OS vendor's preferences.

 Using MUSCLE applet approach [18], it is required that only one host CSP be

written for the middleware, thus reducing the time spent migrating to new card releases

and vastly reducing the number of CSP's on the host. The MUSCLE applet has to be

loaded on the card with a static application identifier (AID) and the host based CSP will

communicate to the card through this applet. The Java Card API's support a wide array of

cryptographic capability including both symmetric and asymmetric functions, random

number generation, key generation/management, and PIN management.

 The Applet is capable of generating cryptographic keys on the card, and allows

external keys to be inserted onto the card. These keys can be used in cryptographic

operations, after proper user (or host application) authentication. The Applet is capable of

handling generic objects. An object is a sequence of bytes whose meaning is determined

by the application. The Applet allows a host application to read and/or modify objects’

contents, after proper user (or host application) authentication.

80

8.2 MUSCLE Architecture

MUSCLE [19] is a project to coordinate the development of smart cards and

applications under Linux. The purpose is to develop a set of compliant drivers, API's, and

a resource manager for various smart cards and readers for the GNU environment.

Figure 8.1. Muscle Architecture

Smart cards require large amounts of complex middleware that communicates

with the card and exports the card's functionality to the host (Figure 8.1). These cards

typically vary from release to release so this middleware generally is in constant change.

Currently each card must have its own CSP (crypto/card service provider) on the host

81

creating large support problems and security trust well beyond most OS vendor's

preferences.

Using a cryptography applet approach, it is required that only one host CSP be written

for the middleware, thus reducing the time spent migrating to new card releases and

vastly reducing the number of CSP's on the host.

8.3 Security Model

 An identity number refers to one of 16 mechanisms (at maximum) by which the

card can authenticate external applications running on the host. Each mechanism can be:

• Based on a PIN verification: identity numbers from 0 to 7 (PIN-identities) that are

associated to PIN numbers from 0 to 7

• Based on a challenge/response cryptographic protocol: identity numbers from

• 8 to 13 (strong identities) that are associated to key numbers from 0 to 5

• Reserved for alternative authentication2 schemes: identity numbers 14 and 15

 After an authentication mechanism has been run successfully, the corresponding

identity is said to be “logged in”. Each identity is associated a counter for the maximum

number of times an authentication mechanism can be run unsuccessfully for that identity.

On a successful authentication the counter is reset. On an unsuccessful authentication the

counter is decreased and, if it goes to zero, the corresponding identity is blocked and can

not be logged in anymore. PIN codes have an unblock mechanism.

 A PIN-identity login requires a PIN code verification. The PIN number is the

same as the identity number. Strong identities involve use of cryptographic keys. Strong

82

identity n.8 requires use of key n.0, identity n.9 requires key n.1, and so on up to identity

n.13. Login mechanisms for identities 14 and 15 are not specified in this release of the

Card Edge specifications.

 Each key or object on the card is associated with an Access Control List (ACL)

that establishes which identities are required to be logged in to perform certain

operations. The security model is designed in such a way to allow at least four levels of

protection for card services:

• No protection: the operation is always allowed; in such a case the ACL requires

only the anonymous identity to be logged in for the operation

• PIN protection: the operation is allowed after a PIN verification; in such a case

the ACL requires a PIN-based identity to be logged in for the operation

• Strong protection: the operation is allowed only after a cryptography based,

strong authentication of the host application (and optionally a PIN based

authentication of the user); in such a case the ACL requires a strong identity to be

logged in for the operation (and optionally a PIN based one)

• Full protection (operation disabled): the operation is never allowed.

The use of a private key on the smartcard is usually PIN protected, but some applications

could require a strong protection. Reading of a private key is usually disabled. Public

objects may be always readable, but their modification could be PIN protected. Private

objects could require PIN protection for reading and protection with another PIN or

strong protection for writing.

83

CHAPTER 9

SCAF SERVICE SECURITY FRAMEWORK

9.1 Introduction

Smart Card Authentication and Authorization Framework is a Smart Card based

framework for SORCER that provides user authentication and authorization. This

standard security mechanism enforces more consistent security policies and application

developers are freed from the low-level drudgery of building explicit security controls

into their software. To use the framework the only thing that a developer needs to do is

extend the façade class to this framework. All the background communications and

security is taken care of by the framework and a developer can build any application on

top of SCAF.

Authentication is provided by Smart Card. A user has to present the password for

the card and is taken to the main application only if that user pin can be verified from the

card. The communication between the provider and the requestor is encrypted using SSL

protocol so that the communication channel is completely safe from forgery and leakage.

All the data that is sent from the requestor to the provider is signed using the user

credentials on the card, so that any transaction can not be repudiated at a later date. This

signed data is stored in a database and can be used to verify any repudiation claims.

Authorization is provided by the grants defined in the policy files.

84

9.2 Objective/Approach

A grid is a vast repository of services. A security framework is very important for

any grid since the requestors and services are at high risk. User credentials saved on

servers or in files are not completely safe and are not portable. They are not intrusion

protected and are not portable. Mutual authentication does not scale with large number of

requestors and Authorization does not scale with large number of services. Smart cards

are needed to provide reliable credentials for mutual authentication and authorization in

Service-Oriented Environment.

The objective of SCAF is to

• Select CA to support PKI infrastructure

• Define use cases for SCAF

• Define user credentials for SO Computing

• Architect SO environment for SCAF

• Design the framework for authentication, authorization, and non-repudiation

• Design a service requestor and provider to validate SCAF

 And the approach taken to achieve the objective was to

• Deploy CA to issue provider/requestor credentials

• Populate requestor credentials on smart card

• Develop and deploy SCAF in the SORCER environment

• Develop a service-oriented application: Bulletin Board

• Validate the framework with the Bulletin Board application

85

9.3 CardEdge Applet

CardEdge Applet is the smart card application that acts as an interface to access

the user credentials saved on the card. Once this applet is selected all the APDUs sent to

the card are handed over to it by the operating system. This applet is responsible for

providing access to keys and certificates stored on the system. Keys can be used for

encryption and decryption. Before any information can be accessed from the card, a user

has to verify its identity to the card, by presenting a PIN. After the PIN has been verified

the user is granted access to perform operations (which ever are allowed). For reading

keys (Public keys only) and certificates they need to be first exported as objects. The

exported objects remain in RAM on card and can be read by the application on host

system. Appendix A describes command APDUs to be exchanged between the card and

the host computer. For each command, parameters that are to be provided as input and

their format and what parameters are to be expected as output and their format are

specified. Appendix B shows all the possible status words returned from the Applet

commands, along with a symbolic name and a short description.

9.3.1 Key Blobs

A key blob is a sequence of bytes encoding a cryptographic key or key pair for

import/export purposes. Whenever a key or key pair is transferred to the card, the

application first transfers the corresponding key blob into the input temporary object then

invokes the ImportKey command referencing it. Conversely, on a key or key pair export

86

operation, the application first invokes an ExportKey operation, and then retrieves the

key blob from the output temporary object. Format of the key blob is shown in Figure 9.1

KeyBlob:
 Byte Blob Encoding;
 Byte Key Type;
 Short Key Size; // In bits
 Byte[] Blob Data;

Values for Blob Encoding:
 0x00 BLOB_ENC_PLAIN;
 0x01 BLOB_ENC_ENCRYPTED (RFU)

Values for Key Type:
 RSA_PUBLIC 0x01 Public RSA key
 RSA_PRIVATE 0x02 Private RSA key
 RSA_PRIVATE_CRT 0x03 Private RSA CRT key

Allowed Values for Key Size:
 RSA 512, 768, 1024, 2048 …

Figure 9.1. Key Blob Format

� RSA Key Blob

We only use RSA keys for the framework and so information related to only RSA

keys has be explained in this document. Information for DSA and DES keys has not

been mentioned here. Figure 9.2 (next page) shows RSA key blob definitions.

87

Key Type RSA_PRIVATE_CRT

Key Type RSA_PRIVATE

Key Type RSA_PUBLIC

Figure 9.2. RSA Key Blob Definition

88

9.3.2 Application Directory Contents

PKCS #15 defines the standard for saving credentials on a token. Token in our

case is a Java Card. PCKS #15 file format specifies how certain abstract, higher level

elements such as keys and certificates are to be represented in terms of more lower level

elements such as IC card files and directory structures. The format also suggests how and

under which circumstances these higher level objects can be accessed by external sources

and how these access rules are to be implemented in the underlying representation (i.e.

the card’s operating system).

 Contents of Directory file for PKCS #15 are shown in Figure 9.3 and are

explained below.

Figure 9.3. Contents of DF(PKCS #15)

� EF(ODF)

The mandatory Object Directory File (ODF) is an elementary file, which contains

pointers to other EFs (PrKDFs, PuKDFs, SKDFs, CDFs, DODFs and AODFs), each one

containing a directory over PKCS #15 objects of a particular class.

DF(PKCS

#15)

EF(ODF)

EF(PrKDF)

EF(CDF)

EF(AODF)

EF(TokenInfo)

89

� Private Key Directory Files (PrKDFs)

These elementary files can be regarded as directories of private keys known to the

PKCS #15 applications. They are optional, but at least one PrKDF must be present on an

IC card which contains private keys (or references to private keys) known to the PKCS

#15 application. They contain general key attributes such as labels, intended usage,

identifiers, etc. When applicable, they also contain cross-reference pointers to

authentication objects used to protect access to the keys. Furthermore, they contain

pointers to the keys themselves. There can be any number of PrKDFs in a PKCS #15 DF,

but it is anticipated that in the normal case there will be at most one. The keys themselves

may reside anywhere on the card.

� Public Key Directory Files (PuKDFs)

These elementary files can be regarded as directories of public keys known to the

PKCS #15 applications. They are optional, but at least one PuKDF must be present on an

IC card which contains public keys (or references to public keys) known to the PKCS

#15 application. They contain general key attributes such as labels, intended usage,

identifiers, etc. Furthermore, they contain pointers to the keys themselves. When the

private key corresponding to a public key also resides on the card, the keys must share

the same identifier. There can be any number of PuKDFs in a PKCS #15 DF, but it is

anticipated that in the normal case there will be at most one. The keys themselves may

reside anywhere on the card.

90

When a certificate object on the card contains the public key, the public key object

and the certificate object shall share the same identifier. This means that in some cases

three objects (a private key, a public key and a certificate) will share the same identifier.

� Secret Key Directory Files (SKDFs)

These elementary files can be regarded as directories of secret keys known to the

PKCS #15 applications. They are optional, but at least one SKDF must be present on an

IC card which contains secret keys (or references to secret keys) known to the PKCS #15

application. They contain general key attributes such as labels, intended usage,

identifiers, etc. When applicable, they also contain cross-reference pointers to

authentication objects used to protect access to the keys. Furthermore, they contain

pointers to the keys themselves. There can be any number of SKDFs in a PKCS #15 DF,

but it is anticipated that in the normal case there will be at most one. The keys themselves

may reside anywhere on the card.

� Certificate Directory Files (CDFs)

These elementary files can be regarded as directories of certificates known to the

PKCS #15 applications. They are optional, but at least one CDF must be present on an IC

card which contains certificates (or references to certificates) known to the PKCS #15

application. They contain general certificate attributes such as labels, identifiers, etc.

When a certificate contains a public key whose private key also resides on the card, the

certificate and the private key must share the same identifier. Furthermore, certificate

directory files contain pointers to the certificates themselves. The certificates themselves

may reside anywhere on the card.

91

� Data Object Directory Files (DODFs)

These files can be regarded as directories of data objects (other than keys or

certificates) known to the PKCS #15 applications. They are optional, but at least one

DODF must be present on an IC card which contains such data objects (or references to

such data objects) known to the PKCS #15 application. They contain general data object

attributes such as identifiers of the application to which the data object belongs, whether

it is a private or public object, etc. Furthermore, they contain pointers to the data objects

themselves. The data objects themselves may reside anywhere on the card.

� Authentication Object Directory Files (AODFs)

These elementary files can be regarded as directories of authentication objects

(e.g. PINs, passwords, biometric data) known to the PKCS #15 application. They are

optional, but at least one AODF must be present on an IC card, which contains

authentication objects restricting access to PKCS #15 objects. They contain generic

authentication object attributes such as (in the case of PINs) allowed characters, PIN

length, PIN padding character, etc. Furthermore, they contain pointers to the

authentication objects themselves (e.g. in the case of PINs, pointers to the DF in which

the PIN file resides). Authentication objects are used to control access to other objects

such as keys. Information about which authentication object that protects a particular key

is stored in the key’s directory file, e.g. PrKDF.

� EF(TokenInfo)

The mandatory TokenInfo elementary file with transparent structure shall contain

generic information about the card as such and it’s capabilities, as seen by the PKCS15

92

application. This information includes the card serial number, supported file types,

algorithms implemented on the card, etc.

� EF(UnusedSpace)

The optional UnusedSpace elementary file with transparent structure is used to

keep track of unused space in already created elementary files. When present, it must

initially contain at least one record pointing to an empty space in a file that is possible to

update by the cardholder.

� Other elementary files in the PKCS #15 directory

These (optional) files will contain the actual values of objects (such as private

keys, public keys, secret keys, certificates and application specific data) referenced from

within PrKDFs, SKDFs, PuKDFs, CDFs or DODFs.

9.4 Signing and Verification

9.4.1 Signing Process

The whole signing process [21] can be broadly divided in to following steps.

1. Initialize the token

2. Compute hash (digest) of the data to be signed

3. Sign the hash using private key

4. Retrieve the certificate corresponding to the private key used for signing

5. Clean-up

93

� Initialize the token:

To start the signing process we need to initialize the token. This is done in order

to determine the number of cards and key-pairs present on the token. As a secret PIN

protects the access to private key on the token, the PIN needs to be supplied to the token.

This process also starts a new session on the token.

� Compute hash:

 After initializing process we need to calculate the digest (hash) of the data to be

signed.

� Sign the Hash:

This step is responsible for generating the signature for the hash computed by the

previous step. As the private key never leaves the PKCS token, the data to be signed

(hash in our case) needs to be passed on to the PKCS token.

� Retrieve Certificate:

Once we have the signature, we need to retrieve the corresponding certificate, so

that it could be sent along with signature for verification.

� Clean-up:

Finally we need to close the current session to free up any resources being used

by the system.

9.4.2 Verification Process

Verification of the signature [21] using public key through PKCS#11 compliant

token is carried out in following steps.

94

1. Initialize the token

2. Compute hash (digest) of the data to be verified

3. Verify the hash using public key

4. Validate the certificate chain.

5. Clean-up

� Initialize the token:

First we need to initialize the token for verification. Here we pass the public key,

which is used for verifying the signature.

� Compute Hash:

As during signing process only the hash of data was signed, if we try to verify the

document content instead of its hash, the verification process would fail. Hence we need

to compute hash in the same manner we did for signing.

� Verify the signature:

Once we have the hash we can validate the data using the public key supplied

during initialization step. This step returns true if the verification was successful else it

returns false.

� Validating a Certificate

Verification step only verifies the integrity of the document, it only tells us that

the document was signed by a particular key-pair and it has not been modified after

signing. It is always advisable to first verify the certificate before verifying the data itself.

This helps us in determining whether the certificate is authentic or was tampered with.

95

Important thing to remember about verification step is that it does not validate the

identity of the signer. Authenticating the signer information is critical to prevent anyone

generating key-pairs with some one else’s identity. This is ensured by a Certificate

Authority (CA) who carries out reasonable identity checks before issuing a certificate to a

person or company. The CA will have its own key pair and its own certificate, which is

self signed, also known as a root certificate. The CA’s private key is used to sign all

issued certificates. Sometimes a CA will be a ‘channel CA’ to some other certifying

authority and thus a subsidiary. In such a case the signatures can be traced up along

certificate chain to a root certificate authority. The root certificate is self-signed. Unless

the entire certificate chain is validated, a given certificate and a given signature cannot be

guaranteed to be valid.

To validate a certificate, one needs to validate the digital signature on it. This

requires parsing the X.509 certificate and identifying the content and the digital signature.

Once the data content and the digital signature are located, the data must be hashed to

obtain a digest. Next, the certificate authority’s root CA certificate must be parsed to

extract the public key. This certificate is typically placed in a trusted root certificates

repository. The public key is then used to decrypt the digital signature on the certificate

and reveal the hash. This hash must match with the computed hash on the data.

� Clean-up:

Finally we need to close the current session to free up any resources being used

by the system.

96

9.5 Channel Confidentiality In SCAF

SSL authentication [20] assures authentication on both ends. It not only encrypts

the data but determines whether or not each party (server and client) has the expected

authentication. Though secure certificates can be created independently, getting a secure

certificate from a validated certificate authority helps to ensure the parties are trusted.

The details of SSL communication are hidden to the system developer and the support is

provided to us by the underlying Jini technology.

SSL communication requires both ends to contain matching private key and

public which are required for encryption and decryption over the secure channel. As the

user credentials in SCAF are stored on a smart card and there is no way the private can be

read or transported so we use a proxy certificate. This certificate initially is an unsigned

and is transferred in the jar file that is downloaded dynamically on the requestor side.

This certificate is then signed using the private key on the card. Private key and public

key of this signed certificate are used as the private credential and public credential,

respectively, for the subject that is used to make SSL tunnel. After the SSL tunnel has

been established the signed certificate here is not used. Data that is sent from the

requestor to the provider is signed using the key on the Smart Card. The principal that is

used for authorization on provider contains the common name from the certificate read

from the card. This principal is sent in the context with the exertion.

9.6 Benefits

• Safeguarding user integrity, passwords are safely stored on smart cards

97

• Preventing credential intrusion

• Scalability for unlimited number of providers/requestors

• Cost effective with own CA

• Reliable authentication in SO frameworks

• Flexible multilayered authorization using JAAS

• Secure communication between ServiceUI and Service Provider

• Trusted zero install requestor ServiceUI with JavaCardLoginModule

9.7 Framework Design

9.7.1 SCAF

Figure 9.4. SCAF

98

 General functioning of the framework is explained in Figure 9.4. SCAF is

explained below without referring to Java classes used for framework implementation.

Certificates are first downloaded from the root certificate authority (SorcerCA) on to the

card. These credentials are used by the requestor for authentication, signing proxy

certificate for creating SSL tunnel with provider and signing data for auditing. Provider

also uses certificates issued by this root certificate authority but certificates in this case

are stored in a keystore. Provider starts up using the credentials from keystore and

registers with one or many lookup services. A requestor queries one or many lookup

services to get the proxy for the provider it wants to communicate to. Service user

interface is then shown to the requestor which takes the password for the card. This

password is used for authentication. Once a user has been authenticated proxy certificate

is signed using private key on card. Private key and public key of this proxy certificate

are used as matching key pair for creation of SSL tunnel with the provider. Any task that

needs to be executed by provider is sent as a signed service task so that it can be used for

auditing. Every signed service task received by provider for execution is audited. Request

for task execution from service user interface to provider is then authorized using

permissions granted in the policy file. If proper permission are defined for the principal in

the policy file then the task is executed and results are sent back to the requestor.

Otherwise illegal access exception is thrown. If a repudiation claim is made at a later time

about some transaction then database query tool provided with the framework can be

used to verify whether or not the task was signed by the principal associated in database

with signed service task.

99

9.7.2 Certification Process

Certification process starts when a user submits personal information like name,

email address etc to Registration Authority (RA). PKI user is then registered with the RA.

After registration, key pair is generated for the use, depending on the security device

selected. Security device could be a software security device, if the certificate is required

to be saved in the browser or it could be any other security module like one from

MUSCLE (pkcs#11.dll) if the key pair is required to be generated on the card. The latter

approach is used in this research and is shown in Figure 9.5.

Figure 9.5. Certification process

100

After the key pair generation a certificate request is generated that is sent to the

Certificate Authority (CA). At CA the signature for the request is checked to make sure

that the request came from a valid RA. Signature for user certificate is created if a valid

request is found and the certificate is stored in a database (MySQL) and is exported back

to RA from where is can be picked up by the user and can be stored using the module

defined in security devices.

9.7.3 Authentication

 Authentication is accomplished using JAAS. Any application that uses SCAF and

requires a service user interface will extend SecureUI, the façade class to SCAF. The

application after calling the constructor will call the function to show the login frame,

which requires a user to enter password for card. After the password has been submitted a

LoginContext instance is created. Login Context class requires two parameters;

configuration file name and CardCallbackHandler object. CardCallbackHandler is

instantiated by passing it the password entered by user. The LoginContext consults a

configuration that determines the authentication service, or LoginModule, that gets

plugged in under that application. LoginModule in SCAF is CardLoginModule.

LoginContext performs the authentication steps in two phases.

 In first phase, or the 'login' phase, the LoginContext invokes the configured

CardLoginModule and instructs to attempt the authentication only. Authentication here

succeeds if the system is able to verify the password on card. CardLoginModule gets the

password from CardCallbackHandler using CardCallback object. If CardLoginModule

101

successfully pass this phase, the LoginContext then enters the second phase and invokes

the configured CardLoginModule again, instructing each to formally 'commit' the

authentication process. During this phase CardLoginModule associates the relevant

authenticated principals and credentials with the subject. As explained before the

authenticated principals and credentials are those of a proxy certificate. This proxy

certificate is signed by the user’s private key on the card. If either the first phase or the

second phase fails, the LoginContext invokes the configured CardLoginModule and

instructs each to 'abort' the entire authentication attempt.

Figure 9.6. Authentication Sequence Diagram

102

 CardLoginModule then cleans up any relevant state they had associated with the

authentication attempt. Authentication sequence diagram [26] is shown in Figure 9.6. If

user is able to authenticate and credentials can be added to the subject successfully,

SecureUI signals logon done to the application passing password and subject just created.

This subject contains two principal names, one for the proxy certificate and the other for

the certificate on the card. Former principal is used to make SSL connection and the latter

is used to authorize user on provider end. Each of this password and subject can be used

by application at any time. Class diagram [26] for authentication is shown in Figure 9.7.

Figure 9.7. Authentication Class Diagram

103

9.7.4 Authorization

 Once authentication has successfully completed, JAAS provides the ability to

enforce access controls upon the principals associated with the authenticated subject. But

this access control is not forced on the requestor side. After authentication, application

takes the input from the user and makes a task out of it. This task is then executed by

SORCER framework. The task created here is signed using private key on the card. This

process is explained in next section. SCAF providers implement the access control model

of security, which defines a set of protected resources, as well as the conditions under

which named principals may access those resources. JAAS follows this model, and

defines a security policy to specify what resources are accessible to authorized principals.

 As explained above, principal from proxy certificate is only used to make SSL

tunnel and principal from certificate on card is used for authorization. To accomplish this

application needs to send the latter principal in the service task’s context. SORCER

framework receives this service task and retrieves the name for the method that needs to

be executed. The SORCER framework then checks in task context for a principal that

would be used for authentication. If there is no principal found then

NoPrincipalException is thrown and task is not executed. If the required principal is

found in the context then a new subject is created using that principal. SORCER

framework then executes the method using the subject just created. JAAS framework

then checks the permission for the principal from the policy file. When security checks

occur during execution, the Java 2 SecurityManager queries the JAAS policy, updates the

current AccessControlContext with the permissions granted to the subject and the

104

executing codesource, and then performs its regular permission checks. If the permission

has not been defined for the principal in the subject then IllegalAccessException is

thrown. Otherwise the method is executed and the results are sent back to requestor

application.

Figure 9.8. Authorization Activity Diagram

 Activity diagram [26] for authorization is shown in Figure 9.8.

105

9.7.5 Non Repudiation

Non Repudiation means that the requestor shall sign the communication sent by

it. Once an entity has signed the message, it cannot repudiate it. This is achieved using

SignedServiceTask. Any application that uses SCAF and wants to provide non

repudiation feature, uses SignedServiceTask instead of ServiceTask as exertion.

ServiceTask is signed using the private key on the card and the signature and ServiceTask

object are saved in SignedServiceTask. ServiceTask is saved as a MarshalledObject and

the signature is saved as an array of bytes. SignedServiceTask implements

SignedTaskInterface, which provides functions like getSignature, verify and getObject.

Figure 9.9 shows a sequence diagram for auditing.

Figure 9.9. Auditing Sequence Diagrams

When SORCER framework (ProviderDelegate) receives SignedServiceTask it

checks if it is an instance of SignedTaskInterface. If it is then the SORCER framework

calls TaskAuditor to audit the task just received. ServiceContext is also sent to auditor

106

provider so that principal can be retrieved from it. After that the ServiceTask is retrieved

from the SignedServiceTask and execution continues as it would in normal case.

 TaskAuditor starts an AuditorWorker thread and gets auditor proxy. It then passes

SignedServiceTask to the provider where the task is persisted as a sequence of bytes in a

database along with the principal retrieved from the context.

Figure 9.10. Authorization and Auditing Class Diagram

A JDBCQueryTool is provided with the framework which is used to verify

repudiation claims. It shows all signed tasks saved in database along with date, time and

principal who signed it. To check whether the principal that appears with the signed task

is the one who submitted the task, user needs to select the row and then verify the task.

Task is verified using the certificate for the principal that is saved in a truststore which

contains certificate for all SCAF users. Public key from the certificate is used to verify if

107

the signature after decryption matches with the service task stored in signed service task.

Authorization and Auditing class diagram is shown in Figure 9.10.

9.8 Implementation

9.8.1 Technical Architecture

Figure 9.11. Technical Architecture

SCAF uses SORCER to provider service oriented framework. To display service

user interfaces SCAF uses IncaX browser. SORCER and IncaX browser are both based

on JINI network technology, which uses RMI for remote method calls and an Http Server

(Tomcat) for downloading dynamic code. SORCER also uses two databases; Oracle and

Mckoi [22]. Oracle is used by validation application and Mckoi is used as an embedded

database from Auditor service. Services use JDBC to communicate with databases.

Security is provided by J2SE. Smart Card used in SCAF is Javacard and has MUSCLE

108

applet installed on it. SCAF uses OCF to communicate with the applet installed on

Javacard. Javacard used for SCAF is Schlumberger’s Cyberflex Access 32K. Figure 9.11

shows the technical architecture for SCAF.

9.8.2 Package Diagram

Figure 9.12. Package Diagram

SACF provides classes for authentication, for working with smart card and classes

that are required to make the user interface. These classes are stored in packages

sorcer.scaf.auth, sorcer.scaf.card and sorcer.scaf.ui respectively. The package

sorcer.scaf.auth contains classes that are required by JAAS like CardLoginModule,

CardPasswordCallback, CardCallbackHandler etc. Classes that are required to work with

smart card, like SmartCard factory, JavaCard etc are in sorcer.scaf.card. SCAF also

provides an auditing service which is in package sorcer.core.provider.auditor.

Authorization is handled in ProviderDelegate which is in sorcer.core. Task that gets

executed as excertion is required by SCAF to be submitted as SignedServiceTask which

109

is in package sorcer.security.sign. This package contains all the classes that are required

to sign a task. Validation application, Bulletin Board is in package

sorcer.provider.bboard. Complete package diagram [26] is shown in Figure 9.12.

9.8.3 Physical Architecture

Figure 9.13. Deployment Diagram

The Jini architecture specifies a way for clients and services to find each other on

the network and to work together to get a task accomplished. Jini technology provides a

flexible infrastructure for interactions between clients and services regardless of their

hardware or software implementations. And hence SORCER that is based on Jini

technology is also distributed across many computers.

110

 Jini core services like Lookup service, Javaspace service, Transaction service etc

run on a Windows Xp computer. Auditor provider runs on a Linux machine. McKoi

database that is required by Auditor provider runs on the same machine. Bulletin Board

that uses SCAF runs on a separate Linux machine. Oracle database that is used by this

provider runs on a separate Linux server. Finally IncaX browser, which acts as a user

agent, runs on another Win2003 machine. Deployment diagram for SCAF which is based

on SORCER is shown in Figure 9.13.

9.9 Validation

9.9.1 SCAF Credentials

 To get key pair an installed/compiled OpenCA installation needs to be

configured. There are three interfaces to an OpenCA installation; ca-node, ra-node, pub

node for CA, RA and user repectively.

 First of all Certification Authority needs to be initialized from ca-node. This is

done only once and is skipped if CA has already been initialized First step in that is to

initialize database. After that a new secret key is generated: des3 rsa 1024. This key is

used to generate a new cert request. For SORCER a self signed CA Certificate is

generated from already generated request. It could be signed by any other CA.

 To generate a certificate for CA operator a new request is submitted with fields

as appropriate. This request, as any other certificate request can be edited. After editing

the request, certificate is issued which can be exported as PCKAS#12 to be saved on disk

111

and then imported into the browser. RA operator certificate can be issued likewise, only

by changing the role to RA operator instead of CA operator.

 RA gets initialized from ra-node. For that RA database needs to be initialized

first. After that the configuration is imported from ca-node. To move the certificates

down to RA from CA, from ca-node enroll all data to a lower level of the hierarchy. Then

from ra-node download all data from a higher level of the hierarchy.

 User certificate is requested from pub-node. User fills in all the required fields

and submits request. A key pair is generated after the submission. For this thesis, pkcs#11

module provided by MUSCLE is used as a security device which generated private-

public key pair on the card. Certificate request needs to be approved by RA to get the

certificate from CA. RA exports the request to CA after approving the request by

uploading request data to a higher level of the hierarchy. All requests are imported into

CA by receiving request data from a lower level of the hierarchy. CA after performing all

the validations approves and signs the certificate request. Certificate data thus generated

is enrolled to a lower level of the hierarchy which is imported into RA by downloading

certificate data from a higher level of the hierarchy. Certificate can be picked up from

public interface by presenting either the certificate request number or the certificate serial

number generated after it gets approved. If MUSCLE pkcs#11 module is loaded as a

security device then the certificate would be stored on the card and can be used from

there. Key pair and certificate saved on the card are used for authentication, authorization

and non-repudiation explained in the following sections.

112

9.9.2 Bulletin Board Services

SCAF is validated using Bulletin Board application. This application aims to

provide an online market place, where a user can request the bids for the product he/she

wants to sell, make the bids for the product he/she is interested in buying and accept the

bids, once a bid has been made for the request posted. Requests for books, computers,

cars and roommates can be posted on the Bulletin Board.

Seller posts the request and waits for bids to be made for the requests and gets

ID# for that. He can then view the bids made for the ID# given. Buyer can browse

through the requests or he can find the requests matching his preferences. Buyer makes

bid for the request. The request can be greater than or equal to the Min price specified by

the seller. Once a bid has been made by a buyer, it starts showing up on the sellers

interface. Seller can wait for other bids or he can accept the bids if the bid offer seems

reasonable to him. Once a bid has been accepted it would start showing up on the buyers

interface. A mail will be sent to the Seller, Buyer and the Administrator which contains

the details of the bid. As explained in the previous section, all the tasks that are sent from

requestor to provider in SCAF are signed using the private key on the card.

A user can be a seller or a buyer. A seller can request bids for the product he

wants to sell, if the request is posted properly then the seller will get the ID# for the

request. A seller can also view the bids that have been made for the ID#. A seller will

finally accept the bids once the list of bids has been displayed in the interface. A buyer

can find the request that have been posted on the Bulletin Board, browse through the

113

requests, make a bid for a particular request by specifying the ID# and view all his bids

that have been accepted.

Figure 9.14. Bulletin Board Class Diagram

 Class diagram for complete application is shown in Figure 9.14. It is a

combination of class diagram for authentication, authorization, signing and auditing

classes which comprise the whole system. Only one feature (Books) of Bulletin Board

has been shown. Classes for other features like computers, cars etc follow the same

naming convention.

9.9.3 Bulletin Board User Agent

User agent in Bulletin Board is a graphical user interface or ServiceUI which is sent

from the provider along with proxy. ServiceUI can be viewed using any service browser.

114

IncaX service browser was used for this research. Client does not need to know where the

provider is running or what are the classes required by the interface. All the classes are

downloaded from the provider dynamically. Client only needs to have a ServiceUI

browser installed. The provider can be started on machine on the network without even

telling the client about the change. Only thing that is required on the client is the

framework to support card operations. Open Card Framework classes need to be in the

classpath of the client we are trying to run SCAF from. A truststore containing SORCER

certificate authority’s certificate is required be supplied to IncaX browser while starting

it.

All interactions with provider are accomplished using this user interface. User

interface can be logically divided into two parts; right panel and left panel. They can be

referred to as work areas.

Left panel holds a tree which has main categories, like books, cars etc as nodes.

These nodes act as a sub tree for operations provided for a particular category and contain

those operations as sub nodes. Right panel is the main working area of the interface. It is

a tabbed pane with tabs for each operation provided. User can browse through the

interface using either the tree in left panel or the tabs in right panel. A seller user can

either open bids for a new book or he can check and accept bids placed for any

previously opened bids. Work area for seller provides interface for executing any of

stated functionality.

115

Figure 9.15. Sell Books Interface

116

Figure 9.16. Find Books Interface

117

Figure 9.17. Browse Books Interface

Work area for a seller is shown in Figure 9.15. A buyer can perform three

operations. He can find the books based on some search criteria. If he finds the book that

he wants he can select the book and can make a bid on that book. He can also view if he

is winner of any of the books. Work area for buyer is shown in Figure 9.16.

118

Browse work area for books works in same way as find books work area. It has

additional functionality of browsing all the bids that are open in system at that time. A

user can then either select a book from a list of all the books or he can narrow down

results using find functionality. This is shown in Figure 9.17.

9.9.4 Authentication In Bulletin Board

Authentication is provided using SCAF in Bulletin Board application. To

authenticate into the system, a user is required to have a java card plugged into card

reader and reader connected to computer. User is then shown with a login frame which

requires him to enter the password for the card. If the password is accepted by the card

then user is logged into the system and can then acts as a buyer or a seller.

Figure 9.18. Logon Frame

119

Login frame is shown in Figure 9.18. It has two buttons; submit and reset. A user

is given three chances to authenticate. If all three chances fail then application needs to be

started again. On the other hand, card can take up to eight unsuccessful attempts. A card

is locked if it is presented with wrong password for more than eight times.

9.9.5 Authorization In Bulletin Board

Figure 9.19. Authorization Failure

A user has to have proper credentials issued to him by SORCER certificate

authority. If a user has the required credentials on card then he is allowed to perform any

action for which access has already been defined for him in policy file. Permissions are

granted to the principal name in policy file and hence the principal name from the card

has to be sent to framework. The principal name used for authorization is set explicitly in

the context for the task that needs to be executed. Authorization can restrict the realm of

user, for instance, a user might just be allowed to act as a buyer but he can not act as a

seller. When ever a user tries to perform something for which he has not been given any

rights then an error message like Figure 9.19 is shown to him. On the hand, if the user has

the rights defined for him to perform a function then it is executed and the results are

shown to user in the work area of the interface.

120

9.9.6 Non-Repudiation In Bulletin Board

Figure 9.20. Signing Class Diagram

 All the functions in SORCER are executed as either a task or a job. A job is a

combination of tasks which is divided to tasks before execution. SCAF, as of now, takes

only tasks as exertion. For providing non-repudiation functionality all the tasks that are

executed are signed first using private key on the card. All the classes that are used for

signing task are shown in Figure 9.20.

 Signed task is received by SORCER and is then sent to Auditor service. This

service stores the task along with the principal name sent with it and date and time in an

embedded database. There is an additional application provided with SCAF that be used

to verify any repudiation claims.

121

Figure 9.21. Non-Repudiation Interface

 Administrator of system can start this application and then select the transaction

for which a repudiation claim has been received. This transaction can then be verified

using the truststore that contains certificate for all the users of application. Public key

from certificates is used to verify if the signed service task when decrypted gives the

object that is saved in signed service task. Query tool is shown in Figure 9.21.

122

9.10 Conclusion

This research has achieved its goal of designing a Smart Card based framework

for SORCER that provides user authentication and authorization. This standard security

mechanism enforces more consistent security policies, and application developers are

freed from the low-level drudgery of building explicit security controls into their

software. The security framework allows services anywhere in the world to identify each

other, exchange data in encrypted form and to digitally “sign” information in ways that

cannot later be repudiated. SCAF is successfully tested to provide integrity and

confidentiality for communication between provider and requestor. Smart card ensures

the isolation of private key, which enables the protection of sensitive cryptographic data

and provides for a secure processing environment. Authentication, authorization and non-

repudiation provided by framework are tested successfully using Bulletin Board

application.

9.11 Future Research

 Providers in SCAF are started using the credentials from the keystore. This

framework can be extended to provide Smart Card based start up, where another proxy

certificate would be used to make SSL tunnel with the requestor.

 It would be interesting to see how Bio Cards can be used for authentication in

SCAF. Bio Cards provide authentication based on some biological identity like finger

prints. Presently there is no proxy verification in SCAF. Some research can also be done

in that realm.

123

REFERENCES

[1] http://java.sun.com/development/technicalArticles/jini/protocols.html.

[2] Sun homepage. http://www.sun.com/software/jini/faqs/index.xml#q1

[3] Oaks, S. & Wong, H. (2000). Jini in a Nutshell, O’Reilly, ISBN 1-56592-759-1.

[4] http://www.sun.com/software/jini/whitepapers/architecture.html

[5] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Beyond the

Sandbox: An Overview of the New Security Architecture in the Java(TM)

Development Kit 1.2. In Proceedings of the USENIX Symposium on Internet

Technologies and Systems, pages 103-112, Monterey, California, December

1997.

[6] R. Housley, W. Ford, T. Polk, and D. Solo. Internet X.509 Public Key

Infrastructure Certificate and CRL Profile. Request for Comments 2459, Internet

Engineering Task Force, January 1999.

[7] T. Ryutov and B.C. Neuman. Access Control Framework for Distributed

Applications. Internet Draft, Internet Engineering Task Force, November 1998.

[8] V. Samar and C. Lai. Making Login Services Independent from Authentication

Technologies. In Proceedings of the SunSoft

[9] User Authentication And Authorization In The Java(Tm) Platform. Charlie Lai, Li

Gong, Larry Koved, Anthony Nadalin, and Roland Schemers

[10] Digital Signatures and PKCS#11 Smart Cards Concepts, Issues and some

Programming Details Developer's Conference, March 1996. Rekesh John and

Rajesh Parikh.

[11] PKCS #11: Cryptographic Token Interface Standard. RSA Laboratories

[12] PKCS #12: Personal Information Exchange Syntax Standard. RSA Laboratories

[13] PKCS #15: Cryptographic Token Information Format Standard. RSA

Laboratories

[14] OpenCA documentation. http://www.openca.org/openca/docs/

[15] OpenCard Framework 1.2, Programmer’s Guide

124

[16] Introduction to JAAS and Java GSS-API Tutorials.

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/

[17] Java Card Technology for Smart Cards. Zhiqun Chen. Addison Wesley

[18] MUSCLE home page. http://www.linuxnet.com

[19] MUSCLE Cryptographic Card Edge Definition for Java1 Enabled Smartcards.

David Corcoran and Tommaso Cucinotta.

[20] SSL specification. http://wp.netscape.com/eng/ssl3/3-SPEC.HTM#3

[21] Applied cryptography.

http://www.ldv.ei.tum.de/media/files/lehre/itsec/7_PublicKeyInfrastructures.pdf

[22] Mckoi SQL Database. http://mckoi.com/database/UseEmbeddedApp.html

[23] Smart Card Basics. http://www.smartcardbasics.com/

[24] Jini Architecture Specification 2000; Jini.org; Edwards, 2000

[25] Freeman, 1999; Halter, 2002

[26] UML 2.0 specification, Current official version. http://www.uml.org/#UML2.0

125

APPENDIX

A. SCAF Interfaces

A.1 LogonListener

public interface LogonListener

{

 public void logonDone(String password, Subject subject);

}

A.2 LoginModule

public interface LoginModule

{

 public boolean abort();

 public boolean commit();

 public void initialize (Subject subject, CallbackHandler

 callbackHandler, Map sharedState, Map options);

 public Boolean login();

 public Boolean logout();

}

A.3 CallbackHandler

public interface CallbackHandler

{

 public void handle (Callback[] callbacks);

}

126

A.4 Callback

public interface Callback

{}

A.5 SmartCard

public interface SmartCard

{

 public boolean verifyPin(String password);

 public byte[] getHash(String challenge);

 public byte[] getCertificate(String password);

 public byte[] sign(byte[] hash,String password);

 public byte[] signObject(Serializable object,String password)

 throws IOException, InvalidKeyException, SignatureException;

}

A.6 SignedTaskInterface

public interface SignedTaskInterface

{

 public byte[] getSignature();

 public void setSignature(byte[] signature,MarshalledObject mobject)

 throws IOException;

 public Object getObject()

 throws IOException, ClassNotFoundException;

 public boolean verify(PublicKey publickey, Signature signature1)

throws InvalidKeyException, SignatureException, IOException,

ClassNotFoundException;

}

127

A.7 Auditor

public interface Auditor extends Remote

{

 public void audit(ServiceContext context) throws RemoteException;

}

128

B. SCAF API Specification

Service-Oriented Computing Environmet: SCAF

SORCER: SCAF

sorcer.core.provider.auditor Package containing all the classes for Auditor provider.

sorcer.scaf.auth
 Package containing all the classes required by login

module.

sorcer.scaf.card
 Package containing all the classes required to work with

Smart Cards.

sorcer.scaf.ui
 Package containing all the classes required to render user

interface

sorcer.security.sign
 Package containing all the classes for making a signed

service task.

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

129

sorcer.core.provider.auditor
Interface Auditor

All Superinterfaces:
java.rmi.Remote

All Known Implementing Classes:
AuditorImpl

public interface Auditor

extends java.rmi.Remote
All implementation of this interface are Service providers in SORCER and are used to save ServiceContext
sent to it. In SCAF the ServiceContext contains a SignedServiceTask and a Subject that contains principal
name of the user/requestor from the card.

Author:
Saurabh Bhatla

Method Summary

 void audit(sorcer.base.ServiceContext context)

 Audits the information sent in context in a persistent storage.

Method Detail

audit
public void audit(sorcer.base.ServiceContext context)
 throws java.rmi.RemoteException

Audits the information sent in context in a persistent storage.

Throws:
java.rmi.RemoteException

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

130

sorcer.core.provider.auditor
Class AuditorImpl
java.lang.Object

 sorcer.core.provider.ServiceProvider

 sorcer.core.provider.SorcerProvider

 sorcer.core.provider.auditor.AuditorImpl

All Implemented Interfaces:
net.jini.admin.Administrable, sorcer.core.AdministratableProvider, Auditor,

com.sun.jini.admin.DestroyAdmin, java.util.EventListener,

net.jini.admin.JoinAdmin, sorcer.base.MonitorableServicer, sorcer.base.Provider,

net.jini.export.ProxyAccessor, java.rmi.Remote,

net.jini.core.constraint.RemoteMethodControl, java.io.Serializable,

net.jini.security.proxytrust.ServerProxyTrust, net.jini.lookup.ServiceIDListener,

sorcer.base.Servicer, sorcer.util.SORCER

public class AuditorImpl

extends sorcer.core.provider.SorcerProvider

implements Auditor, sorcer.util.SORCER
AuditorImp is implementation of Auditor imterface and is a service provider in SORCER which is used in
SCAF to save SignedServiceTasks. It uses Mckoi as an embedded database to save SignedServieTask. It
receives SignedServiceTask along with prinicipal name in service context. This principal name is used to
identify the rows in the table that stores information about tasks.

A JDBCQueryTool is provided with SCAF that is used to verify any repudiation claims.

See Also:
Serialized Form

Nested Class Summary

Nested classes inherited from class sorcer.core.provider.SorcerProvider

sorcer.core.provider.SorcerProvider.KeepAwake

Field Summary

Fields inherited from class sorcer.core.provider.ServiceProvider

delegate

Fields inherited from interface sorcer.util.SORCER

131

ADD_DATANODE, ADD_DOMAIN, ADD_JOB_TO_SESSION, ADD_LEAFNODE,

ADD_SUBDOMAIN, ADD_TASK, ADD_TASK_TO_JOB_SAVEAS,

ADD_TASK_TO_JOB_SAVEAS_RUNTIME, APPEND, AS_PROPS, AS_SESSION,

ATTRIBUTE_MODIFIED, BGCOLOR, BROKEN_LINK, CATALOG_CONTENT,

CATALOGER_EVENT, CLEANUP_SESSION, CMPS, Command,

CONTEXT_ATTRIBUTE_VALUES, CONTEXT_ATTRIBUTES, CONTEXT_RESULT, CPS,
CREATION_TIME, DATANODE_FLAG, DELETE_CONTEXT_EVT, DELETE_JOB_EVT,

DELETE_NOTIFICATIONS, DELETE_SESSION, DELETE_TASK, DELETE_TASK_EVT,

DROP_EXERTION, EXCEPTION_IND, EXCEPTIONS, EXERTION_PROVIDER, FALSE,

GET, GET_CONTEXT, GET_CONTEXT_NAMES, GET_FT, GET_JOB,

GET_JOB_NAME_BY_JOB_ID, GET_JOBDOMAIN, GET_JOBNAMES,
GET_NEW_SERVLET_MESSAGES, GET_NOTIFICATIONS_FOR_SESSION,

GET_RUNTIME_JOB, GET_RUNTIME_JOBNAMES, GET_SESSIONS_FOR_USER, GET_TASK,
GET_TASK_NAME_BY_TASK_ID, GET_TASK_NAMES, GETALL_DOMAIN_SUB, IN_FILE,

IN_PATH, IN_SCRIPT, IN_VALUE, IND, IS_NEW, JOB_ID, JOB_NAME, JOB_STATE,
JOB_TASK, MAIL_SEP, MAX_LOOKUP_WAIT, MAX_PRIORITY, META_MODIFIED,

MIN_PRIORITY, MODIFY_LEAFNODE, MSG_CONTENT, MSG_ID, MSG_SOURCE,

MSG_TYPE, NEW_CONTEXT_EVT, NEW_JOB_EVT, NEW_TASK_EVT, NONE,
NORMAL_PRIORITY, NOTIFY_EXCEPTION, NOTIFY_FAILURE, NOTIFY_INFORMATION,

NOTIFY_WARNING, NOTRUNTIME, NULL, OBJECT_DOMAIN, OBJECT_NAME,
OBJECT_OWNER, OBJECT_SCOPE, OBJECT_SUBDOMAIN, Order, OUT_COMMENT,

OUT_FILE, OUT_PATH, OUT_SCRIPT, OUT_VALUE, PERSIST_CONTEXT,

PERSIST_JOB, PERSIST_SORCER_NAME, PERSIST_SORCER_TYPES,

PERSISTENCE_EVENT, POSTPROCESS, PREPROCESS, PRIVATE, PRIVATE_SCOPE,

PROCESS, PROVIDER, PROVIDER_CONTEXT, PUBLIC_SCOPE,

REGISTER_FOR_NOTIFICATIONS, REMOVE_CONTEXT, REMOVE_DATANODE,

REMOVE_JOB, REMOVE_TASK, RENAME_CONTEXT, RENAME_SORCER_NAME,

RESUME_JOB, RUNTIME, SAPPEND, SAVE_TASK_AS, SAVEJOB_AS,

SAVEJOB_AS_RUNTIME, SCRATCH_CONTEXTIDS, SCRATCH_JOBEXERTIONIDS,

SCRATCH_METHODIDS, SCRATCH_TASKEXERTIONIDS, Script, SCRIPT, SELECT,

SELF, SERVICE_EXERTION, SOC_BOOLEAN, SOC_CONTEXT_LINK, SOC_DATANODE,

SOC_DB_OBJECT, SOC_DOUBLE, SOC_FLOAT, SOC_INTEGER, SOC_LONG,

SOC_PRIMITIVE, SOC_SERIALIZABLE, SOC_STRING, SORCER_FOOTER,

SORCER_HEADER, SORCER_HOME, SORCER_INTRO, SORCER_TMP_DIR, SPOSTPROCESS,

SPREPROCESS, SPROCESS, STEP_JOB, STOP_JOB, STOP_TASK,

SUBCONTEXT_CONTROL_CONTEXT_STR, SUSPEND_JOB, SYSTEM_SCOPE, TABLE_NAME,
TASK_COMMAND, TASK_ID, TASK_JOB, TASK_NAME, TASK_PROVIDER, TASK_SCRIPT,

TRUE, UPDATE_CONTEXT, UPDATE_CONTEXT_EVT, UPDATE_DATANODE,

UPDATE_EXERTION, UPDATE_JOB, UPDATE_JOB_EVT, UPDATE_TASK,

UPDATE_TASK_EVT

Constructor Summary

AuditorImpl()

 Default Constructor

AuditorImpl(java.lang.String[] args,
com.sun.jini.start.LifeCycle lifeCycle)

132

Method Summary

 void audit(sorcer.base.ServiceContext ctx)

 Audits the information sent in context in a persistent storage.

Methods inherited from class sorcer.core.provider.SorcerProvider

addLookupAttributes, addLookupGroups, addLookupLocators, destroy,

getAdmin, getConstraints, getGrants, getLookupAttributes,
getLookupGroups, getLookupLocators, getProxy, getProxyVerifier,

getServiceProxy, grant, grantSupported, init, modifyLookupAttributes,
removeLookupGroups, removeLookupLocators, setConstraints,

setLookupGroups, setLookupLocators, toString

Methods inherited from class sorcer.core.provider.ServiceProvider

doJob, doTask, dropJob, dropTask, fireEvent, getAttributes,

getDelegate, getDescription, getGroups, getInfo,

getLeastSignificantBits, getMainUIDescriptor, getMethodContexts,

getMostSignificantBits, getProperties, getProperty, getProviderID,

getProviderName, getScratchDirectory, getScratchURL, hangup, init,

init, invokeMethod, invokeMethod, isActive, isValidMethod, isValidTask,

loadConfiguration, notifyException, notifyException,

notifyExceptionWithStackTrace, notifyFailure, notifyFailure,

notifyInformation, notifyWarning, processJob, quit,

removeScratchDirectory, restore, resume, service, service0,

serviceIDNotify, setProperties, startTiming, step, stop, stopTiming,

suspend, update

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,

wait, wait

Methods inherited from interface sorcer.base.Provider

fireEvent, getAttributes, getDescription, getGroups, getInfo,
getMainUIDescriptor, getMethodContexts, getProperties, getProperty,

getProviderID, getProviderName, hangup, init, init, invokeMethod,
invokeMethod, isValidMethod, isValidTask, notifyException,

notifyException, notifyExceptionWithStackTrace, notifyFailure,

notifyFailure, notifyInformation, notifyWarning, restore,
setProperties, startTiming, stopTiming, update

Methods inherited from interface sorcer.base.MonitorableServicer

resume, step, stop, suspend

133

Methods inherited from interface sorcer.base.Servicer

service

Constructor Detail

AuditorImpl
public AuditorImpl()
 throws java.rmi.RemoteException

Default Constructor

Throws:

java.rmi.RemoteException - if remote communication could not be performed

AuditorImpl
public AuditorImpl(java.lang.String[] args,
 com.sun.jini.start.LifeCycle lifeCycle)
 throws java.lang.Exception

Method Detail

audit
public void audit(sorcer.base.ServiceContext ctx)

Audits the information sent in context in a persistent storage.

Specified by:

audit in interface Auditor

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

134

sorcer.core.provider.auditor
Class JDBCQueryTool
java.lang.Object

 java.awt.Component

 java.awt.Container

 javax.swing.JComponent

 sorcer.core.provider.auditor.JDBCQueryTool

All Implemented Interfaces:
java.awt.image.ImageObserver, java.awt.MenuContainer, java.io.Serializable

public class JDBCQueryTool

extends javax.swing.JComponent
An SQL query tool that allows for queries to be executed to a JDBC driver.

Author:
Tobias Downer, Christophe Nigaud (Treeview - atrap@club-internet.fr)

See Also:
Serialized Form

Nested Class Summary

 class JDBCQueryTool.DBItem

 Inner class for Tables

Nested classes inherited from class javax.swing.JComponent

javax.swing.JComponent.AccessibleJComponent

Nested classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent,

java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

Fields inherited from class javax.swing.JComponent

135

accessibleContext, listenerList, TOOL_TIP_TEXT_KEY, ui,

UNDEFINED_CONDITION, WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, WHEN_FOCUSED,

WHEN_IN_FOCUSED_WINDOW

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT,
TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

JDBCQueryTool(com.mckoi.jfccontrols.QueryAgent in_query_agent)

 Constructs the JComponent.

Method Summary

static void main(java.lang.String[] args)

 Application start point.

Methods inherited from class javax.swing.JComponent

addAncestorListener, addNotify, addPropertyChangeListener,

addPropertyChangeListener, addVetoableChangeListener,

computeVisibleRect, contains, createToolTip, disable, enable,

firePropertyChange, firePropertyChange, firePropertyChange,

firePropertyChange, firePropertyChange, firePropertyChange,

firePropertyChange, firePropertyChange, firePropertyChange,

fireVetoableChange, getAccessibleContext, getActionForKeyStroke,

getActionMap, getAlignmentX, getAlignmentY, getAncestorListeners,

getAutoscrolls, getBorder, getBounds, getClientProperty,

getComponentGraphics, getConditionForKeyStroke,

getDebugGraphicsOptions, getDefaultLocale, getGraphics, getHeight,

getInputMap, getInputMap, getInputVerifier, getInsets, getInsets,

getListeners, getLocation, getMaximumSize, getMinimumSize,

getNextFocusableComponent, getPreferredSize,
getPropertyChangeListeners, getPropertyChangeListeners,

getRegisteredKeyStrokes, getRootPane, getSize, getToolTipLocation,
getToolTipText, getToolTipText, getTopLevelAncestor,

getTransferHandler, getUIClassID, getVerifyInputWhenFocusTarget,

getVetoableChangeListeners, getVisibleRect, getWidth, getX, getY,
grabFocus, isDoubleBuffered, isLightweightComponent, isManagingFocus,

isMaximumSizeSet, isMinimumSizeSet, isOpaque,
isOptimizedDrawingEnabled, isPaintingTile, isPreferredSizeSet,

isRequestFocusEnabled, isValidateRoot, paint, paintBorder,

136

paintChildren, paintComponent, paintImmediately, paintImmediately,

paramString, print, printAll, printBorder, printChildren,

printComponent, processComponentKeyEvent, processKeyBinding,

processKeyEvent, processMouseMotionEvent, putClientProperty,

registerKeyboardAction, registerKeyboardAction, removeAncestorListener,

removeNotify, removePropertyChangeListener,
removePropertyChangeListener, removeVetoableChangeListener, repaint,

repaint, requestDefaultFocus, requestFocus, requestFocus,

requestFocusInWindow, requestFocusInWindow, resetKeyboardActions,

reshape, revalidate, scrollRectToVisible, setActionMap, setAlignmentX,

setAlignmentY, setAutoscrolls, setBackground, setBorder,
setDebugGraphicsOptions, setDefaultLocale, setDoubleBuffered,

setEnabled, setFont, setForeground, setInputMap, setInputVerifier,
setMaximumSize, setMinimumSize, setNextFocusableComponent, setOpaque,

setPreferredSize, setRequestFocusEnabled, setToolTipText,
setTransferHandler, setUI, setVerifyInputWhenFocusTarget, setVisible,

unregisterKeyboardAction, update, updateUI

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl,

applyComponentOrientation, areFocusTraversalKeysSet, countComponents,

deliverEvent, doLayout, findComponentAt, findComponentAt, getComponent,

getComponentAt, getComponentAt, getComponentCount, getComponents,

getContainerListeners, getFocusTraversalKeys, getFocusTraversalPolicy,

getLayout, insets, invalidate, isAncestorOf, isFocusCycleRoot,

isFocusCycleRoot, isFocusTraversalPolicySet, layout, list, list,

locate, minimumSize, paintComponents, preferredSize, printComponents,

processContainerEvent, processEvent, remove, remove, removeAll,

removeContainerListener, setFocusCycleRoot, setFocusTraversalKeys,

setFocusTraversalPolicy, setLayout, transferFocusBackward,

transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener,

addHierarchyBoundsListener, addHierarchyListener,

addInputMethodListener, addKeyListener, addMouseListener,
addMouseMotionListener, addMouseWheelListener, bounds, checkImage,

checkImage, coalesceEvents, contains, createImage, createImage,

createVolatileImage, createVolatileImage, disableEvents, dispatchEvent,

enable, enableEvents, enableInputMethods, getBackground, getBounds,

getColorModel, getComponentListeners, getComponentOrientation,

getCursor, getDropTarget, getFocusCycleRootAncestor, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground,

getGraphicsConfiguration, getHierarchyBoundsListeners,

getHierarchyListeners, getIgnoreRepaint, getInputContext,

getInputMethodListeners, getInputMethodRequests, getKeyListeners,

getLocale, getLocation, getLocationOnScreen, getMouseListeners,

getMouseMotionListeners, getMouseWheelListeners, getName, getParent,

getPeer, getSize, getToolkit, getTreeLock, gotFocus, handleEvent,

hasFocus, hide, imageUpdate, inside, isBackgroundSet, isCursorSet,

137

isDisplayable, isEnabled, isFocusable, isFocusOwner,

isFocusTraversable, isFontSet, isForegroundSet, isLightweight,

isShowing, isValid, isVisible, keyDown, keyUp, list, list, list,

location, lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit,

mouseMove, mouseUp, move, nextFocus, paintAll, postEvent, prepareImage,

prepareImage, processComponentEvent, processFocusEvent,
processHierarchyBoundsEvent, processHierarchyEvent,

processInputMethodEvent, processMouseEvent, processMouseWheelEvent,

remove, removeComponentListener, removeFocusListener,

removeHierarchyBoundsListener, removeHierarchyListener,

removeInputMethodListener, removeKeyListener, removeMouseListener,
removeMouseMotionListener, removeMouseWheelListener, repaint, repaint,

repaint, resize, resize, setBounds, setBounds, setComponentOrientation,
setCursor, setDropTarget, setFocusable, setFocusTraversalKeysEnabled,

setIgnoreRepaint, setLocale, setLocation, setLocation, setName,
setSize, setSize, show, show, size, toString, transferFocus,

transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,

wait, wait

Constructor Detail

JDBCQueryTool
public JDBCQueryTool(com.mckoi.jfccontrols.QueryAgent in_query_agent)

Constructs the JComponent.

Method Detail

main
public static void main(java.lang.String[] args)

Application start point.

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

138

sorcer.scaf.auth
Class CardCallbackHandler
java.lang.Object

 sorcer.scaf.auth.CardCallbackHandler

All Implemented Interfaces:
javax.security.auth.callback.CallbackHandler

public class CardCallbackHandler

extends java.lang.Object

implements javax.security.auth.callback.CallbackHandler
CardCallbackHandler implements CallbackHandler and passes it to underlying security services so

that they may interact with the application to retrieve specific authentication data, such as card passwords.

Underlying security services make requests for different types of information by passing individual Callbacks

to the CardCallbackHandler. The CardCallbackHandler implementation decides how to

retrieve information depending on the Callbacks passed to it. In SCAF the underlying service needs a

password to authenticate a user on card, it uses a CardPasswordCallback.

Author:
Saurabh Bhatla

See Also:
CardPasswordCallback

Constructor Summary

CardCallbackHandler(java.lang.String password)

 Constructor that initializes CallbackHandlet with password.

Method Summary

 void handle(javax.security.auth.callback.Callback[] callbacks)

 Invoke an array of Callbacks.

 void out(java.lang.String str)

 Prints debug statements

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

139

CardCallbackHandler
public CardCallbackHandler(java.lang.String password)

Constructor that initializes CallbackHandlet with password.

Parameters:

password - user password presented to the system

Method Detail

handle
public void handle(javax.security.auth.callback.Callback[] callbacks)
 throws java.io.IOException,

javax.security.auth.callback.UnsupportedCallbackException

Invoke an array of Callbacks.

Specified by:

handle in interface javax.security.auth.callback.CallbackHandler

Parameters:

callbacks - an array of Callback objects which contain the information requested

by an underlying security service to be retrieved or displayed.

Throws:

java.io.IOException - if an input or output error occurs.

javax.security.auth.callback.UnsupportedCallbackException - if the

implementation of this method does not support one or more of the Callbacks

specified in the callbacks parameter.

out
public void out(java.lang.String str)

Prints debug statements

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

140

sorcer.scaf.auth
Class CardPasswordCallback
java.lang.Object

 sorcer.scaf.auth.CardPasswordCallback

All Implemented Interfaces:
javax.security.auth.callback.Callback, java.io.Serializable

public class CardPasswordCallback

extends java.lang.Object

implements javax.security.auth.callback.Callback, java.io.Serializable
CardPasswordCallback allows underlying security services the ability to interact with a calling application to
retrieve specific authentication data such as passwords

CardPasswordCallback does not retrieve or display the information requested by underlying security
services. CardPasswordCallback simply provide the means to pass such requests to applications, and for
applications, if appropriate, to return requested information back to the underlying security services.

Author:
Saurabh Bhatla

See Also:

CardCallbackHandler, Serialized Form

Constructor Summary

CardPasswordCallback()

 Default Constructor

Method Summary

 void clearPassword()

 Clears the password stored in Callback.

 java.lang.String getPassword()

 Returns user password

 void out(java.lang.String str)

 Prints debug statements

 void setPassword(java.lang.String pass)

 Sets user password in Callback.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

141

Constructor Detail

CardPasswordCallback
public CardPasswordCallback()

Default Constructor

Method Detail

getPassword
public java.lang.String getPassword()

Returns user password

Returns:
user password

setPassword
public void setPassword(java.lang.String pass)

Sets user password in Callback.

clearPassword
public void clearPassword()

Clears the password stored in Callback.

out
public void out(java.lang.String str)

Prints debug statements

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY , ALL RIGHTS RESERVED.

142

sorcer.scaf.auth
Class CardLoginModule
java.lang.Object

 sorcer.scaf.auth.CardLoginModule

All Implemented Interfaces:
javax.security.auth.spi.LoginModule

public class CardLoginModule

extends java.lang.Object

implements javax.security.auth.spi.LoginModule
CardLoginModule authenticates users with a password. This LoginModule checks the user password using
card supplied If user successfully authenticates itself, a principal with the user's user name is added to the
Subject. This LoginModule has the debug option. If set to true in the login Configuration, debug messages
will be output to the output stream, System.out.

Author:
Saurabh Bhatla

See Also:

CardCallbackHandler, CardPasswordCallback

Constructor Summary

CardLoginModule()

Method Summary

 boolean abort()

 This method is called if the LoginContext's overall

authentication failed.

 boolean commit()

 This method is called if the LoginContext's overall

authentication succeeded (the relevant REQUIRED, REQUISITE,

SUFFICIENT and OPTIONAL LoginModules succeeded).

X509Certificate getCert()

 Retrieves the user's certificate from smart card.

 void initialize(javax.security.auth.Subject subject,
javax.security.auth.callback.CallbackHandler callbackH

andler, java.util.Map sharedState,

java.util.Map options)
 Initialize this LoginModule.

 void internalCommit()

143

 Used by commit to sign proxy certificate and retrieve

credentials from smart card.

 boolean login()

 Authenticate the user by getting the password from

CardCallbackHandler.

 boolean logout()

 Logout the user.

 void out(java.lang.String str)

 Prints debug statements

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Constructor Detail

CardLoginModule
public CardLoginModule()

Method Detail

initialize
public void initialize(javax.security.auth.Subject subject,

javax.security.auth.callback.CallbackHandler callbackHandler,

 java.util.Map sharedState,
 java.util.Map options)

Initialize this LoginModule.

Specified by:

initialize in interface javax.security.auth.spi.LoginModule

Parameters:

subject - the Subject to be authenticated.

callbackHandler - a CallbackHandler for communicating with the end user

(prompting for user names and passwords, for example).

sharedState - shared LoginModule state.

options - options specified in the login Configuration for this particular

LoginModule.

login
public boolean login()
 throws javax.security.auth.login.LoginException

144

Authenticate the user by getting the password from CardCallbackHandler.

Specified by:

login in interface javax.security.auth.spi.LoginModule

Returns:
true in all cases since this LoginModule should not be ignored.

Throws:

javax.security.auth.login.FailedLoginException - if the authentication

fails.

javax.security.auth.login.LoginException - if this LoginModule is unable

to perform the authentication.

commit
public boolean commit()
 throws javax.security.auth.login.LoginException

This method is called if the LoginContext's overall authentication succeeded (the

relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL

LoginModules succeeded). If this LoginModule's own authentication attempt

succeeded (checked by retrieving the private state saved by the login method),

then this method associates a principal, private credentials and public credentials

with the Subject located in the LoginModule. If this LoginModule's own

authentication attempted failed, then this method removes any state that was

originally saved.

Specified by:

commit in interface javax.security.auth.spi.LoginModule

Returns:
true if this LoginModule's own login and commit attempts succeeded, or false

otherwise.

Throws:

javax.security.auth.login.LoginException - if the commit fails.

abort
public boolean abort()
 throws javax.security.auth.login.LoginException

This method is called if the LoginContext's overall authentication failed. (the

relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL

LoginModules did not succeed). If this LoginModule's own authentication

attempt succeeded (checked by retrieving the private state saved by the login and

commit methods), then this method cleans up any state that was originally saved.

Specified by:

abort in interface javax.security.auth.spi.LoginModule

Returns:

145

false if this LoginModule's own login and/or commit attempts failed, and true

otherwise.

Throws:

javax.security.auth.login.LoginException - if the abort fails.

logout
public boolean logout()
 throws javax.security.auth.login.LoginException

Logout the user. This method removes the principal that was added by the commit

method.

Specified by:

logout in interface javax.security.auth.spi.LoginModule

Returns:
true in all cases since this LoginModule should not be ignored.

Throws:

javax.security.auth.login.LoginException - if the logout fails.

getCert
public java.security.cert.X509Certificate getCert()

Retrieves the user's certificate from smart card.

Returns:
user certificate

internalCommit
public void internalCommit()

Used by commit to sign proxy certificate and retrieve credentials from smart card.

out
public void out(java.lang.String str)

Prints debug statements

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED

.

146

sorcer.scaf.auth
Class CardPasswordCallback
java.lang.Object

 sorcer.scaf.auth.CardPasswordCallback

All Implemented Interfaces:
javax.security.auth.callback.Callback, java.io.Serializable

public class CardPasswordCallback

extends java.lang.Object

implements javax.security.auth.callback.Callback, java.io.Serializable
CardPasswordCallback allows underlying security services the ability to interact with a calling application to
retrieve specific authentication data such as passwords

CardPasswordCallback does not retrieve or display the information requested by underlying security
services. CardPasswordCallback simply provide the means to pass such requests to applications, and for
applications, if appropriate, to return requested information back to the underlying security services.

Author:
Saurabh Bhatla

See Also:

CardCallbackHandler, Serialized Form

Constructor Summary

CardPasswordCallback()

 Default Constructor

Method Summary

 void clearPassword()

 Clears the password stored in Callback.

 java.lang.String getPassword()

 Returns user password

 void out(java.lang.String str)

 Prints debug statements

 void setPassword(java.lang.String pass)

 Sets user password in Callback.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

147

Constructor Detail

CardPasswordCallback
public CardPasswordCallback()

Default Constructor

Method Detail

getPassword
public java.lang.String getPassword()

Returns user password

Returns:
user password

setPassword
public void setPassword(java.lang.String pass)

Sets user password in Callback.

clearPassword
public void clearPassword()

Clears the password stored in Callback.

out
public void out(java.lang.String str)

Prints debug statements

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

148

sorcer.scaf.card
Interface SmartCard

All Known Implementing Classes:
JavaCard

public interface SmartCard
A generic interface that needs to be implemented by any class that aims to provide smart card functionality.

As of now only one implementation(Java Card) is provided with SCAF. New implementation can be added
by implementing this interface.

Method Summary

 byte[] getCertificate(java.lang.String password)

 Returns user certificate from SmartCard

 byte[] getHash(java.lang.String challenge)

 Returns hash of the challenge string presented

 byte[] sign(byte[] hash, java.lang.String password)

 Encrypts the hash presented

 byte[] signObject(java.io.Serializable object,
java.lang.String password)

 Encrypts the object presented by first calculating the has for it.

 boolean verifyPin(java.lang.String password)

 Verifies user pin presented.

Method Detail

verifyPin
public boolean verifyPin(java.lang.String password)

Verifies user pin presented.

Returns:
true if the user is verified and false otherwise

getHash
public byte[] getHash(java.lang.String challenge)

Returns hash of the challenge string presented

Parameters:

challenge - string

149

Returns:
hash of challenge created using private key from card or null if hash could not be

calculated or exception is thrown

getCertificate
public byte[] getCertificate(java.lang.String password)

Returns user certificate from SmartCard

Parameters:

password - of user that owns the card

Returns:
certificate read from the card

sign
public byte[] sign(byte[] hash,
 java.lang.String password)

Encrypts the hash presented

Parameters:

hash - of the challenge that needs to be encrypted

password - of user that owns the card

Returns:
encrypted hash or null if exception is thrown

signObject
public byte[] signObject(java.io.Serializable object,
 java.lang.String password)

 throws java.io.IOException,
 java.security.InvalidKeyException,

 java.security.SignatureException

Encrypts the object presented by first calculating the has for it.

Parameters:

password - of user that owns the card

Returns:
encrypted object or null if exception is thrown

Throws:

java.io.IOException - if the object can not be accessed

java.security.InvalidKeyException - if the key read from card is not valid

java.security.SignatureException - if the signature is not valid

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

150

sorcer.scaf.card
Class CardFactory
java.lang.Object

 sorcer.scaf.card.CardFactory

public class CardFactory

extends java.lang.Object
Factory to provide various kinds of Smart Card objects

Right now only one kind of Smart Card, Java Card is supported. JavaCard instance can be created by
passing the required value. This class provides the static method to get the required instance of Smart Card.

All the instances implement SmartCard interface and provide a defined set of functions.

Author:
Saurabh Bhatla

See Also:

JavaCard, SmartCard

Field Summary

static int JAVA_CARD

 JavaCard Type

Constructor Summary

CardFactory()

Method Summary

static SmartCard getCard(int which)

 Returns required SmartCard implementation

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

Field Detail

151

JAVA_CARD
public static final int JAVA_CARD

JavaCard Type

See Also:
Constant Field Values

Constructor Detail

CardFactory
public CardFactory()

Method Detail

getCard
public static SmartCard getCard(int which)

Returns required SmartCard implementation

Parameters:

which - type of card instance that is required

Returns:
SmartCard implement if exists othewise null

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

152

sorcer.scaf.card
Class JavaCard
java.lang.Object

 sorcer.scaf.card.JavaCard

All Implemented Interfaces:
opencard.core.event.CTListener, java.util.EventListener, SmartCard

public class JavaCard

extends java.lang.Object

implements opencard.core.event.CTListener, SmartCard
JavaCard Implementation of SmartCard. Needs user password to to log into javacard. A window is shown if
the card is not plugged in.

Uses PassThruCardService to access CardEdgeApplet residing on the card. Java Card has to have
CardEdgeApplet installed as all the commands presented to the card are specific to that applet. For more
information on CardEdgeApplet visit www.muscle.org

Provides implementation of all SmartCard function like for password verification, hash generation, encryption
(strings and objects) and retrieving user certificates from card.

Author:
Saurabh Bhatla

See Also:
SmartCard

Field Summary

static byte CHLG_LEN

 lenght of host challenge

Constructor Summary

JavaCard()

 Default Constructor

Method Summary

 void cardInserted(opencard.core.event.CardTerminalEvent ctEven
t)
 Signalled when cars is inserted into the reader

 void cardRemoved(opencard.core.event.CardTerminalEvent ctEvent
)

 Signalled when card is removed from the reader

153

 boolean getCardIn()

 Retuns true if card is in the reader

 byte[] getCertificate(java.lang.String password)

 Returns user certificate from SmartCard

 byte[] getHash(java.lang.String challenge)

 Returns hash of the challenge string presented

protected

 byte[]
getResponse(byte len)

 Retrieves response apdus from card.

 opencard.co

re.service.S

martCard

getSmartCard()

 Gets Open Card Framework's Smart Card object

 void getWindow()

 Displays the information window to plug in Java Card

 void out(java.lang.String str)

 Prints debug statements

protected
 byte

readCertificate(byte off1, byte off2, byte len)

 Reads user certificate data from SmartCard

 void selectApplet()

 Selects CardEdgeApplet

 void shutdown()

 Shuts down java card

protected

 byte
sigFinal(byte[] hash)

 Sends SigFinal command to CardEdgeApplet

protected

 void
sigInit()

 Sends SigInt command to CardEdgeApplet.

 byte[] sign(byte[] hash, java.lang.String password)

 Encrypts the hash presented

 byte[] signObject(java.io.Serializable object,
java.lang.String password)
 Encrypts the object presented by first calculating the has for it.

 boolean verify(java.lang.String passwd)

 Verifies user pin presented.

 boolean verifyPin(java.lang.String passwd)

 USed by verify() to verify user pin presented.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

154

Field Detail

CHLG_LEN
public static byte CHLG_LEN

lenght of host challenge

Constructor Detail

JavaCard
public JavaCard()
 throws java.lang.Exception

Default Constructor

Throws:

java.lang.Exception - if initialization could not be done

Method Detail

getWindow
public void getWindow()

Displays the information window to plug in Java Card

cardInserted
public void cardInserted(opencard.core.event.CardTerminalEvent ctEvent)

Signalled when cars is inserted into the reader

Specified by:

cardInserted in interface opencard.core.event.CTListener

cardRemoved
public void cardRemoved(opencard.core.event.CardTerminalEvent ctEvent)

Signalled when card is removed from the reader

Specified by:

cardRemoved in interface opencard.core.event.CTListener

getCardIn
public boolean getCardIn()

Retuns true if card is in the reader

Returns:
true is card is in the reader

155

getSmartCard
public opencard.core.service.SmartCard getSmartCard()

Gets Open Card Framework's Smart Card object

shutdown
public void shutdown()

Shuts down java card

getHash
public byte[] getHash(java.lang.String challenge)

Returns hash of the challenge string presented

Specified by:

getHash in interface SmartCard

Parameters:

challenge - string

Returns:
hash of challenge created using private key from card or null if hash could not be

calculated or exception is thrown

verifyPin
public boolean verifyPin(java.lang.String passwd)

USed by verify() to verify user pin presented.

Specified by:

verifyPin in interface SmartCard

Returns:
true if the user is verified and false otherwise

selectApplet
public void selectApplet()

Selects CardEdgeApplet

verify
public boolean verify(java.lang.String passwd)

Verifies user pin presented.

Returns:
true if the user is verified and false otherwise

156

sign
public byte[] sign(byte[] hash,
 java.lang.String password)

Encrypts the hash presented

Specified by:

sign in interface SmartCard

Parameters:

hash - of the challenge that needs to be encrypted

password - of user that owns the card

Returns:
encrypted hash or null if exception is thrown

sigInit
protected void sigInit()

Sends SigInt command to CardEdgeApplet. Sends parameters like which key,

algorith etc to use.

sigFinal
protected byte sigFinal(byte[] hash)

Sends SigFinal command to CardEdgeApplet

Parameters:

hash - of the data that needs to be signed

Returns:
response from CardEdgeApplet

getResponse
protected byte[] getResponse(byte len)

Retrieves response apdus from card. Used by all the methods to get the result of

the operation executed

Returns:
data that is read as a response to some previous command apdu sent

readCertificate
protected byte readCertificate(byte off1,
 byte off2,

 byte len)

Reads user certificate data from SmartCard

Returns:
certificate data read from the card

157

getCertificate
public byte[] getCertificate(java.lang.String password)

Returns user certificate from SmartCard

Specified by:

getCertificate in interface SmartCard

Parameters:

password - of user that owns the card

Returns:
certificate read from the card

signObject
public byte[] signObject(java.io.Serializable object,
 java.lang.String password)

 throws java.io.IOException,

 java.security.InvalidKeyException,

 java.security.SignatureException

Encrypts the object presented by first calculating the has for it.

Specified by:

signObject in interface SmartCard

Parameters:

password - of user that owns the card

Returns:
encrypted object

Throws:

java.io.IOException - if the object can not be accessed

java.security.InvalidKeyException - if the key read from card is not valid

java.security.SignatureException - if the signature is not valid

out
public void out(java.lang.String str)

Prints debug statements

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

158

sorcer.scaf.ui
Interface LogonListener

public interface LogonListener
Listener that is required to be implemented by application classes that need to use SCAF. It is used as
channel to pass information from the SCAF framework classes to application that is using SCAF.

Card password would be required by application classes to sign ServiceTask and generate
SignedServiceTask

Subject would be used by application classes to be sent in the ServiceContext. This is subject holds the
name of the user retrieved from the card.

Author:
Saurabh Bhatla

Method Summary

 void logonDone(java.lang.String password,
javax.security.auth.Subject subject)

 Signalled when logon is done successfully.

Method Detail

logonDone
public void logonDone(java.lang.String password,
 javax.security.auth.Subject subject)

Signalled when logon is done successfully.

Parameters:

password - of the user that was taken by SCAF and is required to be sent to the

application

subject - that contains user name read from card

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

159

sorcer.scaf.ui
Class SecureUI
java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 sorcer.scaf.ui.SecureUI

All Implemented Interfaces:
javax.accessibility.Accessible, java.awt.image.ImageObserver,

java.awt.MenuContainer, javax.swing.RootPaneContainer, java.io.Serializable,

javax.swing.WindowConstants

public class SecureUI

extends javax.swing.JFrame
This is the facade class that is exposed by SCAF to be extended by any application that needs to use SCAF
to provide authentication and authorization in SORCER. It gets the proxy object downloaded from the
provider and loads the configuration files to be used to make communication channel with the provider. It
then checks all the constraints that are specified in the configuration file and throws an exception if any of
the constraint is not met.

It uses prepare-minimal.config configuration file which requires Integerity and Confidentiality constraints to
be statisfied. It uses SSL channel to provide integrity and confidentiality.

An inner class is used to present the user with the a frame that takes the user password for the card. A
subject is created using proxy certificates key pair, which is signed by private key from the card. A user is
gives three chances to authenticate himself after which SCAF terminates.

Author:
Saurabh Bhatla

See Also:

CardLoginModule, LogonFrame, Serialized Form

Nested Class Summary

Nested classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Nested classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

160

Nested classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Nested classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent,

java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

protected

 net.jini.config.Configuration
config

 Configuration used to set constraints

protected

 javax.security.auth.Subject
loggedSubject

 Currently logged in subject

protected java.lang.Object preparedProxy

 Proxy received after verification

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR,
ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ, MAXIMIZED_VERT,

MOVE_CURSOR, N_RESIZE_CURSOR, NE_RESIZE_CURSOR, NORMAL,
NW_RESIZE_CURSOR, S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR,

TEXT_CURSOR, W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT,

TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

161

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

SecureUI(java.lang.Object obj)

 Default Constructor.

Method Summary

protected void getLogonFrame(LogonListener listener)

 Returns LogonFrame that will be used to take

password for card

protected java.lang.Object getPreparedProxy()

 Returns PreparedProxy

 javax.security.auth.Subject getSubject()

 Returns subject that was created after

successfull authentication

 void init()

 Initializes SCAF

 void out(java.lang.String str)

 Prints debug statements

protected void prepareProxy(java.lang.Object obj)

 Prepares the proxy object by performing all

validation that would be used to communicate with

the provider

protected void setPermission()

 Sets permission for the prinicipal that was

logged in

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext,

getContentPane, getDefaultCloseOperation, getGlassPane, getJMenuBar,

getLayeredPane, getRootPane, isDefaultLookAndFeelDecorated,
isRootPaneCheckingEnabled, paramString, processWindowEvent, remove,

setContentPane, setDefaultCloseOperation,
setDefaultLookAndFeelDecorated, setGlassPane, setJMenuBar,

setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled,
update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getExtendedState, getFrames,

162

getIconImage, getMaximizedBounds, getMenuBar, getState, getTitle,

isResizable, isUndecorated, remove, removeNotify, setCursor,

setExtendedState, setIconImage, setMaximizedBounds, setMenuBar,

setResizable, setState, setTitle, setUndecorated

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener,

addWindowFocusListener, addWindowListener, addWindowStateListener,
applyResourceBundle, applyResourceBundle, createBufferStrategy,

createBufferStrategy, dispose, getBufferStrategy,
getFocusableWindowState, getFocusCycleRootAncestor, getFocusOwner,

getFocusTraversalKeys, getGraphicsConfiguration, getInputContext,

getListeners, getLocale, getMostRecentFocusOwner, getOwnedWindows,
getOwner, getToolkit, getWarningString, getWindowFocusListeners,

getWindowListeners, getWindowStateListeners, hide, isActive,
isFocusableWindow, isFocusCycleRoot, isFocused, isShowing, pack,

postEvent, processEvent, processWindowFocusEvent,

processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, setCursor,

setFocusableWindowState, setFocusCycleRoot, setLocationRelativeTo,

show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener,
applyComponentOrientation, areFocusTraversalKeysSet, countComponents,

deliverEvent, doLayout, findComponentAt, findComponentAt,

getAlignmentX, getAlignmentY, getComponent, getComponentAt,
getComponentAt, getComponentCount, getComponents,

getContainerListeners, getFocusTraversalPolicy, getInsets, getLayout,
getMaximumSize, getMinimumSize, getPreferredSize, insets, invalidate,

isAncestorOf, isFocusCycleRoot, isFocusTraversalPolicySet, layout,
list, list, locate, minimumSize, paint, paintComponents, preferredSize,

print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setFocusTraversalKeys,

setFocusTraversalPolicy, setFont, transferFocusBackward,

transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener,

addHierarchyBoundsListener, addHierarchyListener,

addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage,

checkImage, coalesceEvents, contains, contains, createImage,

createImage, createVolatileImage, createVolatileImage, disable,

disableEvents, dispatchEvent, enable, enable, enableEvents,
enableInputMethods, firePropertyChange, firePropertyChange,

firePropertyChange, getBackground, getBounds, getBounds, getColorModel,
getComponentListeners, getComponentOrientation, getCursor,

163

getDropTarget, getFocusListeners, getFocusTraversalKeysEnabled,

getFont, getFontMetrics, getForeground, getGraphics, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint,

getInputMethodListeners, getInputMethodRequests, getKeyListeners,

getLocation, getLocation, getLocationOnScreen, getMouseListeners,

getMouseMotionListeners, getMouseWheelListeners, getName, getParent,
getPeer, getPropertyChangeListeners, getPropertyChangeListeners,

getSize, getSize, getTreeLock, getWidth, getX, getY, gotFocus,

handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet,

isCursorSet, isDisplayable, isDoubleBuffered, isEnabled, isFocusable,

isFocusOwner, isFocusTraversable, isFontSet, isForegroundSet,
isLightweight, isOpaque, isValid, isVisible, keyDown, keyUp, list,

list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter,
mouseExit, mouseMove, mouseUp, move, nextFocus, paintAll, prepareImage,

prepareImage, printAll, processComponentEvent, processFocusEvent,
processHierarchyBoundsEvent, processHierarchyEvent,

processInputMethodEvent, processKeyEvent, processMouseEvent,

processMouseMotionEvent, processMouseWheelEvent,
removeComponentListener, removeFocusListener,

removeHierarchyBoundsListener, removeHierarchyListener,
removeInputMethodListener, removeKeyListener, removeMouseListener,

removeMouseMotionListener, removeMouseWheelListener,

removePropertyChangeListener, removePropertyChangeListener, repaint,

repaint, repaint, repaint, requestFocus, requestFocus,

requestFocusInWindow, requestFocusInWindow, reshape, resize, resize,

setBackground, setBounds, setBounds, setComponentOrientation,

setDropTarget, setEnabled, setFocusable, setFocusTraversalKeysEnabled,

setForeground, setIgnoreRepaint, setLocale, setLocation, setLocation,

setName, setSize, setSize, setVisible, show, size, toString,

transferFocus, transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Field Detail

config
protected net.jini.config.Configuration config

Configuration used to set constraints

loggedSubject
protected javax.security.auth.Subject loggedSubject

164

Currently logged in subject

preparedProxy
protected java.lang.Object preparedProxy

Proxy received after verification

Constructor Detail

SecureUI
public SecureUI(java.lang.Object obj)

Default Constructor. It uses prepare-minimal.config configuration file which

requires Integerity and Confidentiality constraints to be statisfied.

Method Detail

getSubject
public javax.security.auth.Subject getSubject()

Returns subject that was created after successfull authentication

Returns:
loggedSubject

init
public void init()

Initializes SCAF

prepareProxy
protected void prepareProxy(java.lang.Object obj)

Prepares the proxy object by performing all validation that would be used to

communicate with the provider

getLogonFrame
protected void getLogonFrame(LogonListener listener)

Returns LogonFrame that will be used to take password for card

getPreparedProxy
protected java.lang.Object getPreparedProxy()

Returns PreparedProxy

Returns:
prepared proxy

165

setPermission
protected void setPermission()

Sets permission for the prinicipal that was logged in

out
public void out(java.lang.String str)

Prints debug statements

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

166

sorcer.security.sign
Interface SignedTaskInterface

All Known Implementing Classes:
SignedServiceTask

public interface SignedTaskInterface
Interface for making a signed ServiceTask. SignedServiceTask is sent over the communication channel to
the provider where ServiceTask is retrieved from it and the SignedServiceTask object is saved in the
database along with the prinicipal name sent in context.

Author:
Saurabh Bhatla

See Also:
SignedTaskInterface

Method Summary

 java.lang.Object getObject()

 Returns saved ServiceTask.

 byte[] getSignature()

 Returns encrypted ServiceTask.

 void setSignature(byte[] signature,
java.rmi.MarshalledObject mobject)

 Sets the signature and the object whose signature is being

sent

 boolean verify(java.security.PublicKey publickey,
java.security.Signature signature1)
 Used to verify the signature.

Method Detail

getSignature
public byte[] getSignature()

Returns encrypted ServiceTask.

Returns:
array containing signed bytes

setSignature
public void setSignature(byte[] signature,
 java.rmi.MarshalledObject mobject)

167

 throws java.io.IOException

Sets the signature and the object whose signature is being sent

Parameters:

signature - of ServiceTask object

Throws:

java.io.IOException - if the object could not be accessed

getObject
public java.lang.Object getObject()
 throws java.io.IOException,

 java.lang.ClassNotFoundException

Returns saved ServiceTask.

Returns:
object which is an instance of ServiceTask

Throws:

java.io.IOException - if the object could not be accessed

java.lang.ClassNotFoundException - if the class for object could not be found

verify
public boolean verify(java.security.PublicKey publickey,
 java.security.Signature signature1)

 throws java.security.InvalidKeyException,

 java.security.SignatureException,

 java.io.IOException,

 java.lang.ClassNotFoundException

Used to verify the signature. Uses PublicKey supplied to decrypt signature and

matches it withe object

Parameters:

publickey - of the key pair whose private key was used to encrypt the object

Throws:

java.io.IOException - if the object could not be accessed

java.lang.ClassNotFoundException - if the class for object could not be found

SignatureExceptiono - if the signature is not of right format

java.security.InvalidKeyException - if the key supplied is not of right

format
java.security.SignatureException

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

168

sorcer.security.sign
Class SignedServiceTask
java.lang.Object

 sorcer.core.ExertionImpl

 sorcer.core.ServiceTask

 sorcer.security.sign.SignedServiceTask

All Implemented Interfaces:
sorcer.base.Exertion, sorcer.core.ExertionState, jgapp.util.GApp,

java.io.Serializable, SignedTaskInterface, sorcer.util.SORCER

public final class SignedServiceTask

extends sorcer.core.ServiceTask

implements SignedTaskInterface, java.io.Serializable
Any task that needs to be saved in a database is sent by encapsulating it in a SignedServiceTask.
SignedServiceTask is the implementation of SignedTaskInterface. At the provider if a SignedServiceTask is
received, ServiceTask from it is extracted and is used to perform all the method execution.
SignedServiceTask is sent to Auditor service along with the subject that is sent with this SignedServiceTask
from Service UI to provider. That subject contains the principal name that is used to save this task in
database.

Author:
Saurabh Bhatla

See Also:

SignedTaskInterface, Serialized Form

Field Summary

Fields inherited from class sorcer.core.ServiceTask

context

Fields inherited from class sorcer.core.ExertionImpl

accessClass, deletedIDs, description, domainID, exceptionCount,

exertionID, goodUntilDate, index, isExportControlled, isRuntime,

linkCount, linkedIDs, lsbID, methods, mode, monitorSession, msbID,

name, ownerID, parentID, principal, priority, project, providerName,

runtimeID, scopeCode, selfMode, serviceType, sessionID, startTime,

status, subdomainID, subjectID

Fields inherited from interface sorcer.util.SORCER

ADD_DATANODE, ADD_DOMAIN, ADD_JOB_TO_SESSION, ADD_LEAFNODE,

ADD_SUBDOMAIN, ADD_TASK, ADD_TASK_TO_JOB_SAVEAS,

169

ADD_TASK_TO_JOB_SAVEAS_RUNTIME, APPEND, AS_PROPS, AS_SESSION,

ATTRIBUTE_MODIFIED, BGCOLOR, BROKEN_LINK, CATALOG_CONTENT,

CATALOGER_EVENT, CLEANUP_SESSION, CMPS, Command,

CONTEXT_ATTRIBUTE_VALUES, CONTEXT_ATTRIBUTES, CONTEXT_RESULT, CPS,

CREATION_TIME, DATANODE_FLAG, DELETE_CONTEXT_EVT, DELETE_JOB_EVT,

DELETE_NOTIFICATIONS, DELETE_SESSION, DELETE_TASK, DELETE_TASK_EVT,
DROP_EXERTION, EXCEPTION_IND, EXCEPTIONS, EXERTION_PROVIDER, FALSE,

GET, GET_CONTEXT, GET_CONTEXT_NAMES, GET_FT, GET_JOB,

GET_JOB_NAME_BY_JOB_ID, GET_JOBDOMAIN, GET_JOBNAMES,

GET_NEW_SERVLET_MESSAGES, GET_NOTIFICATIONS_FOR_SESSION,

GET_RUNTIME_JOB, GET_RUNTIME_JOBNAMES, GET_SESSIONS_FOR_USER, GET_TASK,
GET_TASK_NAME_BY_TASK_ID, GET_TASK_NAMES, GETALL_DOMAIN_SUB, IN_FILE,

IN_PATH, IN_SCRIPT, IN_VALUE, IND, IS_NEW, JOB_ID, JOB_NAME, JOB_STATE,
JOB_TASK, MAIL_SEP, MAX_LOOKUP_WAIT, MAX_PRIORITY, META_MODIFIED,

MIN_PRIORITY, MODIFY_LEAFNODE, MSG_CONTENT, MSG_ID, MSG_SOURCE,
MSG_TYPE, NEW_CONTEXT_EVT, NEW_JOB_EVT, NEW_TASK_EVT, NONE,

NORMAL_PRIORITY, NOTIFY_EXCEPTION, NOTIFY_FAILURE, NOTIFY_INFORMATION,

NOTIFY_WARNING, NOTRUNTIME, NULL, OBJECT_DOMAIN, OBJECT_NAME,
OBJECT_OWNER, OBJECT_SCOPE, OBJECT_SUBDOMAIN, Order, OUT_COMMENT,

OUT_FILE, OUT_PATH, OUT_SCRIPT, OUT_VALUE, PERSIST_CONTEXT,
PERSIST_JOB, PERSIST_SORCER_NAME, PERSIST_SORCER_TYPES,

PERSISTENCE_EVENT, POSTPROCESS, PREPROCESS, PRIVATE, PRIVATE_SCOPE,

PROCESS, PROVIDER, PROVIDER_CONTEXT, PUBLIC_SCOPE,

REGISTER_FOR_NOTIFICATIONS, REMOVE_CONTEXT, REMOVE_DATANODE,

REMOVE_JOB, REMOVE_TASK, RENAME_CONTEXT, RENAME_SORCER_NAME,

RESUME_JOB, RUNTIME, SAPPEND, SAVE_TASK_AS, SAVEJOB_AS,

SAVEJOB_AS_RUNTIME, SCRATCH_CONTEXTIDS, SCRATCH_JOBEXERTIONIDS,

SCRATCH_METHODIDS, SCRATCH_TASKEXERTIONIDS, Script, SCRIPT, SELECT,

SELF, SERVICE_EXERTION, SOC_BOOLEAN, SOC_CONTEXT_LINK, SOC_DATANODE,

SOC_DB_OBJECT, SOC_DOUBLE, SOC_FLOAT, SOC_INTEGER, SOC_LONG,

SOC_PRIMITIVE, SOC_SERIALIZABLE, SOC_STRING, SORCER_FOOTER,

SORCER_HEADER, SORCER_HOME, SORCER_INTRO, SORCER_TMP_DIR, SPOSTPROCESS,

SPREPROCESS, SPROCESS, STEP_JOB, STOP_JOB, STOP_TASK,

SUBCONTEXT_CONTROL_CONTEXT_STR, SUSPEND_JOB, SYSTEM_SCOPE, TABLE_NAME,

TASK_COMMAND, TASK_ID, TASK_JOB, TASK_NAME, TASK_PROVIDER, TASK_SCRIPT,

TRUE, UPDATE_CONTEXT, UPDATE_CONTEXT_EVT, UPDATE_DATANODE,
UPDATE_EXERTION, UPDATE_JOB, UPDATE_JOB_EVT, UPDATE_TASK,

UPDATE_TASK_EVT

Fields inherited from interface jgapp.util.GApp

ACL_CMD, ACL_FOROBJECT, ACL_ID, ACL_ISAUTHORIZED, ACL_MODE, ACL_OBJID,
ACL_OBJNAME, ACL_OBJTYPE, ACL_OWNER, ACL_PERMISSIONS, ACL_PID,

ACL_PNAME, ACL_PTYPE, ACL_ROLES, ADD_DOCUMENT, ADD_FOLDER, ADD_GROUP,
ADD_PERMISSION, ADD_ROLE, ADD_USER, ADOC, ADRAFT, AOWNER,

APPROVAL_REJECT_REASON, APPROVAL_STATUS, APPROVE_DOC, APPROVED_DOC,
ASSIGN_TO_DOC, ATTACHED, ATYPE, AUTHORIZE, AUTHORIZE_UPLOAD,

BUFFER_ACL, CACL, CADD, CALL, CAPPROVAL, CDELETE, CDOC, CDOCUMENT,

CDRAFT, CEMAIL, CFOLDER, CGROUP, CHANGEPASSWD, CONFIDENTIAL, COWNER,

CPERMISSION, CREAD, CROLE, CUPDATE, CUSER, CVER, CVERSION, CVIEW, DACL,

DACLASS, DAGROUP, DATA, DCONTEXT, DCONTEXTOID, DCVOID, DDDATE, DDESC,
DECONTROL, DELETE_DOCUMENT, DELETE_DRAFT, DELETE_FOLDER,

170

DELETE_FOLDERS, DELETE_GROUP, DELETE_PERMISSION, DELETE_REVIEW,

DELETE_ROLE, DELETE_USER, DELETE_VERSION, DELETED, delim, DGROUPS,

DGUDATE, DISPATCH_CMD, DLUDATE, DMEMBERS, DNAME, DNEGPERMS, DO_JOB,

DO_TASK, DOC, DOID, DOWNER, DPOSPERMS, DRGROUP, DROLES, DUSER, DWDATE,

EXEC_MANDATE, EXECCMD, EXECDEFAULT, EXECPQUERY, EXECPREPQUERY,

EXECPREPUPDATE, EXECPROVIDER, EXECQUERY, EXECUPDATE, FACLASS, FDESC,
FECONTROL, FNAME, FOID, FOLDER_CLOSE, FOLDER_LEAF, FOLDER_OPEN, FOWNER,

FPARENT, FPATH, FREEZE_FOLDER, FU_CLASS_ACCESS, FU_CONTEXT_ID, FU_DESC,

FU_EXPORT_CONTROL, FU_FILE, FU_FILE_SIZE, FU_MIME_TYPE, FU_MODIFIER,

FU_USER, FUPLOAD, GAPP_CMD_END, GENERATE_HTML, GET_ACL,

GET_DIRECTORIES, GET_DOCUMENT, GET_DRAFT, GET_GAPP_PRINCIPAL,
GET_GAPPACL, GET_ROLES, GET_SSO_PRINCIPAL, GNAME, GOEMAIL, GOFIRST,

GOID, GOLAST, GOLOGIN, GOPHONE, GREEN, GROUP, IS_ALIVE, ISVIEW_FOLDER,
LIST_DIRECTORIES, LIST_FILES, LOAD_GROUPS, LOAD_PERMISSION, LOAD_ROLES,

LOCK_FOLDER, LOG, LOGIN, MAKE_CURRENT, MBCC, MCC, metaSep, MFROM,
MODIFIED, MOVE_DOCUMENT, MOVE_FOLDER, MSIZE, MSUBJECT, MTEXT, MTO, NEW,

NONE, OBJECT_CMD_START, OPEN_FOLDER, OWNER, PENDING, PID, POPERATION,

PREPROCESS_DOCDESC, PSIGN, PTYPE, PUBLIC, RED, REDIRECT,
RESTORE_OBJECT, RID, ROID, ROLE, ROPERATION, ROTYPE, RPERMISSION,

RPERMISSION_ID, RPERMISSION_OBJTYPE, RPERMISSION_SIGN, RROLE, SECRET,
seed, SEND_MAIL, SENSITIVE, sep, sepChar, SERVICE_CMD_START,

SERVLET_UPDATE, SQUARE_GREEN, SQUARE_NONE, STATUS, STORE_OBJECT,

SUBFOLDERS, SUBSCRIBE_TO_FOLDER, SUPDATE, U_ACTION, U_ARG1, U_ARG2,

U_ARG3, UACLASS, UECONTROL, UEMAIL, UFIRST, ULAST, ULOGIN, UNMODIFIED,

UOID, UPASS, UPDATE, UPDATE_DOCUMENT, UPDATE_DRAFT, UPDATE_FOLDER,

UPDATE_GROUP, UPDATE_PERMISSION, UPDATE_REVIEW, UPDATE_ROLE,

UPDATE_USER, UPDATE_VERSION, UPHONE, UPLOAD_ATTACH, UPLOAD_DESCRIPTOR,

UPLOAD_DOC, UPLOAD_DRAFT, UPLOAD_END, UPLOAD_REVIEW, UPLOAD_VERSION,

UROLE, USERS, USSO, USSOUID, VALIDATE_APPROVAL, VALIDATE_REVIEW,

XACCESS_NAME, XACLASS, XCOMMENTS, XCONTEXT, XCONTEXTOID, XDATE,

XECONTROL, XOID, XOWNER, XOWNEROID, XVERSION, YELLOW

Fields inherited from interface sorcer.core.ExertionState

DONE, ERROR, FAILED, INITIAL, INSPACE, INVALID_CMD, LOCK_ERROR,

RUNNING, STOPPED, SUSPENDED, TRANSACTION_ERROR

Constructor Summary

SignedServiceTask(java.lang.String name, java.lang.String description,
sorcer.core.ServiceMethod[] methods)

 Constructor to an instance of SignedServiceTask

Method Summary

 java.lang.Object getObject()

 Returns saved ServiceTask.

 byte[] getSignature()

 Sets the signature and the object whose signature is being

171

sent

 void setSignature(byte[] signature,
java.rmi.MarshalledObject mobject)
 Returns encrypted ServiceTask.

 boolean verify(java.security.PublicKey publickey,
java.security.Signature signature1)

 Used to verify the signature.

Methods inherited from class sorcer.core.ServiceTask

addException, doIt, equals, getContext, getContextName, isJob, isTask,

job, sc, setContext, setOwnerID, task, toString

Methods inherited from class sorcer.core.ExertionImpl

addMethod, compareByIndex, contextToString, copyValues, getAccessClass,
getDeletedIDs, getDescription, getDomainID, getExceptionCount,

getGoodUntilDate, getID, getIndex, getLinkCount, getLinkedIDs,

getLsbID, getMethod, getMethods, getMode, getMsbID, getName,
getOwnerID, getParentID, getPrincipal, getPriority, getProject,

getProviderName, getRuntimeID, getScopeCode, getSelfMode,
getServiceType, getSessionID, getStatus, getSubdomainID, getSubjectID,

isEntry, isExecutable, isExportControlled, isExportControlled,

isLinked, isModified, isOrder, isRuntime, isRuntime, isScript,

modified, removeMethod, selfModified, setAccessClass, setDeletedIDs,

setDescription, setDomainID, setExceptionCount, setGoodUntilDate,

setID, setIndex, setLinkCount, setLinkedIDs, setLsbID, setMethods,

setMode, setMsbID, setName, setParentID, setPrincipal, setPriority,

setProject, setProviderName, setRuntimeID, setScopeCode, setSelfMode,

setServiceType, setSessionID, setStatus, setSubdomainID, setSubjectID

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

SignedServiceTask
public SignedServiceTask(java.lang.String name,
 java.lang.String description,
 sorcer.core.ServiceMethod[] methods)

Constructor to an instance of SignedServiceTask

Parameters:

name - task name

description - task description

172

methods - array of ServiceMethods that need to be executed

Method Detail

setSignature
public void setSignature(byte[] signature,
 java.rmi.MarshalledObject mobject)

 throws java.io.IOException

Returns encrypted ServiceTask.

Specified by:

setSignature in interface SignedTaskInterface

Parameters:

signature - of ServiceTask object

Returns:
array containing signed bytes

Throws:

java.io.IOException - if the object could not be accessed

getSignature
public byte[] getSignature()

Sets the signature and the object whose signature is being sent

Specified by:

getSignature in interface SignedTaskInterface

Returns:
array containing signed bytes

Throws:

java.io.IOException - if the object could not be accessed

getObject
public java.lang.Object getObject()
 throws java.io.IOException,
 java.lang.ClassNotFoundException

Returns saved ServiceTask.

Specified by:

getObject in interface SignedTaskInterface

Returns:
object which is an instance of ServiceTask

Throws:

java.io.IOException - if the object could not be accessed

java.lang.ClassNotFoundException - if the class for object could not be found

173

verify
public boolean verify(java.security.PublicKey publickey,
 java.security.Signature signature1)

 throws java.security.InvalidKeyException,

 java.security.SignatureException,

 java.io.IOException,

 java.lang.ClassNotFoundException

Used to verify the signature. Uses PublicKey supplied to decrypt signature and

matches it withe object

Specified by:

verify in interface SignedTaskInterface

Parameters:

publickey - of the key pair whose private key was used to encrypt the object

Throws:

java.io.IOException - if the object could not be accessed

java.lang.ClassNotFoundException - if the class for object could not be found

SignatureExceptiono - if the signature is not of right format

java.security.InvalidKeyException - if the key supplied is not of right

format
java.security.SignatureException

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

174

sorcer.security.sign
Class TaskAuditor
java.lang.Object

 sorcer.security.sign.TaskAuditor

public class TaskAuditor

extends java.lang.Object
All secure data or transactions in SCAF are saved using an Auditor Service. This class starts a new worker
thread that looks for Auditor Service and then calls auditor method of that to save the task submitted.

Author:
Saurabh Bhatla

See Also:

SignedTaskInterface, SignedServiceTask, TaskAuditor.AuditThread

Nested Class Summary

protected

 class
TaskAuditor.AuditThread

 Inner class of TaskAuditor< whih starts a new thread to start looking

for Auditor Provider.

Field Summary

protected

 sorcer.core.Auditor
auditor

 Auditor Service Provider

Constructor Summary

TaskAuditor()

Method Summary

 void audit(SignedServiceTask task)

 Audits the SignedServiceTask.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString, wait, wait, wait

175

Field Detail

auditor
protected sorcer.core.Auditor auditor

Auditor Service Provider

Constructor Detail

TaskAuditor
public TaskAuditor()

Method Detail

audit
public void audit(SignedServiceTask task)

Audits the SignedServiceTask.

Parameters:

task - a signed service task that needs to be saved.

COPYRIGHT (C) 2005 TEXAS TECH UNIVERSITY, ALL RIGHTS RESERVED.

176

C. CardEdge Commands

Command Name S/R

INS

(hex)

P1 P2 P3 DATA

Key Handling Commands

GenerateKeyPair S 30
Prv Key

N.

Pub Key

N
Size

Gen

Params

ImportKey S 32 Key N. 0x00 Size
Imp

Params

ExportKey S 34 Key N. 0x00 Size
Exp

Params

ComputeCrypt S 36 Key N. Operation Size Ext Data

ExtAuthenticate S 38 Key N. 0x00 Size Ext Data

ListKeys R 3A
Seq

Option
0x00 0x0B -

Pin Related Commands

CreatePIN S 40 PIN N.
Max

Attempts
Size

PIN

Params

VerifyPIN S 42 PIN N. 0x00 Size PIN Code

ChangePIN S 44 PIN N. 0x00 Size Params

UnblockPIN R 46 PIN N. 0x00 Size
Unblock

Code

ListPIN R 48 0x00 0x00 0x02 -

Object Related Commands

CreateObject S 5A 0x00 0x00 0x0E Create ID

DeleteObject S 52 0x00 Zero Flag 0x04 ObjectID

WriteObject S 54 0x00 0x00 Size Params

ReadObject S/R 56 0x00 0x00 Size Params

ListObject R 58
Seq

Option
0x00 0x0E -

Other

LogOutAll S 60 0x00 0x00 0x02 0x0000

GetChallenge S 62 0x00

Output

Data

Location

Size
Chall.

Parameters

GetStatus R 3C 0x00 0x00 0x10 -

IsoVerify S 20 0x00 PIN N. Size PIN Code

IsoGetResponse R C0 0x00 0x00
Expected

Size
-

177

D. CardEdge Error Codes

Return Codes (Status Words)

Value Symbolic Name Description

90 00 SW_SUCCESS (ISO)
Operation successfully

completed

9C 01 SW_NO_MEMORY_LEFT

Insufficient memory

onto the card to

complete the operation

9C 02 SW_AUTH_FAILED

Unsuccessful

authentication. Multiple

consecutive failures

cause the identity to

block

9C 03 SW_OPERATION_NOT_ALLOWED

Operation not allowed

because of the internal

state of the Applet

internal state of the

Applet

9C 05 SW_UNSUPPORTED_FEATURE

The requested feature is

not supported either by

the card or by the

Applet

9C 06 SW_UNAUTHORIZED

Logged in identities

don’t have enough

privileges for the

requested operation

9C 07 SW_OBJECT_NOT_FOUND

An object either

explicitly or

implicitly involved in

the operation was not

found

9C 08 SW_OBJ_EXISTS Object already exists

178

9C 09 SW_INCORRECT_ALG

Input data to the

command contained an

invalid algorithm

9C 0B SW_SIGNATURE_INVALID

The signature provided

in a verify operation

was incorrect

9C 0C SW_IDENTITY_BLOCKED

Authentication

operation not allowed

because specified

identity is blocked

9C 0D SW_UNSPECIFIED_ERROR

An error occurred. No

further information is

given.

9C 0E SW_INVALID_PARAMETER

Input data provided

either in the APDU or

by means of the input

objectis invalid

9C 10 SW_INCORRECT_P1 Incorrect P1 value

9C 11 SW_INCORRECT_P2 Incorrect P2 value

9C 12 SW_INCORRECT_LE

When receiving data

from the card, expected

length is not correct.

63 00 SW_INVALID_AUTH (ISO)

Unsuccessful

authentication (for an

ISO Verify). Multiple

consecutive failures

cause the PIN to block

69 83 SW_AUTH_BLOCKED (ISO)

The PIN referenced into

an ISO Verify

command is blocked

6A 86 SW_INCORRECT_P1P2 (ISO)

Incorrect values of

either P1 or P2

parameter or both of

them

6D 00 SW_ERROR_INS (ISO)
Instruction code not

recognized

